Skip to main content

Physico-Chemical Characterisation of Protective Coatings and Self Healing Processes

  • Chapter
  • First Online:
Active Protective Coatings

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 233))

  • 2666 Accesses

Abstract

The assessment of repair or self healing for advanced materials and novel coating systems can be performed using electrochemical methods or physicochemical methods. In this chapter the authors review the literature both inside and outside the field of self healing materials on a range of characterisation techniques that can be used for determining the level of self healing. Techniques include direct measurement of healing, vibrational, electron and optical spectroscopies, particle techniques and tomographic techniques. Limitations and pitfalls in the use of these techniques for determining the level of healing are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is the case for non-medical CT, however medical and small animal CT scanners rotate the X-ray source and detector around the stationary person or animal to achieve the same result.

  2. 2.

    The data presented here is from the same study as reported elsewhere, however, the slice thickness is narrower than the previous report. For this reason the largest cluster size reported here is much smaller as a result of the largest cluster dimension being larger than the slice dimension.

References

  1. H. Leth-Olsen, K. Nisancioglu, Filiform corrosion of aluminium sheet. I. Corrosion behaviour of painted material. Corros. Sci. 40(7), 1179–1194 (1998). doi:10.1016/S0010-938X(98)00026-2

    Article  Google Scholar 

  2. R. Posner, T. Titz, K. Wapner, M. Stratmann, G. Grundmeier, Transport processes of hydrated ions at polymer/oxide/metal interfaces Part 2. Transport on oxide covered iron and zinc surfaces. Electrochim. Acta. 54(3), 900–908 (2009). doi:10.1016/j.electacta.2008.07.011

    Article  Google Scholar 

  3. J. Wielant, R. Posner, R. Hausbrand, G. Grundmeier, H. Terryn, Cathodic delamination of polyurethane films on oxide covered steel - Combined adhesion and interface electrochemical studies. Corros. Sci. 51(8), 1664–1670 (2009). doi:10.1016/j.corsci.2009.04.014

    Article  Google Scholar 

  4. F. Deflorian, S. Rossi, L. Fedrizzi, Silane pre-treatments on copper and aluminium. Electrochim. Acta 51(27), 6097–6103 (2006). doi:10.1016/j.electacta.2006.02.042

    Article  Google Scholar 

  5. G. Grundmeier, M. Stratmann, Adhesion and De-adhesion mechanisms at polymer/metal interfaces: mechanistic understanding based on in situ studies of buried interfaces. Annu. Rev. Mater. Res. 35, 571–615 (2005). doi:10.1146/annurev.matsci.34.012703.105111

    Article  Google Scholar 

  6. P. Bonora, F. Deflorian, L. Fedrizzi, Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion. Electrochim. Acta. 41(7–8), 1073–1082 (1996). doi:10.1016/0013-4686(95)00440-8

    Article  Google Scholar 

  7. L.P. Haack, M.A. DeBolt, S.L. Kaberline, J.E. Devries, R.A. Dickie, XPS mapping technique for the identification of adhesion loss mechanisms. Surf. Interface Anal. 20(2), 115–120 (1993). doi:10.1002/sia.740200205

    Article  Google Scholar 

  8. W.J. van Ooij, A. Sabata, A.D. Appelhans, Application of surface analysis techniques to the study of paint/metal interfaces related to adhesion and corrosion performance. Surf. Interface Anal. 17(7), 403–420 (1991). doi:10.1002/sia.740170703

    Article  Google Scholar 

  9. O. Ozcan, K. Pohl, B. Ozkaya, G. Grundmeier, Molecular studies of adhesion and De-Adhesion on ZnO nanorod film-covered metals. J. Adhes. 89(2), 128–139 (2013). doi:10.1080/00218464.2012.731928

    Article  Google Scholar 

  10. K. Pohl, J. Otte, P. Thissen, M. Giza, M. Maxisch, B. Schuhmacher, G. Grundmeier, Adsorption and stability of self-assembled organophosphonic acid monolayers on plasma modified Zn-Mg-Al alloy surfaces. Surf. Coat. Technol. 218, 99–107 (2013). doi:10.1016/j.surfcoat.2012.12.035

    Article  Google Scholar 

  11. G. Fonder, I. Minet, C. Volcke, S. Devillers, J. Delhalle, Z. Mekhalif, Anchoring of alkylphosphonic derivatives molecules on copper oxide surfaces. Appl. Surf. Sci. 257(14), 6300–6307 (2011). doi:10.1016/j.apsusc.2011.02.071

    Article  Google Scholar 

  12. M. Maxisch, P. Thissen, M. Giza, G. Grundmeier, Interface chemistry and molecular interactions of phosphonic acid self-assembled monolayers on oxyhydroxide-covered aluminum in humid environments. Langmuir 27(10), 6042–6048 (2011). doi:10.1021/la200445x

    Article  Google Scholar 

  13. M. Santa, R. Posner, G. Grundmeier, Wet- and corrosive De-Adhesion processes of water-borne epoxy film coated steel. J. Electrochem. Soc. 158(3), C36–C41 (2011). doi:10.1149/1.3525240

    Article  Google Scholar 

  14. K. Wapner, M. Stratmann, G. Grundmeier, Structure and stability of adhesion promoting aminopropyl phosphonate layers at polymer/aluminium oxide interfaces. Int. J. Adhes. Adhes. 28(1–2), 59–70 (2008). doi:10.1016/j.ijadhadh.2007.05.001

    Article  Google Scholar 

  15. G. Klimow, N. Fink, G. Grundmeier, Electrochemical studies of the inhibition of the cathodic delamination of organically coated galvanised steel by thin conversion films. Electrochim. Acta 53(3), 1290–1299 (2007). doi:10.1016/j.electacta.2007.05.045

    Article  Google Scholar 

  16. G. Grundmeier, B. Rossenbeck, K. Roschmann, P. Ebbinghaus, M. Stratmann, Corrosion protection of Zn-phosphate containing water borne dispersion coatings - Part 2: investigations of the corrosive de-adhesion of model latex coatings on iron. Corros. Sci. 48(11), 3716–3730 (2006). doi:10.1016/j.corsci.2006.01.007

    Article  Google Scholar 

  17. T. Narayanan, Surface pretreatment by phosphate conversion coatings - a review. Rev. Adv. Mater. Sci. 9(2), 130–177 (2005)

    Google Scholar 

  18. G. Grundmeier, C. Reinartz, M. Rohwerder, M. Stratmann, Corrosion properties of chemically modified metal surfaces. Electrochim. Acta 43(1–2), 165–174 (1998). doi:10.1016/S0013-4686(97)00221-1

    Article  Google Scholar 

  19. I. Maege, E. Jaehne, A. Henke, H. Adler, C. Bram, C. Jung, M. Stratmann, Self-assembling adhesion promoters for corrosion resistant metal polymer interfaces. Prog. Org. Coat. 34(1–4), 1–12 (1998)

    Article  Google Scholar 

  20. I. Maege, E. Jaehne, A. Henke, H. Adler, C. Bram, C. Jung, M. Stratmann, Ultrathin organic layers for corrosion protection. Macromol. Symp. 126, 7–24 (1998). doi:10.1002/masy.19981260104

    Article  Google Scholar 

  21. M. Wiesener, R. Regenspurger, M. Pilz, D. Shchukin, A. Latnikova, J. Yang, G. Grundmeier, In-situ contact angle studies of the release of water displacing agents from capsule filled organic coatings. Surf. Coat. Technol. 206(21), 4481–4487 (2012). doi:10.1016/j.surfcoat.2012.05.021

    Article  Google Scholar 

  22. M. Giza, G. Grundmeier, Combination of FTIR reflection absorption spectroscopy and work function measurements for in situ studies of plasma modified passive films on MgZn2. Plasma Processes Polym. 8(7), 607–616 (2011). doi:10.1002/ppap.201000198

    Article  Google Scholar 

  23. R. Posner, M. Santa, G. Grundmeier, Wet- and corrosive De-Adhesion processes of water-borne epoxy film coated steel. J. Electrochem. Soc. 158(3), C29–C35 (2011). doi:10.1149/1.3525239

    Article  Google Scholar 

  24. R. Posner, K. Wapner, S. Amthor, K. Roschmann, G. Grundmeier, Electrochemical investigation of the coating/substrate interface stability for styrene/acrylate copolymer films applied on iron. Corros. Sci. 52(1), 37–44 (2010). doi:10.1016/j.corsci.2009.08.038

    Article  Google Scholar 

  25. T. Titz, F. Horzenberger, K. Van den Bergh, G. Grundmeier, Correlation of interfacial electrode potential and corrosion resistance of plasma polymer coated galvanized steel. Part 1: ultra-thin plasma polymer films of varying thickness. Corros. Sci. 52(2), 369–377 (2010). doi:10.1016/j.corsci.2009.09.024

    Article  Google Scholar 

  26. T. Titz, F. Horzenberger, K. Van den Bergh, G. Grundmeier, Correlation of interfacial electrode potential and corrosion resistance of plasma polymer coated galvanized steel. Part 2: influence of forming induced defects. Corros. Sci. 52(2), 378–386 (2010). doi:10.1016/j.corsci.2009.09.027

    Article  Google Scholar 

  27. M. Geisler, D. Horinek, T. Hugel, Single molecule adhesion mechanics on rough surfaces. Macromolecules 42(23), 9338–9343 (2009). doi:10.1021/ma9017372

    Article  Google Scholar 

  28. R. Posner, G. Giza, R. Vlasak, G. Grundmeier, In situ electrochemical scanning Kelvin probe blister-test studies of the de-adhesion kinetics at polymer/zinc oxide/zinc interfaces. Electrochim. Acta 54(21), 4837–4843 (2009). doi:10.1016/j.electacta.2009.03.089

    Article  Google Scholar 

  29. K. Wapner, M. Stratmann, G. Grundmeier, In situ infrared spectroscopic and scanning Kelvin probe measurements of water and ion transport at polymer/metal interfaces. Electrochim. Acta. 51(16), 3303–3315 (2006). doi:10.1016/j.electacta.2005.09.024

    Article  Google Scholar 

  30. I. Linossier, F. Gaillard, M. Romand, T. Nguyen, A spectroscopic technique for studies of water transport along the interface and hydrolytic stability of polymer/substrate systems. J. Adhes. 70(3–4), 221–239 (1999). doi:10.1080/00218469908009557

    Article  Google Scholar 

  31. M. Ohman, D. Persson, ATR-FTIR Kretschmann spectroscopy for interfacial studies of a hidden aluminum surface coated with a silane film and epoxy I. Characterization by IRRAS and ATR-FTIR. Surf. Interface Anal. 44(2), 133–143 (2012). doi:10.1002/sia.3779

    Article  Google Scholar 

  32. M. Ohman, D. Persson, D. Jacobsson, In situ studies of conversion coated zinc/polymer surfaces during exposure to corrosive conditions. Prog. Org. Coat. 70(1), 16–22 (2011). doi:10.1016/j.porgcoat.2010.09.012

    Article  Google Scholar 

  33. M. Ohman, D. Persson, C. Leygraf, A spectroelectrochemical study of metal/polymer interfaces by simultaneous in situ ATR-FTIR and EIS. Electrochem. Solid State Lett. 10(4), C27–C30 (2007). doi:10.1149/1.2436647

    Article  Google Scholar 

  34. M. Ohman, D. Persson, An integrated in situ ATR-FTIR and EIS set-up to study buried metal-polymer interfaces exposed to an electrolyte solution. Electrochim. Acta. 52(16), 5159–5171 (2007). doi:10.1016/j.electacta.2007.02.007

    Article  Google Scholar 

  35. M. Ohman, D. Persson, C. Leygraf, In situ ATR-FTIR studies of the aluminium/polymer interface upon exposure to water and electrolyte. Prog. Org. Coat. 57(1), 78–88 (2006). doi:10.1016/j.porgcoat.2006.07.002

    Article  Google Scholar 

  36. M. Kendig, M. Hon, A hydrotalcite-like pigment containing an organic anion corrosion inhibitor. Electrochem. Solid State Lett. 8(3), B10–B11 (2005). doi:10.1149/1.1857743

    Article  Google Scholar 

  37. H.N. McMurray, G. Williams, Inhibition of filiform corrosion on organic-coated aluminum alloy by hydrotalcite-like anion-exchange pigments. Corrosion 60(3), 219–228 (2004)

    Article  Google Scholar 

  38. G. Williams, H.N. McMurray, Anion-exchange inhibition of filiform corrosion on organic coated AA2024-T3 aluminum alloy by hydrotalcite-like pigments. Electrochem. Solid State Lett. 6(3), B9–B11 (2003). doi:10.1149/1.1539771

    Article  Google Scholar 

  39. S.J. Garcia, H.R. Fischer, P.A. White, J. Mardel, Y. Gonzalez-Garcia, J.M.C. Mol, A.E. Hughes, Self-healing anticorrosive organic coating based on an encapsulated water reactive silyl ester: synthesis and proof of concept. Prog. Org. Coat. 70(2–3), 142–149 (2011). doi:10.1016/j.porgcoat.2010.11.021

    Article  Google Scholar 

  40. C. Suryanarayana, K.C. Rao, D. Kumar, Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Prog. Org. Coat. 63(1), 72–78 (2008). doi:10.1016/j.porgcoat.2008.04.008

    Article  Google Scholar 

  41. T. Yin, M.Z. Rong, M.Q. Zhang, G.C. Yang, Self-healing epoxy composites - Preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Compos. Sci. Technol. 67(2), 201–212 (2007). doi:10.1016/j.compscitech.2006.07.028

    Article  Google Scholar 

  42. A. Kumar, L.D. Stephenson, J.N. Murray, Self-healing coatings for steel. Prog. Org. Coat. 55(3), 244–253 (2006). doi:10.1016/j.porgcoat.2005.11.010

    Article  Google Scholar 

  43. E.N. Brown, S.R. White, N.R. Sottos, Microcapsule induced toughening in a self-healing polymer composite. J. Mater. Sci. 39(5), 1703–1710 (2004). doi:10.1023/B:JMSC.0000016173.73733.dc

    Article  Google Scholar 

  44. L.A. Feldkamp, L.C. Davis, J.W. Kress, PRACTICAL CONE-BEAM ALGORITHM. J. Opt. Soc. Am. a-Optics Image Sci. Vis. 1(6), 612–619 (1984). doi:10.1364/josaa.1.000612

    Article  Google Scholar 

  45. O. Hemberg, M. Otendal, H.M. Hertz, Liquid-metal-jet anode electron-impact X-ray source. Appl. Phys. Lett. 83(7), 1483–1485 (2003). doi:10.1063/1.1602157

    Article  Google Scholar 

  46. S.C. Mayo, A.M. Tulloh, A. Trinchi, S.Y.S. Yang, Data-constrained microstructure characterization with multispectrum X-ray micro-ct. Microsc. Microanal. 18(3), 524–530 (2012)

    Article  Google Scholar 

  47. X.C. Pan, E.Y. Sidky, M. Vannier, Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Prob. 25(12) (2009). doi:10.1088/0266-5611/25/12/123009

    Google Scholar 

  48. D. Paganin, S.C. Mayo, T.E. Gureyev, P.R. Miller, S.W. Wilkins, Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc. - Oxford 206, 33–40 (2002)

    Article  Google Scholar 

  49. A.E. Hughes, A.M. Glenn, N. Wilson, A. Moffatt, A.J. Morton, R.G. Buchheit, A consistent description of intermetallic particle composition: an analysis of ten batches of AA2024-T3. Surf Interface Anal, n/a-n/a (2013). doi:10.1002/sia.5207

    Google Scholar 

  50. R.G. Buchheit, R.P. Grant, P.F. Hlava, B. McKenzie, G.L. Zender, Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024-T3. J. Electrochem. Soc. 144(8), 2621–2628 (1997)

    Article  Google Scholar 

  51. A.E. Hughes, N. Birbilis, J.M.C. Mol, S.J. Garcia, X. Zhou, G.E. Thompson, High strength Al-Alloys: microstructure, corrosion and principles of protection, in Recent Trends in Processing and Degradation of Aluminium Alloys, ed. by Z. Ahmad (Intech Publishing, Rijeka, 2011)

    Google Scholar 

  52. X. Zhou, C. Luo, T. Hashimoto, A.E. Hughes, G.E. Thompson, Study of localized corrosion in AA2024 aluminium alloy using electron tomography. Corros. Sci. 58, 299–306 (2012). doi:10.1016/j.corsci.2012.02.001

    Article  Google Scholar 

  53. S.M. Ghahari, A.J. Davenport, T. Rayment, T. Suter, J.P. Tinnes, C. Padovani, J.A. Hammons, M. Stampanoni, F. Marone, R. Mokso, In situ synchrotron X-ray micro-tomography study of pitting corrosion in stainless steel. Corros. Sci. 53(9), 2684–2687 (2011)

    Article  Google Scholar 

  54. S.P. Knight, M. Salagaras, A.M. Wythe, F. De Carlo, A.J. Davenport, A.R. Trueman, In situ X-ray tomography of intergranular corrosion of 2024 and 7050 aluminium alloys. Corros. Sci. 52(12), 3855–3860 (2010). doi:10.1016/j.corsci.2010.08.026

    Article  Google Scholar 

  55. Y. Wang, Y. Yang, T. Xiao, K. Liu, B. Clennell, G. Zhang, H.Wang, Synchrotron-based data-constrained modeling analysis of microscopic mineral distributions in limestone. Int. J. Geosci. 4(2), 344–351 (2013). doi:10.4236/ijg.2013.42032

    Google Scholar 

  56. S. Miller, B. Singh, S. Cool, G. Entine, L. Campbell, R. Bishel, R. Rushing, V.V. Nagarkar, Ultrahigh-speed X-ray imaging of hypervelocity projectiles. Nucl. Instrum. Methods Phys. Res., Sect. A-Accelerators Spectrometers Detectors and Associated Equipment 648, S293–S296 (2011). doi:10.1016/j.nima.2010.11.048

    Article  Google Scholar 

  57. G.A. Johansen, U. Hampel, B.T. Hjertaker, Flow imaging by high speed transmission tomography. Appl. Radiat. Isot. 68(4–5), 518–524 (2010). doi:10.1016/j.apradiso.2009.09.004

    Article  Google Scholar 

  58. A.E. Hughes, A. Trinchi, F.F. Chen, Y.S. Yang, I.S. Cole, S. Sellaiyan, J. Carr, P.D. Lee, G.E. Thompson, T.Q. Xiao, Revelation of intertwining organic and inorganic fractal structures in polymer coatings. Adv. Mater. n/a-n/a (2014). doi:10.1002/adma.201400561

    Google Scholar 

  59. D.M.L. Cooper, L.D. Chapman, Y. Carter, Y. Wu, A. Panahifar, H.M. Britz, B. Bewer, W. Zhouping, M.J.M. Duke, M. Doschak, Three dimensional mapping of strontium in bone by dual energy K-edge subtraction imaging. Phys. Med. Biol. 57(18), 5777–5786 (2012). doi:10.1088/0031-9155/57/18/5777

    Article  Google Scholar 

  60. H. Toda, K. Shimizu, K. Uesugi, Y. Suzuki, M. Kobayashi, Application of dual-energy K-Edge subtraction imaging to assessment of heat treatments in Al-Cu alloys. Mater. Trans. 51(11), 2045–2048 (2010). doi:10.2320/matertrans.L-M2010819

    Article  Google Scholar 

  61. C.H. Arns, F. Bauget, A. Ghous, A. SakellarioU, T.J. Senden, A.P. Sheppard, R.M. Sok, W.V. Pinczewski, J.C. Kelly, M.A. Knackstedt, Digital core laboratory: petrophysical analysis from 3D imaging of reservoir core fragments. Petrophysics 46(4), 260–277 (2005)

    Google Scholar 

  62. M. Van Geet, R. Swennen, M. Wevers, Towards 3-D petrography: application of microfocus computer tomography in geological science. Comput. Geosci. 27(9), 1091–1099 (2001)

    Article  Google Scholar 

  63. Z.R. Ying, R. Naidu, C.R. Crawford, Dual energy computed tomography for explosive detection. J X-Ray Sci. Technol. 14(4), 235–256 (2006)

    Google Scholar 

  64. S. Neethirajan, D.S. Jayas, C. Karunakaran, Dual energy X-ray image analysis for classifying vitreousness in durum wheat. Postharvest Biol. Technol. 45(3), 381–384 (2007). doi:10.1016/j.postharvbio.2007.03.009

    Article  Google Scholar 

  65. Y.S. Yang, A data-constrained non-linear optimisation approach to a data-constrained model for compositional microstructure prediction. Lecture Notes Inform. Technol. 15, 198–205 (2012)

    Google Scholar 

  66. H.P. Wang, Y.S. Yang, Y.D. Wang, J.L. Yang, J. Jia, Y.H. Nie, Data-constrained modelling of an anthracite coal physical structure with multi-spectrum synchrotron X-ray CT. Fuel 106, 219–225 (2013)

    Article  Google Scholar 

  67. Y.S. Yang, A. Tulloh, I. Cole, S. Furman, A. Hughes, A data-constrained computational model for morphology structures. J. Aust. Ceram. Soc. 43(2), 159–164 (2007)

    Google Scholar 

  68. S. Yang, T.E. Gureyev, M.B. Tulloh, M.B. Clennell, M. Pervukhina, Feasibility of a data constrained prediction of hydrocarbon reservoir sandstone microstructures. Meas. Sci. Technol. 21 (2010). doi:10.1088/0957-0233/21/4/047001

    Google Scholar 

  69. Y.S. Yang, K.Y. Liu, S. Mayo, A. Tulloh, M.B. Clennell, T.Q. Xiao, A data-constrained modelling approach to sandstone microstructure characterisation. J. Petrol. Sci. Eng. 105, 76–83 (2013)

    Article  Google Scholar 

  70. S. Yang, D.C. Gao, T. Muster, A. Tulloh, S. Furman, S. Mayo, A. Trinchi, Microstructure of a paint primer - a data-constrained modeling analysis. In: J.F. Nie, A. Morton (eds.) Pricm 7, Pts 1–3, vol 654–656. Materials Science Forum, pp. 1686–1689 (2010)

    Google Scholar 

  71. A.E. Hughes, S. Mayo, Y.S. Yang, T. Markley, S.V. Smith, S. Sellaiyan, A. Uedono, S.G. Hardin, T.H. Muster, Using X-ray tomography, PALS and Raman spectroscopy for characterization of inhibitors in epoxy coatings. Prog. Org. Coat. 74(4), 726–733 (2012)

    Article  Google Scholar 

  72. A. Trinchi, Y.S. Yang, J.Z. Huang, P. Falcaro, D. Buso, L.Q. Cao, Study of 3D composition in a nanoscale sample using data-constrained modelling and multi-energy X-ray CT. Model. Simul. Mater. Sci. Eng. 20(1) (2012)

    Google Scholar 

  73. B.S. Tanem, O. Lunder, A. Borg, J. Mardalen, AFM adhesion force measurements on conversion-coated EN AW-6082-T6 aluminium. Int. J. Adhes. Adhes. 29(5), 471–477 (2009). doi:10.1016/j.ijadhadh.2008.09.005

    Article  Google Scholar 

  74. B. Bhushan, V.N. Koinkar, Nanoindentation hardness measurements using atomic-force microscopy. Appl. Phys. Lett. 64(13), 1653–1655 (1994). doi:10.1063/1.111949

    Article  Google Scholar 

  75. F. Hane, B. Moores, M. Amrein, Z. Leonenko, Effect of SP-C on surface potential distribution in pulmonary surfactant: atomic force microscopy and Kelvin probe force microscopy study. Ultramicroscopy 109(8), 968–973 (2009). doi:10.1016/j.ultramic.2009.03.046

    Article  Google Scholar 

  76. E. Finot, Y. Leonenko, B. Moores, L. Eng, M. Amrein, Z. Leonenko, Effect of cholesterol on electrostatics in lipid-protein films of a pulmonary surfactant. Langmuir 26(3), 1929–1935 (2010). doi:10.1021/La904335m

    Article  Google Scholar 

  77. A. Wadas, P. Grutter, H.J. Guntherodt, Analysis of magnetic bit pattern by magnetic force microscopy. J. Vac. Sci. Technol. A 8(1), 416–420 (1990). doi:10.1116/1.576410

    Article  Google Scholar 

  78. I. Sokolov, Q.K. Ong, H. Shodiev, N. Chechik, D. James, M. Oliver, AFM study of forces between silica, silicon nitride and polyurethane pads. J. Colloid. Interf. Sci. 300(2), 475–481 (2006). doi:10.1016/j.jcis.2006.04.023

    Article  Google Scholar 

  79. B.V. Derjaguin, V.M. Muller, Y.P. Toporov, Effect of contact deformations on the adhesion of particles. Prog. Surf. Sci. 45(1–4), 131–143 (1994). doi:10.1016/0079-6816(94)90044-2

    Article  Google Scholar 

  80. M.E. Dokukin, I. Sokolov, Quantitative mapping of the elastic modulus of soft materials with HarmoniX and peak force QNM AFM modes. Langmuir 28(46), 16060–16071 (2012). doi:10.1021/La302706b

    Article  Google Scholar 

  81. O. Sahin, S. Magonov, C. Su, C.F. Quate, O. Solgaard, An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nat. Nanotechnol. 2(8), 507–514 (2007). doi:10.1038/nnano.2007.226

    Article  Google Scholar 

  82. J.A. Yoon, J. Kamada, K. Koynov, J. Mohin, R. Nicolay, Y.Z. Zhang, A.C. Balazs, T. Kowalewski, K. Matyjaszewski, Self-Healing polymer films based on thiol-disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45(1), 142–149 (2012). doi:10.1021/Ma2015134

    Article  Google Scholar 

  83. P. Swift, Adventitious carbon - the panacea for energy referencing. Surf. Interface Anal. 4(2), 47–51 (1982). doi:10.1002/sia.740040204

    Article  Google Scholar 

  84. C.D. Wagner, L.H. Gale, R.H. Raymond, 2-dimensional chemical-state plots - standardized data set for use in identifying chemical-states by X-ray photoelectron-spectroscopy. Anal. Chem. 51(4), 466–482 (1979). doi:10.1021/ac50040a005

    Article  Google Scholar 

  85. Y. Uwamino, T. Ishizuka, H. Yamatera, Charge correction by gold deposition onto non-conducting samples in X-ray photoelectron-spectroscopy. J. Electron Spectrosc. Relat. Phenom. 23(1), 55–62 (1981). doi:10.1016/0368-2048(81)85036-0

    Article  Google Scholar 

  86. S. Kohiki, K. Oki, An appraisal of evaporated gold as an energy reference in X-ray photoelectron-spectroscopy. J. Electron Spectrosc. Relat. Phenom. 36(1), 105–110 (1985). doi:10.1016/0368-2048(85)80011-6

    Article  Google Scholar 

  87. A.E. Hughes, B.A. Sexton, The use of implanted ar as a binding-energy reference - comment. J. Electron Spectrosc. Relat. Phenom. 50(3), C15–C18 (1990)

    Article  Google Scholar 

  88. S. Kohiki, T. Ohmura, K. Kusao, A new charge-correction method in X-ray photoelectron-spectroscopy. J. Electron Spectrosc. Relat. Phenom. 28(4), 229–237 (1983). doi:10.1016/0368-2048(83)80001-2

    Article  Google Scholar 

  89. C.S. Fadley, D.A. Shirley, Multiplet splitting of metal-atom electron binding energies. Phys. Rev. A 2(4), 1109–1120 (1970). doi:10.1103/PhysRevA.2.1109

    Article  Google Scholar 

  90. D. Briggs, V.A. Gibson, Direct observation of multiplet splitting in 2p photoelectron peaks of cobalt complexes. Chem. Phys. Lett. 25(4), 493–496 (1974). doi:10.1016/0009-2614(74)85350-9

    Article  Google Scholar 

  91. H. Basch, Multiplet splitting of core level binding-energies in paramagnetic species and unpaired orbital spin density distribution. Chem. Phys. Lett. 20(3), 233–237 (1973). doi:10.1016/0009-2614(73)85165-6

    Article  Google Scholar 

  92. R.P. Gupta, S.K. Sen, Calculation of multiplet structure of core p-vacancy levels .Phys. Rev. B 12(1), 15–19 (1975). doi:10.1103/PhysRevB.12.15

    Google Scholar 

  93. R.P. Gupta, S.K. Sen, Calculation of multiplet structure of core para-vacancy levels. Phys. Rev. B 10(1), 71–77 (1974). doi:10.1103/PhysRevB.10.71

    Article  Google Scholar 

  94. A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. McIntyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 36(12), 1564–1574 (2004). doi:10.1002/sia.1984

    Article  Google Scholar 

  95. M. Aronniemi, J. Sainio, J. Lahtinen, Chemical state quantification of iron and chromium oxides using XPS: the effect of the background subtraction method. Surf. Sci. 578(1–3), 108–123 (2005). doi:10.1016/j.susc.2005.01.019

    Article  Google Scholar 

  96. M. Mullet, V. Khare, C. Ruby, XPS study of Fe(II)-Fe(III) (oxy)hydroxycarbonate green rust compounds. Surf. Interface Anal. 40(3–4), 323–328 (2008). doi:10.1002/sia.2758

    Article  Google Scholar 

  97. M. Mullet, Y. Guillemin, C. Ruby, Oxidation and deprotonation of synthetic Fe-II-Fe-III (oxy)hydroxycarbonate green rust: an X-ray photoelectron study. J. Solid State Chem. 181(1), 81–89 (2008). doi:10.1016/j.jssc.2007.10.026

    Article  Google Scholar 

  98. Y.S. Hao, F.C. Liu, E.H. Han, Protection of epoxy coatings containing polyaniline modified ultra-short glass fibers. Prog. Org. Coat. 76(4), 571–580 (2013). doi:10.1016/j.porgcoat.2012.11.012

    Article  Google Scholar 

  99. N. Granizo, J.M. Vega, D. de la Fuente, B. Chico, M. Morcillo, Ion-exchange pigments in primer paints for anticorrosive protection of steel in atmospheric service: anion-exchange pigments. Prog. Org. Coat. 76(2–3), 411–424 (2013). doi:10.1016/j.porgcoat.2012.10.009

    Article  Google Scholar 

  100. D.A. Shirley, High-resolution X-ray photoemission spectrum of valence bands of gold. Phys. Rev. B 5(12), 4709–4714 (1972). doi:10.1103/PhysRevB.5.4709

    Article  Google Scholar 

  101. J. Vegh, The analytical form of the shirley-type background. J. Electron Spectrosc. Relat. Phenom. 46(4), 411–417 (1988). doi:10.1016/0368-2048(88)85038-2

    Article  Google Scholar 

  102. A. Proctor, P.M.A. Sherwood, Data-analysis techniques in X-ray photo-electron spectroscopy. Anal. Chem. 54(1), 13–19 (1982). doi:10.1021/ac00238a008

    Article  Google Scholar 

  103. S. Tougaard, B. Jorgensen, Inelastic background intensities in XPS spectra. Surf. Sci. 143(2–3), 482–494 (1984). doi:10.1016/0039-6028(84)90554-5

    Article  Google Scholar 

  104. S. Tougaard, P. Sigmund, Influence of elastic and inelastic-scattering on energy-spectra of electrons emitted from solids. Phys. Rev. B 25(7), 4452–4466 (1982). doi:10.1103/PhysRevB.25.4452

    Article  Google Scholar 

  105. S. Tougaard, Inelastic background correction and quantitative surface-analysis. J. Electron Spectrosc. Relat. Phenom. 52, 243–271 (1990). doi:10.1016/0368-2048(90)85022-2

    Article  Google Scholar 

  106. C.S. Fadley, D.A. Shirley, X-ray photoelectron spectroscopic study of iron cobalt nickel copper and platinum. Phys. Rev. Lett. 21(14), 980–983 (1968). doi:10.1103/PhysRevLett.21.980

    Article  Google Scholar 

  107. S.J. Hinder, J.F. Watts, C. Lowe, Interface analysis and compositional depth profiling by XPS of polymer coatings prepared using ultra-low-angle microtomy. Surf. Interface Anal. 36(8), 1032–1036 (2004). doi:10.1002/sia.1830

    Article  Google Scholar 

  108. S.J. Hinder, C. Lowe, J.T. Maxted, J.F. Watts, A ToF-SIMS investigation of a buried polymer/polymer interface exposed by ultra-low-angle microtomy. Surf. Interface Anal. 36(12), 1575–1581 (2004). doi:10.1002/sia.1985

    Article  Google Scholar 

  109. G. Williams, H.N. McMurray, Inhibition of filiform corrosion on polymer coated AA2024-T3 by hydrotalcite-like pigments incorporating organic anions. Electrochem. Solid State Lett. 7(5), B13–B15 (2004). doi:10.1149/1.1691529

    Article  Google Scholar 

  110. S. Bohm, H.N. McMurray, S.M. Powell, D.A. Worsley, Novel environment friendly corrosion inhibitor pigments based on naturally occurring clay minerals. Materials Corrosion-Werkstoffe Und Korrosion 52(12), 896–903 (2001)

    Article  Google Scholar 

  111. A.N. Salak, J. Tedim, A.I. Kuznetsova, M.L. Zheludkevich, M.G.S. Ferreira, Anion exchange in Zn-Al layered double hydroxides: in situ X-ray diffraction study. Chem. Phys. Lett. 495(1–3), 73–76 (2010). doi:10.1016/j.cplett.2010.06.041

    Article  Google Scholar 

  112. M.L. Zheludkevich, S.K. Poznyak, L.M. Rodrigues, D. Raps, T. Hack, L.F. Dick, T. Nunes, M.G.S. Ferreira, Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor. Corros. Sci. 52(2), 602–611 (2010). doi:10.1016/j.corsci.2009.10.020

    Article  Google Scholar 

  113. S.P.V. Mahajanarn, R.G. Buchheit, Characterization of inhibitor release from Zn-Al- V10O28 (6-) hydrotalcite pigments and corrosion protection from hydrotalcite-pigmented epoxy coatings. Corrosion 64(3), 230–240 (2008)

    Article  Google Scholar 

  114. R.G. Buchheit, S.B. Mamidipally, P. Schmutz, H. Guan, Active corrosion protection in Ce-modified hydrotalcite conversion coatings. Corrosion 58(1), 3–14 (2002)

    Article  Google Scholar 

  115. C. Ruby, M. Usman, S. Naille, K. Hanna, C. Carteret, M. Mullet, M. Francois, M. Abdelmoula, Synthesis and transformation of iron-based layered double hydroxides. Appl. Clay Sci. 48(1–2), 195–202 (2010). doi:10.1016/j.clay.2009.11.017

    Article  Google Scholar 

  116. N. Granizo, J.M. Vega, D. de la Fuente, J. Simancas, M. Morcillo, Ion-exchange pigments in primer paints for anticorrosive protection of steel in atmospheric service: cation-exchange pigments. Prog. Org. Coat. 75(3), 147–161 (2012). doi:10.1016/j.porgcoat.2012.04.013

    Article  Google Scholar 

  117. E.A. Matter, S. Kozhukharov, M. Machkova, V. Kozhukharov, Comparison between the inhibition efficiencies of Ce(III) and Ce(IV) ammonium nitrates against corrosion of AA2024 aluminum alloy in solutions of low chloride concentration. Corros. Sci. 62, 22–33 (2012). doi:10.1016/j.corsci.2012.03.039

    Article  Google Scholar 

  118. H. Ardelean, C. Fiaud, P. Marcus, Enhanced corrosion resistance of magnesium and its alloys through the formation of cerium (and aluminium) oxide surface films. Materials Corrosion-Werkstoffe Und Korrosion 52(12), 889–895 (2001). doi:10.1002/1521-4176(200112)52:12<889:aid-maco889>3.0.co;2-0

    Article  Google Scholar 

  119. B.L. Liu, B.T. Zhang, S.S. Cao, X.B. Deng, X.H. Hou, H.L. Chen, Preparation of the stable core-shell latex particles containing organic-siloxane in the shell. Prog. Org. Coat. 61(1), 21–27 (2008). doi:10.1016/j.porgcoat.2007.08.008

    Article  Google Scholar 

  120. A.S. Hamdy, A clean low cost anti-corrosion molybdate based nano-particles coating for aluminum alloys. Prog. Org. Coat. 56(2–3), 146–150 (2006). doi:10.1016/j.porgcoat.2006.03.002

    Article  Google Scholar 

  121. W. Trabelsi, P. Cecilio, M.G.S. Ferreira, M.F. Montemor, Electrochemical assessment of the self-healing properties of Ce-doped silane solutions for the pre-treatment of galvanised steel substrates. Prog. Org. Coat. 54(4), 276–284 (2005). doi:10.1016/j.porgcoat.2005.07.006

    Article  Google Scholar 

  122. A.S. Hamdy, Advanced nano-particles anti-corrosion ceria based sol gel coatings for aluminum alloys. Mater. Lett. 60(21–22), 2633–2637 (2006). doi:10.1016/j.matlet.2006.01.049

    Article  Google Scholar 

  123. M.F. Montemor, M.G.S. Ferreira, Analytical characterization of silane films modified with cerium activated nanoparticles and its relation with the corrosion protection of galvanised steel substrates. Prog. Org. Coat. 63(3), 330–337 (2008). doi:10.1016/j.porgcoat.2007.11.008

    Article  Google Scholar 

  124. M.L. Zheludkevich, R. Serra, M.F. Montemor, K.A. Yasakau, I.M.M. Salvado, M.G.S. Ferreira, Nanostructured sol-gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3 - Corrosion protection performance. Electrochim. Acta. 51(2), 208–217 (2005). doi:10.1016/j.electacta.2005.04.021

    Article  Google Scholar 

  125. L.S. Kasten, J.T. Grant, N. Grebasch, N. Voevodin, F.E. Arnold, M.S. Donley, An XPS study of cerium dopants in sol–gel coatings for aluminum 2024-T3. Surf. Coat. Technol. 140(1), 11–15 (2001). doi:10.1016/s0257-8972(01)01004-0

    Article  Google Scholar 

  126. D. Ho, N. Brack, J. Scully, T. Markley, M. Forsyth, B. Hinton, Cerium dibutylphosphate as a corrosion inhibitor for AA2024-T3 aluminum alloys. J. Electrochem. Soc. 153(9), B392–B401 (2006). doi:10.1149/1.2217260

    Article  Google Scholar 

  127. N. Sheng, T. Ohtsuka, Preparation of conducting poly-pyrrole layer on zinc coated Mg alloy of AZ91D for corrosion protection. Prog. Org. Coat. 75(1–2), 59–64 (2012). doi:10.1016/j.porgcoat.2012.03.008

    Article  Google Scholar 

  128. Y. Hao, F. Liu, E.-H. Han, Protection of epoxy coatings containing polyaniline modified ultra-short glass fibers. Prog. Org. Coat. (0). doi:http://dx.doi.org/10.1016/j.porgcoat.2012.11.012

    Google Scholar 

  129. M.A. Jakab, J.R. Scully, On-demand release of corrosion-inhibiting ions from amorphous Al-Co-Ce alloys. Nat. Mater. 4(9), 667–670 (2005). doi:10.1038/nmat1451

    Article  Google Scholar 

  130. N.S. McIntyre, R.D. Davidson, G. Kim, J.T. Francis, New frontiers in X-ray photoelectron spectroscopy. Vacuum 69(1–3), 63–71 (2002). doi:10.1016/s0042-207x(02)00308-1

    Article  Google Scholar 

  131. D.J. Bland, A.J. Kinloch, V. Stolojan, J.F. Watts, Failure mechanisms in adhesively bonded aluminium: an XPS and PEELS study. Surf. Interface Anal. 40(3–4), 128–131 (2008). doi:10.1002/sia.2651

    Article  Google Scholar 

  132. B.J. James, R. Cameron, C. Baskcomb, Selected area XPS analysis for identification of pigment compounds in microscopic paint flakes. Adv. Mater. Sci. Eng. 2008 (2008)

    Google Scholar 

  133. J.E. Devries, L.P. Haack, T.J. Prater, S.L. Kaberline, J.L. Gerlock, J.W. Holubka, R.A. Dickie, J. Chakel, Characterization of interfacial chemistries associated with polymer systems by spatially-resolved surface analytical methodologies. Prog. Org. Coat. 25(1), 95–108 (1994). doi:10.1016/0300-9440(94)00505-2

    Article  Google Scholar 

  134. J.T. Francis, N.S. McIntyre, R.D. Davidson, S. Ramamurthy, A.M. Brennenstuhl, A. McBride, A. Roberts, Mechanisms for pitting corrosion in alloy N04400 as revealed by imaging XPS, ToF-SIMS and low-voltage SEM. Surf. Interface Anal. 33(1), 29–34 (2002). doi:10.1002/sia.1157

    Article  Google Scholar 

  135. A.E. Hughes, A. Boag, A.M. Glenn, D. McCulloch, T.H. Muster, C. Ryan, C. Luo, X. Zhou, G.E. Thompson, Corrosion of AA2024-T3 Part II Co-operative corrosion. Corros. Sci. 53(1), 27–39 (2011). doi:10.1016/j.corsci.2010.09.030

    Article  Google Scholar 

  136. A. Boag, R.J. Taylor, T.H. Muster, N. Goodman, D. McCulloch, C. Ryan, B. Rout, D. Jamieson, A.E. Hughes, Stable pit formation on AA2024-T3 in a NaCl environment. Corros. Sci. 52(1), 90–103 (2010). doi:10.1016/j.corsci.2009.08.043

    Article  Google Scholar 

  137. A.E. Hughes, C. MacRae, N. Wilson, A. Torpy, T.H. Muster, A.M. Glenn, Sheet AA2024-T3: a new investigation of microstructure and composition. Surf. Interface Anal. 42(4), 334–338 (2010). doi:10.1002/sia.3163

    Article  Google Scholar 

  138. J.D. Gorman, A.E. Hughes, D. Jamieson, P.J.K. Paterson, Oxide formation on aluminium alloys in boiling deionised water and NaCl, CeCl3 and CrCl3 solutions. Corros. Sci. 45(6), 1103–1124 (2003)

    Article  Google Scholar 

  139. S. Sellaiyan, A.E. Hughes, S.V. Smith, A. Uedono, J. Sullivan, S. Buckman, Leaching properties of chromate-containing epoxy films using radiotracers, PALS and SEM. Prog. Org. Coat. 77(1), 257–267 (2014)

    Article  Google Scholar 

  140. S.G. Boxer, M.L. Kraft, P.K. Weber, Advances in imaging secondary ion mass spectrometry for biological samples. In: Ann. Rev. Biophys. 38, 53–74 (2009)

    Google Scholar 

  141. N.P. Lockyer, J.C. Vickerman, Progress in cellular analysis using ToF-SIMS. Appl. Surf. Sci. 231, 377–384 (2004). doi:10.1016/j.apsusc.2004.03.103

    Article  Google Scholar 

  142. L.A. Giannuzzi, M. Utlaut, A review of Ga + FIB/SIMS. Surf. Interface Anal. 43(1–2), 475–478 (2011). doi:10.1002/sia.3454

    Article  Google Scholar 

  143. K.M. Ng, Y.T.R. Lau, C.M. Chan, L.T. Weng, J.S. Wu, Surface studies of halloysite nanotubes by XPS and ToF-SIMS. Surf. Interface Anal. 43(4), 795–802 (2011). doi:10.1002/sia.3627

    Article  Google Scholar 

  144. S.J. Hinder, C. Lowe, J.F. Watts, ToF-SIMS depth profiling of a complex polymeric coating employing a C-60 sputter source. Surf. Interface Anal. 39(6), 467–475 (2007). doi:10.1002/sia.2546

    Article  Google Scholar 

  145. S.J. Hinder, C. Lowe, J.F. Watts, An XPS and ToF-SIMS investigation of the outermost nanometres of a poly(vinylidene difluoride) coating. Prog. Org. Coat. 60(3), 255–261 (2007). doi:10.1016/j.porgcoat.2007.07.016

    Article  Google Scholar 

  146. S.J. Hinder, J.F. Watts, C. Lowe, Surface and interface analysis of complex polymeric paint formulations. Surf. Interface Anal. 38(4), 557–560 (2006). doi:10.1002/sia.2325

    Article  Google Scholar 

  147. N. Davies, D.E. Weibel, P. Blenkinsopp, N. Lockyer, R. Hill, J.C. Vickerman, Development and experimental application of a gold liquid metal ion source. Appl. Surf. Sci. 203, 223–227 (2003). doi:10.1016/s0169-4332(02)00631-1

    Article  Google Scholar 

  148. S.J. Hinder, J.F. Watts, G.C. Simmons, C. Lowe, An investigation of the distribution of minor components in complex polymeric paint formulations using ToF-SIMS depth profiling. Surf. Interface Anal. 40(3–4), 436–440 (2008). doi:10.1002/sia.2712

    Article  Google Scholar 

  149. S.C.C. Wong, R. Hill, P. Blenkinsopp, N.P. Lockyer, D.E. Weibel, J.C. Vickerman, Development of a C-60(+) ion gun for static SIMS and chemical imaging. Appl. Surf. Sci. 203, 219–222 (2003). doi:10.1016/s0169-4332(02)00629-3

    Article  Google Scholar 

  150. A. King, T. Henkel, D. Rost, I.C. Lyon, Determination of relative sensitivity factors during secondary ion sputtering of silicate glasses by Au + , Au-2(+) and Au-3(+) ions. Rapid Commun. Mass Spectrom. 24(1), 15–20 (2010). doi:10.1002/rcm.4351

    Article  Google Scholar 

  151. T. Henkel, D. Rost, I.C. Lyon, Improvements in quantification accuracy of inorganic time-of-flight secondary ion mass spectrometric analysis of silicate materials by using C-60 primary ions. Rapid Commun. Mass Spectrom. 23(21), 3355–3360 (2009). doi:10.1002/rcm.4257

    Article  Google Scholar 

  152. N. Winograd, The magic of cluster SIMS. Anal. Chem. 77(7), 142A–149A (2005). doi:10.1021/ac053355f

    Article  Google Scholar 

  153. H. Yang, W.J. van Ooij, Plasma deposition of polymeric thin films on organic corrosion-inhibiting paint pigments: a novel method to achieve slow release. Plasmas Polym. 8(4), 297–323 (2003). doi:10.1023/a:1026389311431

    Article  Google Scholar 

  154. M. Brenda, R. Doring, U. Schernau, Investigation of organic coatings and coating defects with the help of time-of-flight-secondary ion mass spectrometry (TOF-SIMS). Prog. Org. Coat. 35(1–4), 183–189 (1999). doi:10.1016/s0300-9440(99)00035-1

    Article  Google Scholar 

  155. J. Fang, B.J. Flinn, Y.L. Leung, P.C. Wong, K.A.R. Mitchell, T. Foster, A characterization of the gamma-glycidoxypropyltrimethoxysilane and aluminium interface by SIMS and XPS. J Mater. Sci. Lett. 16(20), 1675–1676 (1997). doi:10.1023/a:1018530231931

    Article  Google Scholar 

  156. M.L. Abel, R.P. Digby, I.W. Fletcher, J.F. Watts, Evidence of specific interaction between gamma-glycidoxypropyltrimethoxysilane and oxidized aluminium using high-mass resolution ToF-SIMS. Surf. Interface Anal. 29(2), 115–125 (2000). doi:10.1002/(sici)1096-9918(200002)29:2<115:aid-sia702>3.3.co;2-y

    Article  Google Scholar 

  157. R. Arnold, A. Terfort, C. Woll, Determination of molecular orientation in self-assembled monolayers using IR absorption intensities: the importance of grinding effects. Langmuir 17(16), 4980–4989 (2001). doi:10.1021/la010202o

    Article  Google Scholar 

  158. M. Born, E. Wolf, Principles of Optics, 7th edn. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  159. M. Debe, Extracting physical structure information from thin organic films with reflection absorption infrared-spectroscopy. J. Appl. Phys. 55(9), 3354–3366 (1984). doi:10.1063/1.333374

    Article  Google Scholar 

  160. A. Parikh, D. Allara, Quantitative-determination of molecular-structure in multilayered thin-films of biaxial and lower symmetry from photon spectroscopies.1. reflection infrared vibrational spectroscopy. J. Chem. Phys. 96(2), 927–945 (1992). doi:10.1063/1.462847

    Article  Google Scholar 

  161. N. Tillman, A. Ulman, J. Schildkraut, T. Penner, Incorporation of phenoxy groups in self-assembled monolayers of trichlorosilane derivatives - effects on film thickness, wettability, and molecular-orientation. J. Am. Chem. Soc. 110(18), 6136–6144 (1988). doi:10.1021/ja00226a031

    Article  Google Scholar 

  162. C. Bram, C. Jung, M. Stratmann, Self assembled molecular monolayers on oxidized inhomogeneous aluminum surfaces. Fresenius J. Anal. Chem. 358(1–2), 108–111 (1997). doi:10.1007/s002160050357

    Article  Google Scholar 

  163. X. Yu, J. Wang, M. Zhang, P. Yang, L. Yang, D. Cao, J. Li, One-step synthesis of lamellar molybdate pillared hydrotalcite and its application for AZ31 Mg alloy protection. Solid State Sci. 11(2), 376–381 (2009). doi:10.1016/j.solidstatesciences.2008.08.003

    Article  Google Scholar 

  164. G. Blustein, R. Romagnoli, J.A. Jaén, A.R. Di Sarli, B. del Amo, Zinc basic benzoate as eco-friendly steel corrosion inhibitor pigment for anticorrosive epoxy-coatings. Colloids Surf., A 290(1–3), 7–18 (2006). doi:10.1016/j.colsurfa.2006.04.043

    Article  Google Scholar 

  165. G. Blustein, A.R. Di Sarli, J.A. Jaén, R. Romagnoli, B. Del Amo, Study of iron benzoate as a novel steel corrosion inhibitor pigment for protective paint films. Corros. Sci. 49(11), 4202–4231 (2007). doi:10.1016/j.corsci.2007.05.008

    Article  Google Scholar 

  166. L. Mascia, L. Prezzi, G.D. Wilcox, M. Lavorgna, Molybdate doping of networks in epoxy-silica hybrids: domain structuring and corrosion inhibition. Prog. Org. Coat. 56(1), 13–22 (2006). doi:10.1016/j.porgcoat.2006.01.013

    Article  Google Scholar 

  167. M. Forsyth, C.M. Forsyth, K. Wilson, T. Behrsing, G.B. Deacon, ATR characterisation of synergistic corrosion inhibition of mild steel surfaces by cerium salicylate. Corros. Sci. 44, 2651–2656 (2002)

    Article  Google Scholar 

  168. J. Mardel, S.J. Garcia, P.A. Corrigan, T. Markley, A.E. Hughes, T.H. Muster, D. Lau, T.G. Harvey, A.M. Glenn, P.A. White, S.G. Hardin, C. Luo, X. Zhou, G.E. Thompson, J.M.C. Mol, The characterisation and performance of Ce(dbp)3-inhibited epoxy coatings. Prog. Org. Coat. 70(2–3), 91–101 (2011). doi:10.1016/j.porgcoat.2010.10.009

    Article  Google Scholar 

  169. R. Trujillano, M.J. Holgado, V. Rives, Obtention of low oxidation states of copper from Cu2 + -Al3 + layered double hydroxides containing organic sulfonates in the interlayer. Solid State Sci. 11(3), 688–693 (2009). doi:10.1016/j.solidstatesciences.2008.10.015

    Article  Google Scholar 

  170. R. Trujillano, M.J. Holgado, F. Pigazo, V. Rives, Preparation, physicochemical characterisation and magnetic properties of Cu-Al layered double hydroxides with CO32- and anionic surfactants with different alkyl chains in the interlayer. Physica B-Condens. Matter 373(2), 267–273 (2006). doi:10.1016/j.physb.2005.11.154

    Article  Google Scholar 

  171. Y.C. Yuan, M.Z. Rong, M.Q. Zhang, J. Chen, G.C. Yang, X.M. Li, Self-healing polymeric materials using epoxy/mercaptan as the healant. Macromolecules 41(14), 5197–5202 (2008). doi:10.1021/ma800028d

    Article  Google Scholar 

  172. F.H. Scholes, S.A. Furman, A.E. Hughes, T. Nikpoura, N. Wrighta, P.R. Curtis, C.M. Macrae, S. Intem, A.J. Hill, Chromate leaching from inhibited primers - Part I. Characterisation of leaching. Prog. Org. Coat. 56(1), 23–32 (2006). doi:10.1016/j.porgcoat.2006.01.015

    Article  Google Scholar 

  173. F.H. Scholes, A.E. Hughes, D. Jamieson, K. Inoue, S.A. Furman, T.H. Muster, S.G. Hardin, D. Lau, T.G. Harvey, P. Corrigan, M. Glenn, P.A. White, J. Mardel, M. Forsyth, Interaction of Ce(dbp)(3) with surface of aluminium alloy 2024-T3 using macroscopic models of intermetallic phases. Corros. Eng. Sci. Technol. 44(6), 416–424 (2009). doi:10.1179/147842208x320333

    Article  Google Scholar 

  174. T.A. Markley, A.E. Hughes, T.C. Ang, G.B. Deacon, P. Junk, M. Forsyth, Influence of praseodymium - Synergistic corrosion inhibition in mixed rare-earth diphenyl phosphate systems. Electrochem. Solid State Lett. 10(12), C72–C75 (2007). doi:10.1149/1.2790724

    Article  Google Scholar 

  175. B.R.W. Hinton, N. Dubrule, A.E. Hughes, M. Forsyth, T. Markley, D. Ho, F.H. Scholes, S.A. Furman, Raman, EDS and SEM studies of the interaction of corrosion inhibitor Ce(dbp)3 with AA2024-T3. In: Paper presented at the 4th International Symposium on Aluminium Surface Science and Technology, Beaune, France

    Google Scholar 

  176. S.Y. Wang, W. Wang, J. Zuo, Y.T. Qian, Study of the Raman spectrum of CeO2 nanometer thin films. Mater. Chem. Phys. 68(1–3), 246–248 (2001). doi:10.1016/s0254-0584(00)00357-6

    Article  Google Scholar 

  177. W.H. Weber, K.C. Hass, J.R. McBride, Raman-study of ceo2 - 2nd-order scattering, lattice-dynamics and particle-size effects. Phys. Rev. B 48(1), 178–185 (1993). doi:10.1103/PhysRevB.48.178

    Article  Google Scholar 

  178. J.R. McBride, K.C. Hass, B.D. Poindexter, W.H. Weber, Raman and X-ray studies of CE1-XREXO2-Y, where RE = LA, PR, ND, EU, GD and TB. J. Appl. Phys. 76(4), 2435–2441 (1994). doi:10.1063/1.357593

    Article  Google Scholar 

  179. A.E. Hughes, F.H. Scholes, A.M. Glenn, D. Lau, T.H. Muster, S.G. Hardin, Factors influencing the deposition of Ce-based conversion coatings, part I: the role of Al3 + ions. Surf. Coat. Technol. 203(19), 2927–2936 (2009). doi:10.1016/j.surfcoat.2009.03.022

    Article  Google Scholar 

  180. F.H. Scholes, C. Soste, A.E. Hughes, S.G. Hardin, P.R. Curtis, The role of hydrogen peroxide in the deposition of cerium-based conversion coatings. Appl. Surf. Sci. 253(4), 1770–1780 (2006). doi:10.1016/j.apsusc.2006.03.010

    Article  Google Scholar 

  181. H.D. Ruan, R.L. Frost, J.T. Kloprogge, D.G. Schulze, L. Duong, FT-Raman spectroscopy and SEM of gibbsite, bayerite, boehmite and diaspore in relation to the characterization of bauxite. 2001 - a Clay Odyssey, (2003)

    Google Scholar 

  182. A. Bertoluzza, C. Fagnano, M.A. Morelli, M. Guglielmi, G. Scarinci, N. Maliavski, Raman-spectra of sio2 gel glasses prepared from alkoxide, colloidal and amine silicate solutions. J. Raman Spectrosc. 19(4), 297–300 (1988). doi:10.1002/jrs.1250190414

    Article  Google Scholar 

  183. P. Bohn, Localized optical phenomena and the characterization of materials interfaces. Annu. Rev. Mater. Sci. 27, 469–498 (1997). doi:10.1146/annurev.matsci.27.1.469

    Article  Google Scholar 

  184. G. Fieldson, T. Barbari, The use of FTIR-ATR spectroscopy to characterize penetrant diffusion in polymers. Polymer 34(6), 1146–1153 (1993). doi:10.1016/0032-3861(93)90765-3

    Article  Google Scholar 

  185. R. Vlasak, I. Klueppel, G. Grundmeier, Combined EIS and FTIR-ATR study of water uptake and diffusion in polymer films on semiconducting electrodes. Electrochim. Acta 52(28), 8075–8080 (2007). doi:10.1016/j.electacta.2007.07.003

    Article  Google Scholar 

  186. M. Ohman, D. Persson, ATR-FTIR Kretschmann spectroscopy for interfacial studies of a hidden aluminum surface coated with a silane film and epoxy II. Analysis by integrated ATR-FTIR and EIS during exposure to electrolyte with complementary studies by in situ ATR-FTIR and in situ IRRAS. Surf. Interface Anal. 44(1), 105–113 (2012). doi:10.1002/sia.3780

    Article  Google Scholar 

  187. A. Hartstein, J. Kirtley, J. Tsang, Enhancement of the infrared-absorption from molecular monolayers with thin metal overlayers. Phys. Rev. Lett. 45(3), 201–204 (1980). doi:10.1103/PhysRevLett.45.201

    Article  Google Scholar 

  188. A. Hatta, Y. Suzuki, W. Suetaka, Infrared-absorption enhancement of monolayer species on thin evaporated ag films by use of a kretschmann configuration - evidence for 2 types of enhanced surface electric-fields. Appl. Phys. Mater. Sci. Process. 35(3), 135–140 (1984). doi:10.1007/BF00616965

    Article  Google Scholar 

  189. M. Osawa, K. Ataka, K. Yoshii, Y. Nishikawa, Surface-enhanced infrared-spectroscopy - the origin of the absorption enhancement and band selection rule in the infrared-spectra of molecules adsorbed on fine metal particles. Appl. Spectrosc. 47(9), 1497–1502 (1993). doi:10.1366/0003702934067478

    Article  Google Scholar 

  190. M. Osawa, K. Ataka, K. Yoshii, T. Yotsuyanagi, Surface-enhanced infrared atr spectroscopy for in-situ studies of electrode-electrolyte interfaces. J. Electron Spectrosc. Relat. Phenom. 64–5, 371–379 (1993). doi:10.1016/0368-2048(93)80099-8

    Article  Google Scholar 

  191. Y. Yan, Q. Li, S. Huo, M. Ma, W. Cai, M. Osawa, Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces. J.Phys. Chem. B 109(16), 7900–7906 (2005). doi:10.1021/jp044085s

    Article  Google Scholar 

  192. K. Ataka, G. Nishina, W. Cai, S. Sun, M. Osawa, Dynamics of the dissolution of an underpotentially deposited Cu layer on Au(111): a combined time-resolved surface-enhanced infrared and chronoamperometric study. Electrochem. Commun. 2(6), 417–421 (2000). doi:10.1016/S1388-2481(00)00053-9

    Article  Google Scholar 

  193. T. Wandlowski, K. Ataka, S. Pronkin, D. Diesing, Surface enhanced infrared spectroscopy - Au(1 1 1-20 nm)/sulphuric acid - new aspects and challenges. Electrochim. Acta. 49(8), 1233–1247 (2004). doi:10.1016/j.electacta.2003.06.002

    Article  Google Scholar 

  194. S. Huo, J. Wang, J. Yao, W. Cai, Exploring electrosorption at iron electrode with in situ surface-enhanced infrared absorption spectroscopy. Anal. Chem. 82(12), 5117–5124 (2010). doi:10.1021/ac1002323

    Article  Google Scholar 

  195. X. Xue, J. Wang, Q. Li, Y. Yan, J. Liu, W. Cai, Practically modified attenuated total reflection surface-enhanced IR absorption spectroscopy for high-quality frequency-extended detection of surface species at electrodes. Anal. Chem. 80(1), 166–171 (2008). doi:10.1021/ac7017487

    Article  Google Scholar 

  196. Q. Huang, X. Lin, Z. Yang, J. Hu, Z. Tian, An investigation of the adsorption of pyrazine and pyridine on nickel electrodes by in situ surface-enhanced Raman spectroscopy. J. Electroanal. Chem. 563(1), 121–131 (2004). doi:10.1016/j.jelechem.2003.08.015

    Article  Google Scholar 

  197. J. Chowdhury, M. Ghosh, T. Misra, pH-Dependent surface-enhanced Raman scattering of 8-hydroxy quinoline adsorbed on silver hydrosol. J. Colloid Interface Sci. 228(2), 372–378 (2000). doi:10.1006/jcis.2000.6977

    Article  Google Scholar 

  198. Y. Xie, X. Wang, X. Han, X. Xue, W. Ji, Z. Qi, J. Liu, B. Zhao, Y. Ozaki, Sensing of polycyclic aromatic hydrocarbons with cyclodextrin inclusion complexes on silver nanoparticles by surface-enhanced Raman scattering. Analyst 135(6), 1389–1394 (2010). doi:10.1039/c0an00076k

    Article  Google Scholar 

  199. Y. Nishikawa, T. Nagasawa, K. Fujiwara, M. Osawa, Silver island films for surface-enhanced infrared-absorption spectroscopy - effect of island morphology on the absorption enhancement. Vib. Spectrosc. 6(1), 43–53 (1993). doi:10.1016/0924-2031(93)87021-K

    Article  Google Scholar 

  200. E. Cortes, P. Etchegoin, E. Le Ru, A. Fainstein, M. Vela, R. Salvarezza, Strong correlation between molecular configurations and charge-transfer processes probed at the single-molecule level by surface-enhanced raman scattering. J. Am. Chem. Soc. 135(7), 2809–2815 (2013). doi:10.1021/ja312236y

    Article  Google Scholar 

  201. A. Kudelski, Structures of monolayers formed from different HS-(CH2)(2)-X thiols on gold, silver and copper: comparitive studies by surface-enhanced Raman scattering. J. Raman Spectrosc. 34(11), 853–862 (2003). doi:10.1002/jrs.1062

    Article  Google Scholar 

  202. Y. Chen, G. Carter, S. Tripathy, Study of langmuir-blodgett polydiacetylene polymer-films by surface enhanced raman-scattering. Solid State Commun. 54(1), 19–22 (1985). doi:10.1016/0038-1098(85)91024-5

    Article  Google Scholar 

  203. C. Constantino, J. Duff, R. Aroca, Surface enhanced resonance Raman scattering imaging of Langmuir-Blodgett monolayers of bis (benzimidazo) thioperylene. Spectrochimica Acta. Part a-Molecular and Biomolecular Spectrosc. 57(6), 1249–1259 (2001). doi:10.1016/S1386-1425(00)00470-4

    Article  Google Scholar 

  204. D. Jeanmaire, R. Vanduyne, Surface raman spectroelectrochemistry.1. heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J. Electroanal. Chem. 84(1), 1–20 (1977). doi:10.1016/S0022-0728(77)80224-6

    Article  Google Scholar 

  205. J. Neng, M. Harpster, W. Wilson, P. Johnson, Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles. Biosens. Bioelectron. 41, 316–321 (2013). doi:10.1016/j.bios.2012.08.048

    Article  Google Scholar 

  206. K. Kneipp, H. Kneipp, I. Itzkan, R. Dasari, M. Feld, Surface-enhanced Raman scattering and biophysics. J. Phys. Condens. Matter 14(18), R597–R624 (2002). doi:10.1088/0953-8984/14/18/202

    Article  Google Scholar 

  207. H. Long, Z. Zhen, L. Tang, J. Jiang, Surface-enhanced raman scattering based biosensor for histone acetylation detection. Acta. Chim. Sinica 71(5), 739–742 (2013). doi:10.6023/A13020171

    Article  Google Scholar 

  208. K. Kim, D. Shin, H. Lee, K. Shin, Surface-enhanced Raman scattering of 4-aminobenzenethiol on gold: the concept of threshold energy in charge transfer enhancement. Chem. Commun. 47(7), 2020–2022 (2011). doi:10.1039/c0cc04925e

    Article  Google Scholar 

  209. R. Aroca, C. Constantino, Surface-enhanced Raman scattering: imaging and mapping of Langmuir-Blodgett monolayers physically adsorbed onto silver island films. Langmuir 16(12), 5425–5429 (2000). doi:10.1021/la991478n

    Article  Google Scholar 

  210. J. Maciel, R. Jaimes, P. Corio, J. Rubim, P. Volpe, A. Agostinho, S. Agostinho, The characterisation of the protective film formed by benzotriazole on the 90/10 copper-nickel alloy surface in H2SO4 media. Corros. Sci. 50(3), 879–886 (2008). doi:10.1016/j.corsci.2007.10.011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Grundmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hughes, A.E., Yang, S., Oezkaya, B., Ozcan, O., Grundmeier, G. (2016). Physico-Chemical Characterisation of Protective Coatings and Self Healing Processes. In: Hughes, A., Mol, J., Zheludkevich, M., Buchheit, R. (eds) Active Protective Coatings. Springer Series in Materials Science, vol 233. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7540-3_10

Download citation

Publish with us

Policies and ethics