Skip to main content

Clinical Epigenetics and Epigenomics

  • Chapter
  • First Online:
Application of Clinical Bioinformatics

Part of the book series: Translational Bioinformatics ((TRBIO,volume 11))

  • 2409 Accesses

Abstract

Epigenetics is a molecular phenomenon that pertains to heritable changes in gene expression that do not involve changes in the DNA sequence. Epigenome, epigenetic modifications in a whole genome, play an essential role in the regulation of gene expression in both normal development and disease. DNA methylation, histone modification, and RNA-mediated targeting regulate many biological processes that are fundamental to the genesis of a spectrum of diseases. Here, we give a historical overview of the epigenomics field and focus on the recent progress that has been made in understanding the pathogenic role of cancerous disease, autoimmute disease, and metabolic disorder. We also discuss available traditional epigenetic therapies, epigenetic therapies currently in development, and the potential future use of epigenetic therapeutics in a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Absher DM, Li X, Waite LL, et al. Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations. PLoS Genet. 2013;9:e1003678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaral PP, Dinger ME, Mercer TR, et al. The eukaryotic genome as an RNA machine. Science. 2008;319:1787–9.

    Article  CAS  PubMed  Google Scholar 

  • Anestopoulos I, Voulgaridou GP, Georgakilas AG, et al. Epigenetic therapy as a novel approach in hepatocellular carcinoma. Pharmacol Ther. 2015;145:103–19.

    Article  CAS  PubMed  Google Scholar 

  • Barbisan F, Mazzucchelli R, Santinelli A, et al. Immunohistochemical evaluation of global DNA methylation and histone acetylation in papillary urothelial neoplasm of low malignant potential. Int J Immunopathol Pharmacol. 2008;21:615–23.

    CAS  PubMed  Google Scholar 

  • Barlesi F, Giaccone G, Gallegos-Ruiz MI, et al. Global histone modifications predict prognosis of resected non small-cell lung cancer. J Clin Oncol. 2007;25:4358–64.

    Article  PubMed  Google Scholar 

  • Barres R, Osler ME, Yan J, et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009;10:189–98.

    Article  CAS  PubMed  Google Scholar 

  • Barres R, Yan J, Egan B, et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012;15:405–11.

    Article  CAS  PubMed  Google Scholar 

  • Baylin SB, Jones PA. A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer. 2011;11:726–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bays H, Scinta W. Adiposopathy and epigenetics: an introduction to obesity as a transgenerational disease. Curr Med Res Opin. 2015;31(11):2059–69.

    Article  CAS  PubMed  Google Scholar 

  • Berger SL, Kouzarides T, Shiekhattar R, et al. An operational definition of epigenetics. Genes Dev. 2009;23:781–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budhu A, Jia HL, Forgues M, et al. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology. 2008;47:897–907.

    Article  CAS  PubMed  Google Scholar 

  • Cakmak H, Taylor HS. Implantation failure: molecular mechanisms and clinical treatment. Hum Reprod Update. 2011;17:242–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callinan PA, Feinberg AP. The emerging science of epigenomics. Hum Mol Genet. 2006;15(Spec No 1):R95–101.

    Article  CAS  PubMed  Google Scholar 

  • Chiang PK, Gordon RK, Tal J, et al. S-Adenosylmethionine and methylation. FASEB J. 1996;10:471–80.

    CAS  PubMed  Google Scholar 

  • Costa FF. Non-coding RNAs, epigenetics and complexity. Gene. 2008;410:9–17.

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Zhang L, Hu C, et al. Genome-wide analysis of histone H3 lysine 4 trimethylation by ChIP-chip in peripheral blood mononuclear cells of systemic lupus erythematosus patients. Clin Exp Rheumatol. 2010;28:158–68.

    CAS  PubMed  Google Scholar 

  • Dang MN, Buzzetti R, Pozzilli P. Epigenetics in autoimmune diseases with focus on type 1 diabetes. Diabetes Metab Res Rev. 2013;29:8–18.

    Article  CAS  PubMed  Google Scholar 

  • Dawson Mark A, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12–27.

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Tsao BP. Advances in lupus genetics and epigenetics. Curr Opin Rheumatol. 2014;26:482–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Denis H, Deplus R, Putmans P, et al. Functional connection between deimination and deacetylation of histones. Mol Cell Biol. 2009;29:4982–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai M, Jellyman JK, Ross MG. Epigenomics, gestational programming and risk of metabolic syndrome. Int J Obes (Lond). 2015;39:633–41.

    Article  CAS  Google Scholar 

  • Duvic M, Talpur R, Ni X, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109:31–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endoh M, Endo TA, Endoh T, et al. Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. PLoS Genet. 2012;8:e1002774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4:143–53.

    Article  CAS  PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301:89–92.

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Fan G. The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int Rev Neurobiol. 2009;89:67–84.

    Article  CAS  PubMed  Google Scholar 

  • Fujita N, Watanabe S, Ichimura T, et al. Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression. J Biol Chem. 2003;278:24132–8.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, et al. Phase 1/2 study of the combination of 5-aza-2′-deoxycytidine with valproic acid in patients with leukemia. Blood. 2006;108:3271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaudet F, Hodgson JG, Eden A, et al. Induction of tumors in mice by genomic hypomethylation. Science. 2003;300:489–92.

    Article  CAS  PubMed  Google Scholar 

  • Giacinti L, Vici P, Lopez M. Epigenome: a new target in cancer therapy. Clin Ter. 2008;159:347–60.

    CAS  PubMed  Google Scholar 

  • Glossop JR, Nixon NB, Emes RD, et al. Epigenome-wide profiling identifies significant differences in DNA methylation between matched-pairs of T- and B-lymphocytes from healthy individuals. Epigenetics. 2013;8:1188–97.

    Article  CAS  PubMed  Google Scholar 

  • Gluckman PD. Epigenetics and metabolism in 2011: epigenetics, the life-course and metabolic disease. Nat Rev Endocrinol. 2012;8:74–6.

    Article  CAS  Google Scholar 

  • Griffith JS, Mahler HR. DNA ticketing theory of memory. Nature. 1969;223:580–2.

    Article  CAS  PubMed  Google Scholar 

  • Hamm CA, Costa FF. The impact of epigenomics on future drug design and new therapies. Drug Discov Today. 2011;16:626–35.

    Article  CAS  PubMed  Google Scholar 

  • Hamm CA, Costa FF. Epigenomes as therapeutic targets. Pharmacol Ther. 2015;151:72–86.

    Article  CAS  PubMed  Google Scholar 

  • Handel AE, Ebers GC, Ramagopalan SV. Epigenetics: molecular mechanisms and implications for disease. Trends Mol Med. 2010;16:7–16.

    Article  CAS  PubMed  Google Scholar 

  • Harb H, Renz H. Update on epigenetics in allergic disease. J Allergy Clin Immunol. 2015;135:15–24.

    Article  CAS  PubMed  Google Scholar 

  • Hassan AH, Prochasson P, Neely KE, et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell. 2002;111:369–79.

    Article  CAS  PubMed  Google Scholar 

  • He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.

    Article  CAS  PubMed  Google Scholar 

  • Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105:17046–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewagama A, Richardson B. The genetics and epigenetics of autoimmune diseases. J Autoimmun. 2009;33:3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holliday R. The inheritance of epigenetic defects. Science. 1987;238:163–70.

    Article  CAS  PubMed  Google Scholar 

  • Holliday R. DNA methylation and epigenetic inheritance. Philos Trans R Soc Lond B Biol Sci. 1990;326:329–38.

    Article  CAS  PubMed  Google Scholar 

  • Holliday R. Epigenetics: a historical overview. Epigenetics. 2006;1:76–80.

    Article  PubMed  Google Scholar 

  • Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science. 1975;187:226–32.

    Article  CAS  PubMed  Google Scholar 

  • Hu N, Qiu X, Luo Y, et al. Abnormal histone modification patterns in lupus CD4+ T cells. J Rheumatol. 2008;35:804–10.

    CAS  PubMed  Google Scholar 

  • Jamniczky HA, Boughner JC, Rolian C, et al. Rediscovering Waddington in the post-genomic age: operationalising Waddington’s epigenetics reveals new ways to investigate the generation and modulation of phenotypic variation. Bioessays. 2010;32:553–8.

    Article  PubMed  Google Scholar 

  • Kargul J, Irminger-Finger I, Laurent GJ. Epigenetics regulation of disease: there is more to a gene than its sequence. Int J Biochem Cell Biol. 2015;67:43.

    Article  CAS  PubMed  Google Scholar 

  • Kato T. Epigenomics in psychiatry. Neuropsychobiology. 2009;60:2–4.

    Article  CAS  PubMed  Google Scholar 

  • Kido Y. Progress in diabetes. Rinsho Byori. 2013;61:941–7.

    CAS  PubMed  Google Scholar 

  • Kim SJ, Nian C, McIntosh CH. Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 modulate beta-cell chromatin structure. J Biol Chem. 2009;284:12896–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:159–70.

    Article  CAS  PubMed  Google Scholar 

  • Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31:89–97.

    Article  CAS  PubMed  Google Scholar 

  • Kota J, Chivukula RR, O’Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137:1005–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363:2424–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462:315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Q, Kaplan M, Ray D, et al. Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum. 2002;46:1282–91.

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Wu A, Ray D, et al. DNA methylation and chromatin structure regulate T cell perforin gene expression. J Immunol. 2003;170:5124–32.

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Wu A, Richardson BC. Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J Immunol. 2005;174:6212–19.

    Article  CAS  PubMed  Google Scholar 

  • Mau T, Yung R. Potential of epigenetic therapies in non-cancerous conditions. Front Genet. 2014;5:438.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayer W, Niveleau A, Walter J, et al. Demethylation of the zygotic paternal genome. Nature. 2000;403:501–2.

    Article  CAS  PubMed  Google Scholar 

  • Milagro FI, Campion J, Garcia-Diaz DF, et al. High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats. J Physiol Biochem. 2009;65:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Nakano K, Whitaker JW, Boyle DL, et al. DNA methylome signature in rheumatoid arthritis. Ann Rheum Dis. 2013;72:110–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam EJ, Yoon H, Kim SW, et al. MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res. 2008;14:2690–5.

    Article  CAS  PubMed  Google Scholar 

  • Newman SA, Muller GB. Epigenetic mechanisms of character origination. J Exp Zool. 2000;288:304–17.

    Article  CAS  PubMed  Google Scholar 

  • Nile CJ, Read RC, Akil M, et al. Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum. 2008;58:2686–93.

    Article  PubMed  Google Scholar 

  • Noer A, Boquest AC, Collas P. Dynamics of adipogenic promoter DNA methylation during clonal culture of human adipose stem cells to senescence. BMC Cell Biol. 2007;8:18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozdag H, Teschendorff AE, Ahmed AA, et al. Differential expression of selected histone modifier genes in human solid cancers. BMC Genomics. 2006;7:90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Park JK, Kogure T, Nuovo GJ, et al. miR-221 silencing blocks hepatocellular carcinoma and promotes survival. Cancer Res. 2011;71:7608–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perera F, Tang WY, Herbstman J, et al. Relation of DNA methylation of 5′-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One. 2009;4:e4488.

    Article  PubMed  PubMed Central  Google Scholar 

  • Picascia A, Grimaldi V, Pignalosa O, et al. Epigenetic control of autoimmune diseases: from bench to bedside. Clin Immunol. 2015;157:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Pogribny IP, Beland FA. DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci. 2009;66:2249–61.

    Article  CAS  PubMed  Google Scholar 

  • Pokrywka M, Kiec-Wilk B, Polus A, et al. DNA methylation in obesity. Postepy Hig Med Dosw (Online). 2014;68:1383–91.

    Article  Google Scholar 

  • Ptak C, Petronis A. Epigenetics and complex disease: from etiology to new therapeutics. Annu Rev Pharmacol Toxicol. 2008;48:257–76.

    Article  CAS  PubMed  Google Scholar 

  • Qin H, Zhu X, Liang J, et al. MicroRNA-29b contributes to DNA hypomethylation of CD4+ T cells in systemic lupus erythematosus by indirectly targeting DNA methyltransferase 1. J Dermatol Sci. 2013;69:61–7.

    Article  CAS  PubMed  Google Scholar 

  • Ray-Gallet D, Almouzni G. Nucleosome dynamics and histone variants. Essays Biochem. 2010;48:75–87.

    Article  CAS  PubMed  Google Scholar 

  • Renz H, von Mutius E, Brandtzaeg P, et al. Gene-environment interactions in chronic inflammatory disease. Nat Immunol. 2011;12:273–7.

    Article  CAS  PubMed  Google Scholar 

  • Riddihough G, Zahn LM. Epigenetics. What is epigenetics? Introduction. Science. 2010;330:611.

    Article  CAS  PubMed  Google Scholar 

  • Ronn T, Ling C. DNA methylation as a diagnostic and therapeutic target in the battle against Type 2 diabetes. Epigenomics. 2015;7:451–60.

    Article  PubMed  Google Scholar 

  • Sanchez R, Zhou MM. The role of human bromodomains in chromatin biology and gene transcription. Curr Opin Drug Discov Devel. 2009;12:659–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev. 2012;22:50–5.

    Article  CAS  PubMed  Google Scholar 

  • Santos F, Hendrich B, Reik W, et al. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol. 2002;241:172–82.

    Article  CAS  PubMed  Google Scholar 

  • Seligson DB, Horvath S, Shi T, et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature. 2005;435:1262–6.

    Article  CAS  PubMed  Google Scholar 

  • Stepanow S, Reichwald K, Huse K, et al. Allele-specific, age-dependent and BMI-associated DNA methylation of human MCHR1. PLoS One. 2011;6:e17711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabatabaei-Malazy O, Larijani B, Abdollahi M. Targeting metabolic disorders by natural products. J Diabetes Metab Disord. 2015;14:57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Talaat RM, Mohamed SF, Bassyouni IH, et al. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: correlation with disease activity. Cytokine. 2015;72:146–53.

    Article  CAS  PubMed  Google Scholar 

  • Valdespino V, Valdespino PM. Potential of epigenetic therapies in the management of solid tumors. Cancer Manag Res. 2015;7:241–51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wijermans P, Lubbert M, Verhoef G, et al. Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol. 2000;18:956–62.

    CAS  PubMed  Google Scholar 

  • Wolffe AP, Matzke MA. Epigenetics: regulation through repression. Science. 1999;286:481–6.

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Wang M, Bonaldo Mde F, et al. Epigenomic analysis of Alu repeats in human ependymomas. Proc Natl Acad Sci U S A. 2010;107:6952–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang BT, Dayeh TA, Kirkpatrick CL, et al. Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia. 2011;54:360–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zhang R. Epigenetics in autoimmune diseases: pathogenesis and prospects for therapy. Autoimmun Rev. 2015;14:854–63.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhao M, Sawalha AH, et al. Impaired DNA methylation and its mechanisms in CD4(+)T cells of systemic lupus erythematosus. J Autoimmun. 2013;41:92–9.

    Article  PubMed  Google Scholar 

  • Zhao M, Wang Z, Yung S, et al. Epigenetic dynamics in immunity and autoimmunity. Int J Biochem Cell Biol. 2015;67:65–74.

    Article  CAS  PubMed  Google Scholar 

  • Zhernakova A, Withoff S, Wijmenga C. Clinical implications of shared genetics and pathogenesis in autoimmune diseases. Nat Rev Endocrinol. 2013;9:646–59.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengshui Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dong, N., Shi, L., Chen, C., Ma, W., Wang, X. (2016). Clinical Epigenetics and Epigenomics. In: Wang, X., Baumgartner, C., Shields, D., Deng, HW., Beckmann, J. (eds) Application of Clinical Bioinformatics. Translational Bioinformatics, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7543-4_5

Download citation

Publish with us

Policies and ethics