Skip to main content

Proteomic Profiling: Data Mining and Analyses

  • Chapter
  • First Online:
Application of Clinical Bioinformatics

Part of the book series: Translational Bioinformatics ((TRBIO,volume 11))

  • 2441 Accesses

Abstract

Proteomics, the large scale study of proteins, provides a complementary approach to genomics in exploring biological phenomena. With modern development of Mass Spectrometry-based technologies, proteomics has evolved into a powerful analytical platform for life science researchers, and has advanced our understanding of the complex and dynamic nature of proteins. In the clinical field, proteomics studies have been widely applied in identifying biomarkers, monitoring disease status, and assessing treatment effect. In this chapter, an overview of current proteomics profiling is introduced from four perspectives: collecting protein samples with appropriate experimental approaches, characterizing protein features with advanced mass spectrometry-based technologies, annotating protein information with publicly available databases, and interpreting protein functions with bioinformatics analyses. We also give an example of how proteomics research workflow is applied in breast cancer studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-DE:

Two-dimensional gel electrophoresis

AP-MS:

Affinity purification coupled with mass spectrometry

BLAST:

Basic local alignment search tool

CDS:

Coding sequences

DE:

Differentially expressed

ES:

Enrichment score

ESI:

Electrospray ionization

FTICR:

Fourier-transform ion cyclotron resonance

GC-MS:

Gas chromatography-mass spectrometry

GO:

Gene ontology

GPMDB:

Global proteome machine database

GSEA:

Gene set enrichment analysis

HGNC:

Hugo gene nomenclature committee

HUPO-PSI:

Hupo proteomics standards initiative

KNN:

K-nearest neighbors

LC-MS:

Liquid chromatography-mass spectrometry

LOWESS:

Locally weighted scatterplot smoothing

LSA:

Least-squares adaptive

MALDI:

Matrix-assisted laser desorption/ionization

MALDI-TOF:

Matrix assisted laser desorption ionization time-of-flight

MIAPE:

Minimum information about a proteomics experiment

MOPED:

Model organism protein expression database

MOWSE:

Molecular weight search

MS:

Mass spectrometry

MSE:

Mass spectrometry with elevated energy

MudPIT:

Multidimensional protein identification technology

PLGEM:

Power law global error model

PLGS:

Proteinlynx global server

PPIN:

Protein-protein interaction network

PPIs:

Protein–protein interactions

PSEA:

Protein set enrichment analysis

PTMs:

Post translational modifications

RPLC:

Reversed-phase liquid chromatography

SAM:

Significance analysis of microarray

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SILAC:

Stable isotope labeling by amino acids in cell culture

Spl:

Spectral index

TOF:

Time-of-flight

XML:

Extensible markup language

References

  • Apweiler R, Bairoch A, Wu CH. Protein sequence databases. Curr Opin Chem Biol. 2004;8(1):76–80. doi:10.1016/j.cbpa.2003.12.004.

    Article  CAS  PubMed  Google Scholar 

  • Arnold U, Ulbrich-Hofmann R. Quantitative protein precipitation from guanidine hydrochloride-containing solutions by sodium deoxycholate/trichloroacetic acid. Anal Biochem. 1999;271(2):197–9. doi:10.1006/abio.1999.4149, S0003-2697(99)94149-0 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G, Gene Ontology C. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bader GD, Cary MP, Sander C. Pathguide: a pathway resource list. Nucleic Acids Res. 2006;34:D504–6. doi:10.1093/nar/gkj126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bairoch A, Consortium U, Bougueleret L, Altairac S, Amendolia V, Auchincloss A, Argoud-Puy G, Axelsen K, Baratin D, Blatter M-C, Boeckmann B, Bolleman J, Bollondi L, Boutet E, Quintaje SB, Breuza L, Bridge A, deCastro E, Ciapina L, Coral D, Coudert E, Cusin I, Delbard G, Dornevil D, Roggli PD, Duvaud S, Estreicher A, Famiglietti L, Feuermann M, Gehant S, Farriol-Mathis N, Ferro S, Gasteiger E, Gateau A, Gerritsen V, Gos A, Gruaz-Gumowski N, Hinz U, Hulo C, Hulo N, James J, Jimenez S, Jungo F, Junker V, Kappler T, Keller G, Lachaize C, Lane-Guermonprez L, Langendijk-Genevaux P, Lara V, Lemercier P, Le Saux V, Lieberherr D, Lima TO, Mangold V, Martin X, Masson P, Michoud K, Moinat M, Morgat A, Mottaz A, Paesano S, Pedruzzi I, Phan I, Pilbout S, Pillet V, Poux S, Pozzato M, Redaschi N, Reynaud S, Rivoire C, Roechert B, Schneider M, Sigrist C, Sonesson K, Staehli S, Stutz A, Sundaram S, Tognolli M, Verbregue L, Veuthey A-L, Yip L, Zuletta L, Apweiler R, Alam-Faruque Y, Antunes R, Barrell D, Binns D, Bower L, Browne P, Chan WM, Dimmer E, Eberhardt R, Fedotov A, Foulger R, Garavelli J, Golin R, Horne A, Huntley R, Jacobsen J, Kleen M, Kersey P, Laiho K, Leinonen R, Legge D, Lin Q, Magrane M, Martin MJ, O’Donovan C, Orchard S, O’Rourke J, Patient S, Pruess M, Sitnov A, Stanley E, Corbett M, di Martino G, Donnelly M, Luo J, van Rensburg P, Wu C, Arighi C, Arminski L, Barker W, Chen Y, Hu Z-Z, Hua H-K, Huang H, Mazumder R, McGarvey P, Natale DA, Nikolskaya A, Petrova N, Suzek BE, Vasudevan S, Vinayaka CR, Yeh LS, Zhang J. The Universal Protein resource (UniProt) 2009. Nucleic Acids Res. 2009;37:D169–74. doi:10.1093/nar/gkn664.

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y. Controlling the false discovery rate – a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300.

    Google Scholar 

  • Berrade L, Garcia AE, Camarero JA. Protein microarrays: novel developments and applications. Pharm Res. 2011;28(7):1480–99. doi:10.1007/s11095-010-0325-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bin Goh WW, Wong L. Computational proteomics: designing a comprehensive analytical strategy. Drug Discov Today. 2014;19(3):266–74. doi:10.1016/j.drudis.2013.07.008.

    Article  CAS  Google Scholar 

  • Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics. 2004;4(6):1633–49. doi:10.1002/pmic.200300771.

    Article  CAS  PubMed  Google Scholar 

  • Bo TH, Dysvik J, Jonassen I. LSimpute: accurate estimation of missing values in microarray data with least squares methods. Nucleic Acids Res. 2004;32(3):e34. doi:10.1093/nar/gnh026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Breitkreutz BJ, Stark C, Tyers M. Osprey: a network visualization system. Genome Biol. 2003;4(3):1–4. doi:10.1186/gb-2003-4-3-r22.

    Google Scholar 

  • Breitkreutz B-J, Stark C, Reguly T, Boucher L, Breitkreutz A, Livstone M, Oughtred R, Lackner DH, Bahler J, Wood V, Dolinski K, Tyers M. The BioGRID interaction database: 2008 update. Nucleic Acids Res. 2008;36:D637–40. doi:10.1093/nar/gkm1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown KR, Jurisica I. Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biol. 2007;8(5):R95. doi:10.1186/gb-2007-8-5-r95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burgess RR. Protein precipitation techniques. Methods Enzymol. 2009;463:331–42. doi:10.1016/S0076-6879(09)63020-2, S0076-6879(09)63020-2 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Buxton TB, Crockett JK, Moore 3rd WL, Moore Jr WL, Rissing JP. Protein precipitation by acetone for the analysis of polyethylene glycol in intestinal perfusion fluid. Gastroenterology. 1979;76(4):820–4. doi:S001650857900072X [pii].

    Google Scholar 

  • Canas B, Pineiro C, Calvo E, Lopez-Ferrer D, Gallardo JM. Trends in sample preparation for classical and second generation proteomics. J Chromatogr A. 2007;1153(1–2):235–58. doi:S0021-9673(07)00091-X [pii], 10.1016/j.chroma.2007.01.045.

  • Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S, Ami GOH, Web Presence Working G. AmiGO: online access to ontology and annotation data. Bioinformatics. 2009;25(2):288–9. doi:10.1093/bioinformatics/btn615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha S, Imielinski MB, Rejtar T, Richardson EA, Thakur D, Sgroi DC, Karger BL. In situ proteomic analysis of human breast cancer epithelial cells using laser capture microdissection: annotation by protein set enrichment analysis and gene ontology. Mol Cell Proteomics. 2010;9(11):2529–44. doi:10.1074/mcp.M110.000398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan SM, Ermann J, Su L, Fathman CG, Utz PJ. Protein microarrays for multiplex analysis of signal transduction pathways. Nat Med. 2004;10(12):1390–6. doi:nm1139 [pii], 10.1038/nm1139.

  • Chandra H, Reddy PJ, Srivastava S. Protein microarrays and novel detection platforms. Expert Rev Proteomics. 2011;8(1):61–79. doi:10.1586/epr.10.99.

    Article  CAS  PubMed  Google Scholar 

  • Chelius D, Bondarenko PV. Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J Proteome Res. 2002;1(4):317–23.

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zheng T, Shortreed MR, Alexander C, Smith LM. Analysis of cell surface carbohydrate expression patterns in normal and tumorigenic human breast cell lines using lectin arrays. Anal Chem. 2007;79(15):5698–702. doi:10.1021/ac070423k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Zhao J, Ma J, Zhu Y. Web resources for mass spectrometry-based proteomics. Genomics Proteomics Bioinformatics. 2015;13(1):36–9. doi:10.1016/j.gpb.2015.01.004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chernushevich IV, Loboda AV, Thomson BA. An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom. 2001;36(8):849–65. doi:10.1002/jms.207 [pii], 10.1002/jms.207.

  • Chua HN, Wong L. Increasing the reliability of protein interactomes. Drug Discov Today. 2008;13(15–16):652–8. doi:10.1016/j.drudis.2008.05.004.

    Article  CAS  PubMed  Google Scholar 

  • Chuang H-Y, Lee E, Liu Y-T, Lee D, Ideker T. Network-based classification of breast cancer metastasis. Mol Syst Biol. 2007;3:140. doi:10.1038/msb4100180.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clutterbuck AL, Smith JR, Allaway D, Harris P, Liddell S, Mobasheri A. High throughput proteomic analysis of the secretome in an explant model of articular cartilage inflammation. J Proteomics. 2011;74(5):704–15. doi:10.1016/j.jprot.2011.02.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrads TP, Issaq HJ, Veenstra TD. New tools for quantitative phosphoproteome analysis. Biochem Biophys Res Commun. 2002;290(3):885–90. doi:10.1006/bbrc.2001.6275, S0006291X01962758 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Cote RG, Jones P, Martens L, Kerrien S, Reisinger F, Lin Q, Leinonen R, Apweiler R, Hermjakob H. The Protein Identifier Cross-Referencing (PICR) service: reconciling protein identifiers across multiple source databases. BMC Bioinf. 2007;8:401. doi:10.1186/1471-2105-8-401.

    Article  CAS  Google Scholar 

  • Craig R, Cortens JP, Beavis RC. Open source system for analyzing, validating, and storing protein identification data. J Proteome Res. 2004;3(6):1234–42. doi:10.1021/pr049882h.

    Article  CAS  PubMed  Google Scholar 

  • Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P, Gopinath G, Jassal B, Jupe S, Kalatskaya I, Mahajan S, May B, Ndegwa N, Schmidt E, Shamovsky V, Yung C, Birney E, Hermjakob H, D’Eustachio P, Stein L. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39:D691–7. doi:10.1093/nar/gkq1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4(9):1–11. doi:10.1186/gb-2003-4-9-r60.

    Article  Google Scholar 

  • Deutsch EW. The PeptideAtlas project. Methods Mol Biol. 2010;604:285–96. doi:10.1007/978-1-60761-444-9_19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deutsch EW, Lam H, Aebersold R. PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. Embo Rep. 2008;9(5):429–34. doi:10.1038/embor.2008.56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinkel H, Chica C, Via A, Gould CM, Jensen LJ, Gibson TJ, Diella F. Phospho.ELM: a database of phosphorylation sites-update 2011. Nucleic Acids Res. 2011;39:D261–7. doi:10.1093/nar/gkq1104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Y, Parks BA, Sohn S, Kwast KE, Kelleher NL. Top-down approaches for measuring expression ratios of intact yeast proteins using Fourier transform mass spectrometry. Anal Chem. 2006;78(3):686–94. doi:10.1021/ac050993p.

    Article  CAS  PubMed  Google Scholar 

  • Dutta B, Wallqvist A, Reifman J. PathNet: a tool for pathway analysis using topological information. Source Code Biol Med. 2012;7(1):10. doi:10.1186/1751-0473-7-10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elliott MH, Smith DS, Parker CE, Borchers C. Current trends in quantitative proteomics. J Mass Spectrom. 2009;44(12):1637–60. doi:10.1002/jms.1692.

    CAS  PubMed  Google Scholar 

  • Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom. 1994;5(11):976–89. doi:10.1016/1044-0305(94)80016-2.

    Article  CAS  PubMed  Google Scholar 

  • Feist P, Hummon AB. Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples. Int J Mol Sci. 2015;16(2):3537–63. doi:10.3390/ijms16023537, ijms16023537 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246(4926):64–71.

    Article  CAS  PubMed  Google Scholar 

  • Fenyo D. Identifying the proteome: software tools. Curr Opin Biotechnol. 2000;11(4):391–5. doi:10.1016/S0958-1669(00)00115-4.

    Article  CAS  PubMed  Google Scholar 

  • Ferro M, Seigneurin-Berny D, Rolland N, Chapel A, Salvi D, Garin J, Joyard J. Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins. Electrophoresis. 2000;21(16):3517–26. doi:10.1002/1522-2683(20001001)21:16<3517::AID-ELPS3517>3.0.CO;2-H [pii], 10.1002/1522-2683(20001001)21:16<3517::AID-ELPS3517>3.0.CO;2-H.

  • Ficenec D, Osborne M, Pradines J, Richards D, Felciano R, Cho RJ, Chen RO, Liefeld T, Owen J, Ruttenberg A, Reich C, Horvath J, Clark T. Computational knowledge integration in biopharmaceutical research. Brief Bioinform. 2003;4(3):260–78.

    Article  CAS  PubMed  Google Scholar 

  • Fields S, Song OK. A novel genetic system to detect protein protein interactions. Nature. 1989;340(6230):245–6. doi:10.1038/340245a0.

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Jung E, Bairoch A. SWISS-PROT: connecting biomolecular knowledge via a protein database. Curr Issues Mol Biol. 2001;3(3):47–55.

    CAS  PubMed  Google Scholar 

  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A. 2003;100(12):6940–5. doi:10.1073/pnas.0832254100, 0832254100 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gnad F, Ren S, Cox J, Olsen JV, Macek B, Oroshi M, Mann M. PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol. 2007;8(11):1–13. doi:10.1186/gb-2007-8-11-r250.

    Article  CAS  Google Scholar 

  • Gnad F, Gunawardena J, Mann M. PHOSIDA 2011: the posttranslational modification database. Nucleic Acids Res. 2011;39:D253–60. doi:10.1093/nar/gkq1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granvogl B, Ploscher M, Eichacker LA. Sample preparation by in-gel digestion for mass spectrometry-based proteomics. Anal Bioanal Chem. 2007;389(4):991–1002. doi:10.1007/s00216-007-1451-4.

    Article  CAS  PubMed  Google Scholar 

  • Grasbon-Frodl E, Lorenz H, Mann U, Nitsch RM, Windl O, Kretzschmar HA. Loss of glycosylation associated with the T183A mutation in human prion disease. Acta Neuropathol. 2004;108(6):476–84. doi:10.1007/s00401-004-0913-4.

    Article  CAS  PubMed  Google Scholar 

  • Griffin PR, MacCoss MJ, Eng JK, Blevins RA, Aaronson JS, Yates 3rd JR. Direct database searching with MALDI-PSD spectra of peptides. Rapid Commun Mass Spectrom RCM. 1995;9(15):1546–51. doi:10.1002/rcm.1290091515.

    Article  CAS  PubMed  Google Scholar 

  • Grubb RL, Calvert VS, Wulkuhle JD, Paweletz CP, Linehan WM, Phillips JL, Chuaqui R, Valasco A, Gillespie J, Emmert-Buck M, Liotta LA, Petricoin EF. Signal pathway profiling of prostate cancer using reverse phase protein arrays. Proteomics. 2003;3(11):2142–6. doi:10.1002/pmic.200300598.

    Article  CAS  PubMed  Google Scholar 

  • Han X, Aslanian A, Yates 3rd JR. Mass spectrometry for proteomics. Curr Opin Chem Biol. 2008;12(5):483–90. doi:10.1016/j.cbpa.2008.07.024, S1367-5931(08)00117-8 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinz U, UniProt C. From protein sequences to 3D-structures and beyond: the example of the UniProt knowledgebase. Cell Mol Life Sci CMLS. 2010;67(7):1049–64. doi:10.1007/s00018-009-0229-6.

    Article  CAS  PubMed  Google Scholar 

  • Hornbeck PV, Chabra I, Kornhauser JM, Skrzypek E, Zhang B. Phosphosite: a bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics. 2004;4(6):1551–61. doi:10.1002/pmic.200300772.

    Article  CAS  PubMed  Google Scholar 

  • Hu ZJ, Mellor J, Wu J, DeLisi C. VisANT: an online visualization and analysis tool for biological interaction data. BMC Bioinf. 2004;5:1–8. doi:10.1186/1471-2105-5-17.

    Article  Google Scholar 

  • Hubbard TJP, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Clarke L, Coates G, Fairley S, Fitzgerald S, Fernandez-Banet J, Gordon L, Graf S, Haider S, Hammond M, Holland R, Howe K, Jenkinson A, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Lawson D, Longden I, Megy K, Meidl P, Overduin B, Parker A, Pritchard B, Rios D, Schuster M, Slater G, Smedley D, Spooner W, Spudich G, Trevanion S, Vilella A, Vogel J, White S, Wilder S, Zadissa A, Birney E, Cunningham F, Curwen V, Durbin R, Fernandez-Suarez XM, Herrero J, Kasprzyk A, Proctor G, Smith J, Searle S, Flicek P. Ensembl 2009. Nucleic Acids Res. 2009;37:D690–7. doi:10.1093/nar/gkn828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber LA. Is proteomics heading in the wrong direction? Nat Rev Mol Cell Biol. 2003;4(1):74–80. doi:10.1038/nrm1007.

    Article  CAS  PubMed  Google Scholar 

  • Hustoft HK, Reubsaet L, Greibrokk T, Lundanes E, Malerod H. Critical assessment of accelerating trypsination methods. J Pharm Biomed Anal. 2011;56(5):1069–78. doi:10.1016/j.jpba.2011.08.013, S0731-7085(11)00451-1 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Ingrell CR, Miller ML, Jensen ON, Blom N. NetPhosYeast: prediction of protein phosphorylation sites in yeast. Bioinformatics. 2007;23(7):895–7. doi:10.1093/informatics/btm020.

    Article  CAS  PubMed  Google Scholar 

  • Isaacson T, Damasceno CM, Saravanan RS, He Y, Catala C, Saladie M, Rose JK. Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc. 2006;1(2):769–74. doi:nprot.2006.102 [pii], 10.1038/nprot.2006.102.

  • Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C. STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009;37:D412–16. doi:10.1093/nar/gkn760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones P, Cote RG, Martens L, Quinn AF, Taylor CF, Derache W, Hermjakob H, Apweiler R. PRIDE: a public repository of protein and peptide identifications for the proteomics community. Nucleic Acids Res. 2006;34(Database issue):D659–63. doi:10.1093/nar/gkj138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandasamy K, Keerthikumar S, Goel R, Mathivanan S, Patankar N, Shafreen B, Renuse S, Pawar H, Ramachandra YL, Acharya PK, Ranganathan P, Chaerkady R, Keshava Prasad TS, Pandey A. Human Proteinpedia: a unified discovery resource for proteomics research. Nucleic Acids Res. 2009;37(Database issue):D773–81. doi:10.1093/nar/gkn701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandasamy K, Mohan SS, Raju R, Keerthikumar S, Kumar GSS, Venugopal AK, Telikicherla D, Navarro JD, Mathivanan S, Pecquet C, Gollapudi SK, Tattikota SG, Mohan S, Padhukasahasram H, Subbannayya Y, Goel R, Jacob HKC, Zhong J, Sekhar R, Nanjappa V, Balakrishnan L, Subbaiah R, Ramachandra YL, Rahiman BA, Prasad TSK, Lin J-X, Houtman JCD, Desiderio S, Renauld J-C, Constantinescu SN, Ohara O, Hirano T, Kubo M, Singh S, Khatri P, Draghici S, Bader GD, Sander C, Leonard WJ, Pandey A. NetPath: a public resource of curated signal transduction pathways. Genome Biol. 2010;11(1):1–9. doi:10.1186/gb-2010-11-1-r3.

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42(D1):D199–205. doi:10.1093/nar/gkt1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988;60(20):2299–301.

    Article  CAS  PubMed  Google Scholar 

  • Karpievitch YV, Dabney AR, Smith RD. Normalization and missing value imputation for label-free LC-MS analysis. BMC Bioinf. 2012;13 Suppl 16:S5. doi:10.1186/1471-2105-13-s16-s5.

    Article  CAS  Google Scholar 

  • Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M, Friedrichsen A, Huntley R, Kohler C, Khadake J, Leroy C, Liban A, Lieftink C, Montecchi-Palazzi L, Orchard S, Risse J, Robbe K, Roechert B, Thorneycroft D, Zhang Y, Apweiler R, Hermjakob H. IntAct – open source resource for molecular interaction data. Nucleic Acids Res. 2007;35:D561–5. doi:10.1093/nar/gkl958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koenig T, Menze BH, Kirchner M, Monigatti F, Parker KC, Patterson T, Steen JJ, Hamprecht FA, Steen H. Robust prediction of the MASCOT score for an improved quality assessment in mass spectrometric proteomics. J Proteome Res. 2008;7(9):3708–17. doi:10.1021/pr700859x.

    Article  CAS  PubMed  Google Scholar 

  • Kolker E, Higdon R, Haynes W, Welch D, Broomall W, Lancet D, Stanberry L, Kolker N. MOPED: model organism protein expression database. Nucleic Acids Res. 2012;40(Database issue):D1093–9. doi:10.1093/nar/gkr1177, gkr1177 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaBaer J, Ramachandran N. Protein microarrays as tools for functional proteomics. Curr Opin Chem Biol. 2005;9(1):14–9. doi:S1367-5931(04)00165-6 [pii], 10.1016/j.cbpa.2004.12.006.

  • Lee T-Y, Huang H-D, Hung J-H, Huang H-Y, Yang Y-S, Wang T-H. dbPTM: an information repository of protein post-translational modification. Nucleic Acids Res. 2006;34:D622–7. doi:10.1093/nar/gkj083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Adams RM, Chourey K, Hurst GB, Hettich RL, Pan C. Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap Velos. J Proteome Res. 2012;11(3):1582–90. doi:10.1021/pr200748h.

    Article  CAS  PubMed  Google Scholar 

  • Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739–40. doi:10.1093/bioinformatics/btr260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linding R, Jensen LJ, Ostheimer GJ, van Vugt MATM, Jorgensen C, Miron IM, Diella F, Colwill K, Taylor L, Elder K, Metalnikov P, Nguyen V, Pasculescu A, Jin J, Park JG, Samson LD, Woodgett JR, Russell RB, Bork P, Yaffe MB, Pawson T. Systematic discovery of in vivo phosphorylation networks. Cell. 2007;129(7):1415–26. doi:10.1016/j.cell.2007.05.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Listgarten J, Emili A. Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics. 2005;4(4):419–34. doi:10.1074/mcp.R500005-MCP200.

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Sadygov RG, Yates 3rd JR. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem. 2004;76(14):4193–201. doi:10.1021/ac0498563.

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395–406. doi:10.1083/jcb.201102147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A, Lajoie G. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom RCM. 2003;17(20):2337–42. doi:10.1002/rcm.1196.

    Article  CAS  PubMed  Google Scholar 

  • Malik R, Dulla K, Nigg EA, Korner R. From proteome lists to biological impact--tools and strategies for the analysis of large MS data sets. Proteomics. 2010;10(6):1270–83. doi:10.1002/pmic.200900365.

    Article  CAS  PubMed  Google Scholar 

  • Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol. 2003;21(3):255–61. doi:10.1038/nbt0303-255.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Bartolome S, Medina-Aunon JA, Jones AR, Albar JP. Semi-automatic tool to describe, store and compare proteomics experiments based on MIAPE compliant reports. Proteomics. 2010;10(6):1256–60. doi:10.1002/pmic.200900367.

    Article  CAS  PubMed  Google Scholar 

  • Matthiesen R, Mutenda KE. Introduction to proteomics. Methods Mol Biol. 2007;367:1–35. doi:1-59745-275-0:1 [pii], 10.1385/1-59745-275-0:1.

  • McLaughlin T, Siepen JA, Selley J, Lynch JA, Lau KW, Yin H, Gaskell SJ, Hubbard SJ. PepSeeker: a database of proteome peptide identifications for investigating fragmentation patterns. Nucleic Acids Res. 2006;34:D649–54. doi:10.1093/nar/gkj066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina-Aunon JA, Martinez-Bartolome S, Lopez-Garcia MA, Salazar E, Navajas R, Jones AR, Paradela A, Albar JP. The ProteoRed MIAPE web toolkit: a user-friendly framework to connect and share proteomics standards. Mol Cell Proteomics. 2011;10(10):M111 008334. doi:10.1074/mcp.M111.008334.

    Google Scholar 

  • Medina-Aunon JA, Krishna R, Ghali F, Albar JP, Jones AJ. A guide for integration of proteomic data standards into laboratory workflows. Proteomics. 2013;13(3–4):480–92. doi:10.1002/pmic.201200268.

    Article  CAS  PubMed  Google Scholar 

  • Medzihradszky KF, Chalkley RJ. Lessons in de novo peptide sequencing by tandem mass spectrometry. Mass Spectrom Rev. 2015;34(1):43–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mewes HW, Amid C, Arnold R, Frishman D, Guldener U, Mannhaupt G, Munsterkotter M, Pagel P, Strack N, Stumpflen V, Warfsmann J, Ruepp A. MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Res. 2004;32:D41–4. doi:10.1093/nar/gkh092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minguez P, Parca L, Diella F, Mende DR, Kumar R, Helmer-Citterich M, Gavin A-C, van Noort V, Bork P. Deciphering a global network of functionally associated post-translational modifications. Mol Syst Biol. 2012;8:599. doi:10.1038/msb.2012.31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minguez P, Letunic I, Parca L, Bork P. PTMcode: a database of known and predicted functional associations between post-translational modifications in proteins. Nucleic Acids Res. 2013;41(D1):D306–11. doi:10.1093/nar/gks1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen JV, Mann M. Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics. 2013;12(12):3444–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1(5):376–86.

    Article  CAS  PubMed  Google Scholar 

  • Opiteck GJ, Jorgenson JW. Two-dimensional SEC/RPLC coupled to mass spectrometry for the analysis of peptides. Anal Chem. 1997;69(13):2283–91.

    Article  CAS  PubMed  Google Scholar 

  • Orchard S, Hermjakob H, Apweiler R. The proteomics standards initiative. Proteomics. 2003;3(7):1374–6. doi:10.1002/pmic.200300496.

    Article  CAS  PubMed  Google Scholar 

  • Pappin DJC, Hojrup P, Bleasby AJ. Rapid identification of proteins by peptide-mass finger printing (Vol 3, Pg 327, 1993). Curr Biol. 1993;3(7):487–487.

    Google Scholar 

  • Pendarvis K, Kumar R, Burgess SC, Nanduri B. An automated proteomic data analysis workflow for mass spectrometry. BMC Bioinf. 2009;10. doi:10.1186/1471-2105-10-s11-s17.

    Google Scholar 

  • Perez-Riverol Y, Alpi E, Wang R, Hermjakob H, Vizcaino JA. Making proteomics data accessible and reusable: current state of proteomics databases and repositories. Proteomics. 2015;15(5–6):930–49. doi:10.1002/pmic.201400302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20(18):3551–3567. doi:10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2–2 [pii], 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2–2.

  • Persico M, Ceol A, Gavrila C, Hoffmann R, Florio A, Cesareni G. HomoMINT: an inferred human network based on orthology mapping of protein interactions discovered in model organisms. BMC Bioinf. 2005;6:1–12. doi:10.1186/1471-2105-6-s4-s21.

    Article  CAS  Google Scholar 

  • Pesavento JJ, Mizzen CA, Kelleher NL. Quantitative analysis of modified proteins and their positional isomers by tandem mass spectrometry: human histone H4. Anal Chem. 2006;78(13):4271–80. doi:10.1021/ac0600050.

    Article  CAS  PubMed  Google Scholar 

  • Povey S, Lovering R, Bruford E, Wright M, Lush M, Wain H. The HUGO Gene Nomenclature Committee (HGNC). Hum Genet. 2001;109(6):678–80. doi:10.1007/s00439-001-0615-0.

    Article  CAS  PubMed  Google Scholar 

  • Prasad TSK, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Kishore CJH, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A. Human protein reference database-2009 update. Nucleic Acids Res. 2009;37:D767–72. doi:10.1093/nar/gkn892.

    Article  CAS  Google Scholar 

  • Prieto C, Rivas JDL. APID: agile protein interaction DataAnalyzer. Nucleic Acids Res. 2006;34:W298–302. doi:10.1093/nar/gkl128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puig-Costa M, Oliveras-Ferraros C, Flaquer S, Llopis-Puigmarti F, Pujol-Amado E, Martin-Castillo B, Vazquez-Martin A, Cufi S, Ortiz R, Roig J, Codina-Cazador A, Menendez JA. Antibody microarray-based technology to rapidly define matrix metalloproteinase (MMP) signatures in patients undergoing resection for primary gastric carcinoma. J Surg Oncol. 2011;104(1):106–9. doi:10.1002/jso.21887.

    Article  CAS  PubMed  Google Scholar 

  • Rabilloud T, Lelong C. Two-dimensional gel electrophoresis in proteomics: a tutorial. J Proteomics. 2011;74(10):1829–41. doi:10.1016/j.jprot.2011.05.040, S1874-3919(11)00254-5 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Raynie DE. Modern extraction techniques. Anal Chem. 2010;82(12):4911–16. doi:10.1021/ac101223c.

    Article  CAS  PubMed  Google Scholar 

  • Riffle M, Eng JK. Proteomics data repositories. Proteomics. 2009;9(20):4653–63. doi:10.1002/pmic.200900216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol. 1999;17(10):1030–2. doi:10.1038/13732.

    Article  CAS  PubMed  Google Scholar 

  • Robin X, Hoogland C, Appel RD, Lisacek F. MIAPEGelDB, a web-based submission tool and public repository for MIAPE gel electrophoresis documents. J Proteomics. 2008;71(2):249–51. doi:10.1016/j.jprot.2008.06.005.

    Article  CAS  PubMed  Google Scholar 

  • Robinson WH, DiGennaro C, Hueber W, Haab BB, Kamachi M, Dean EJ, Fournel S, Fong D, Genovese MC, de Vegvar HE, Skriner K, Hirschberg DL, Morris RI, Muller S, Pruijn GJ, van Venrooij WJ, Smolen JS, Brown PO, Steinman L, Utz PJ. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat Med. 2002;8(3):295–301. doi:10.1038/nm0302-295, nm0302-295 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Rohloff J. Analysis of phenolic and cyclic compounds in plants using derivatization techniques in combination with GC-MS-based metabolite profiling. Molecules. 2015;20(2):3431–62. doi:10.3390/molecules20023431.

    Article  CAS  PubMed  Google Scholar 

  • Roxas BAP, Li Q. Significance analysis of microarray for relative quantitation of LC/MS data in proteomics. BMC Bioinf. 2008;9:1–17. doi:10.1186/1471-2105-9-187.

    Article  CAS  Google Scholar 

  • Ryan DP, Matthews JM. Protein-protein interactions in human disease. Curr Opin Struct Biol. 2005;15(4):441–6. doi:10.1016/j.sbo.2005.06.001.

    Article  CAS  PubMed  Google Scholar 

  • Sadygov RG, Cociorva D, Yates 3rd JR. Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book. Nat Methods. 2004;1(3):195–202. doi:10.1038/nmeth725.

    Article  CAS  PubMed  Google Scholar 

  • Salomonis N, Hanspers K, Zambon AC, Vranizan K, Lawlor SC, Dahlquist KD, Doniger SW, Stuart J, Conklin BR, Pico AR. GenMAPP 2: new features and resources for pathway analysis. BMC Bioinf. 2007;8:1–12. doi:10.1186/1471-2105-8-217.

    Article  CAS  Google Scholar 

  • Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH. PID: the pathway interaction database. Nucleic Acids Res. 2009;37:D674–9. doi:10.1093/nar/gkn653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes MG, Willmitzer L, Fernie AR, Kopka J. GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett. 2005;579(6):1332–7. doi:10.1016/j.febslet.2005.01.029.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Forne I, Imhof A. Bioinformatic analysis of proteomics data. BMC Syst Biol. 2014;8 Suppl 2:S3. doi:10.1186/1752-0509-8-s2-s3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider M, Tognolli M, Bairoch A. The Swiss-Prot protein knowledgebase and ExPASy: providing the plant community with high quality proteomic data and tools. Plant Physiol Biochem PPB/Societe francaise de physiologie vegetale. 2004;42(12):1013–21. doi:10.1016/j.plaphy.2004.10.009.

    Article  CAS  Google Scholar 

  • Schwartz D, Chou MF, Church GM. Predicting protein post-translational modifications using meta-analysis of proteome scale data sets. Mol Cell Proteomics. 2009;8(2):365–79. doi:10.1074/mcp.M800332-MCP200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafer MW, Mangold L, Partin AW, Haab BB. Antibody array profiling reveals serum TSP-1 as a marker to distinguish benign from malignant prostatic disease. Prostate. 2007;67(3):255–67. doi:10.1002/pros.20514.

    Article  PubMed  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. doi:10.1101/gr.1239303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheehan KM, Calvert VS, Kay EW, Lu Y, Fishman D, Espina V, Aquino J, Speer R, Araujo R, Mills GB, Liotta LA, Petricoin 3rd EF, Wulfkuhle JD. Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics. 2005;4(4):346–55. doi:T500003-MCP200 [pii], 10.1074/mcp.T500003-MCP200.

  • Shen Y, Smith RD. Proteomics based on high-efficiency capillary separations. Electrophoresis. 2002;23(18):3106–24. doi:10.1002/1522-2683(200209)23:18<3106::AID-ELPS3106>3.0.CO;2-Y.

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996;68(5):850–8.

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. 2006;1(6):2856–60. doi:nprot.2006.468 [pii], 10.1038/nprot.2006.468.

  • Silberring J, Ciborowski P. Biomarker discovery and clinical proteomics. Trac Trends Anal Chem. 2010;29(2):128–40. doi:10.1016/j.trac.2009.11.007.

    Article  CAS  Google Scholar 

  • Smith BE, Hill JA, Gjukich MA, Andrews PC. Tranche distributed repository and ProteomeCommons.org. Methods Mol Biol. 2011;696:123–45. doi:10.1007/978-1-60761-987-1_8.

    Article  CAS  PubMed  Google Scholar 

  • Srihari S, Yong CH, Patil A, Wong L. Methods for protein complex prediction and their contributions towards understanding the organisation, function and dynamics of complexes. FEBS Lett. 2015;589(19 Pt A):2590–602. doi:10.1016/j.febslet.2015.04.026.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50. doi:10.1073/pnas.0506580102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang K, Page JS, Smith RD. Charge competition and the linear dynamic range of detection in electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 2004;15(10):1416–23. doi:S1044030504003150 [pii], 10.1016/j.jasms.2004.04.034.

  • Thiede B, Hohenwarter W, Krah A, Mattow J, Schmid M, Schmidt F, Jungblut PR. Peptide mass fingerprinting. Methods. 2005;35(3):237–47. doi:S1046-2023(04)00205-1 [pii], 10.1016/j.ymeth.2004.08.015.

  • Thomas PD, Campbell MJ, Kejariwal A, Mi HY, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13(9):2129–41. doi:10.1101/gr.772403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB. Missing value estimation methods for DNA microarrays. Bioinformatics. 2001;17(6):520–5. doi:10.1093/bioinformatics/17.6.520.

    Article  CAS  PubMed  Google Scholar 

  • Waegele B, Dunger-Kaltenbach I, Fobo G, Montrone C, Mewes HW, Ruepp A. CRONOS: the cross-reference navigation server. Bioinformatics. 2009;25(1):141–3. doi:10.1093/bioinformatics/btn590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Anderson GA, Smith RD, Dabney AR. A hybrid approach to protein differential expression in mass spectrometry-based proteomics. Bioinformatics. 2012;28(12):1586–91. doi:10.1093/bioinformatics/bts193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weiner AM, Platt T, Weber K. Amino-terminal sequence analysis of proteins purified on a nanomole scale by gel electrophoresis. J Biol Chem. 1972;247(10):3242–51.

    CAS  PubMed  Google Scholar 

  • Wessel D, Flugge UI. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984;138(1):141–3. doi:0003-2697(84)90782-6 [pii].

    Google Scholar 

  • Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–62. doi:10.1038/nmeth.1322, nmeth.1322 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski JR, Ostasiewicz P, Mann M. High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J Proteome Res. 2011;10(7):3040–9. doi:10.1021/pr200019m.

    Article  CAS  PubMed  Google Scholar 

  • Xenarios I, Salwinski L, Duan XQJ, Higney P, Kim SM, Eisenberg D. DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 2002;30(1):303–5. doi:10.1093/nar/30.1.303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C. Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem. 2001;73(13):2836–42.

    Article  CAS  PubMed  Google Scholar 

  • Yates JR, Ruse CI, Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng. 2009;11:49–79. doi:10.1146/annurev-bioeng-061008-124934.

    Article  CAS  PubMed  Google Scholar 

  • Yeung YG, Stanley ER. Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis. Curr Protoc Protein Sci. Chapter 16: unit 16. 2010;12. doi:10.1002/0471140864.ps1612s59.

  • Zhang Y, Fonslow BR, Shan B, Baek MC, Yates 3rd JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013;113(4):2343–94. doi:10.1021/cr3003533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Jensen ON. Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics. 2009;9(20):4632–41. doi:10.1002/pmic.200900398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou JY, Dann GP, Shi T, Wang L, Gao X, Su D, Nicora CD, Shukla AK, Moore RJ, Liu T, Camp 2nd DG, Smith RD, Qian WJ. Simple sodium dodecyl sulfate-assisted sample preparation method for LC-MS-based proteomics applications. Anal Chem. 2012;84(6):2862–7. doi:10.1021/ac203394r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Smith JW, Huang CM. Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol. 2010;2010:840518. doi:10.1155/2010/840518.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wen Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, L., Zhu, W., Zeng, Y., Zhang, J., Deng, HW. (2016). Proteomic Profiling: Data Mining and Analyses. In: Wang, X., Baumgartner, C., Shields, D., Deng, HW., Beckmann, J. (eds) Application of Clinical Bioinformatics. Translational Bioinformatics, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7543-4_6

Download citation

Publish with us

Policies and ethics