Skip to main content

Potential Environmental Impact of Insect-Resistant Transgenic Trees

  • Chapter
  • First Online:
Biosafety of Forest Transgenic Trees

Part of the book series: Forestry Sciences ((FOSC,volume 82))

  • 797 Accesses

Abstract

Resistance to phytophagous insects is a trait that is highly desirable in commercially grown forest trees. A considerable body of literature exists that describes approaches of genetic engineering to render a tree impalatable or toxic to a wider or narrower range of insects. Such a biotechnological interference with natural ecosystem processes naturally raises concerns about unwanted outcomes and ecological biosafety . There are a growing number of studies focusing on non-target or wider ecosystem effects of such trees in field trials. In this paper, recent work on transgenic trees with enhanced resistance to insect herbivory and potential environmental effects is reviewed. As yet no coherent overall picture has emerged, yet a few instances of unexpected outcomes of the exposure of transgenic insect resistant trees to biocenoses have emerged. With ongoing research, and a longer history of transgenic trees in the field, further results, observations and insights can be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JM, Piovesan G, Strauss S, Brow S (2002) The case for genetic engineering of native and landscape trees against introduced pests and diseases. Conserv Biol 16(4):874–879

    Article  Google Scholar 

  • Alvarez JM, Ordás RJ (2013) Stable agrobacterium-mediated transformation of maritime pine based on kanamycin selection. Sci World J. http://dx.doi.org/10.1155/2013/681792

  • Axelsson EP, Hjältén J, LeRoy CJ, Whitham TG, Julkunen-Tiitto R, Wennström A (2011) Leaf litter from insect-resistant transgenic trees causes changes in aquatic insect community composition. J Appl Ecol 48(6):1472–1479. doi:10.1111/j.1365-2664.2011.02046.x

    Article  Google Scholar 

  • Axelsson EP, Hjältén J, LeRoy CJ (2012) Performance of insect-resistant Bacillus thuringiensis (Bt)-expressing aspens under semi-natural field conditions including natural herbivory in Sweden. Forest Ecol Manage 264:167–171

    Article  Google Scholar 

  • Barbehenn RV, Jones CP, Yip L, Tran L, Constabel CP (2007) Does the induction of polyphenol oxidase defend trees against caterpillars? Assessing defenses one at a time with transgenic poplar. Oecologia 154(1):129–140

    Article  PubMed  Google Scholar 

  • Barraclough EI, Burgess EPJ, Philip BA, Wohlers MW, Malone LA (2009) Tritrophic impacts of Bt-expressing transgenic pine on the parasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) via its host Pseudocoremia suavis (Lepidoptera: Geometridae). Biol Control 49(2):192–199

    Article  Google Scholar 

  • Boeckler GA, Towns M, Unsicker SB, Mellway RD, Yip L, Hilke I, Gershenzon J, Constabel CP (2014) Transgenic upregulation of the condensed tannin pathway in poplar leads to a dramatic shift in leaf palatability for two tree-feeding Lepidoptera. J Chem Ecol 40(2):150–158

    Article  CAS  PubMed  Google Scholar 

  • Burgess EPJ, Todd JH, Philip BA (2005) Insecticidal efficacy of transgenic avidin-expressing Eucalyptus grandis against a leaf-chewing lepidopteran pest. HortResearch client report 13836/2005. HortResearch, Auckland, New Zealand, pp 12

    Google Scholar 

  • Cao C-W, Liu G-F, Wang Z-Y, Yan S-C, Ma L, Yang C-P (2010) Response of the gypsy moth, Lymantria dispar to transgenic poplar, Populus simonii × P. nigra, expressing fusion protein gene of the spider insecticidal peptide and Bt-toxin C-peptide. J Insect Sci 2010(10):200. doi:10.1673/031.010.20001

    Google Scholar 

  • Carstens K, Anderson J, Bachman P, De Schrijver A, Dively G, Federici B, Hamer M, Gielkens M, Jensen P, Lamp W, Rauschen S, Ridley G, Romeis J, Waggoner A (2012) Genetically modified crops and aquatic ecosystems: considerations for environmental risk assessment and non-target organism testing. Transgenic Res 21(4):813–842. doi:10.1007/s11248-011-9569-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chong Y, Hayes JL, Sollod B, Wen S, Wilson DT, Hains PG, Hodgson WC, Broady KW, King GF, Nicholson GM (2007) The ω-atracotoxins: selective blockers of insect M-LVA and HVA calcium channels. Biochem Pharmacol 74(4):623–638

    Google Scholar 

  • Christeller JT, Markwick NP, Poulton J, O’Callaghan M (2006) Binding of an insecticidal transgene product to soil: biological activity of soil-bound avidin and the effects of time and microbial activity. Soil Biol Biochem 38(8):2043–2052

    Article  CAS  Google Scholar 

  • Christeller JT, Markwick NP, Burgess EPJ, Malone LA (2010) The use of biotin-binding proteins for insect control. J Econ Entomol 103(2):497–508. doi:10.1603/EC09149

    Article  CAS  PubMed  Google Scholar 

  • Confalonieri M, Allegro G, Balestrazzi A, Fogher C, Delledonne M (1998) Regeneration of Populus nigra transgenic plants expressing a Kunitz proteinase inhibitor (Kti3) gene. Mol Breed 4(2):137–145

    Article  CAS  Google Scholar 

  • Delledonne M, Allegro G, Belenghi B, Balestrazzi A, Picco F, Levine A, Zelasco S, Calligari P, Confalonieri M (2001) Transformation of white poplar (Populus alba L.) with a novel Arabidopsis thaliana cysteine proteinase inhibitor and analysis of insect pest resistance. Mol Breeding 7(1):35–42

    Article  CAS  Google Scholar 

  • Dowd PF, Lagrimini LM, Herms DA (1998) Differential leaf resistance to insects of transgenic sweetgum (Liquidambar styraciflua) expressing tobacco anionic peroxidase. Cell Mol Life Sci 54(7):712–720

    Article  CAS  PubMed  Google Scholar 

  • Dunse KM, Stevens JA, Lay FT, Gaspar YM, Heath RL, Anderson MA (2010) Coexpression of a potato type I and II proteinase inhibitor gives cotton plants protection against insect damage in the field. Proc Natl Acad Sci USA. doi:10.1073/pnas.1009327107

    Google Scholar 

  • Escoubas P, Stankiewicz M, Takaoka T, Pelhate M, Romi-Lebrun R, Wu FQ, Nakajima T (2000) Sequence and electrophysiological characterization of two insect-selective excitatory toxins from the venom of the Chinese scorpion Buthus martensi. FEBS Lett 483(2–3):175–180

    Article  CAS  PubMed  Google Scholar 

  • Fox J (2003) Resistance to Bt toxin surprisingly absent from pests. Nat Biotechnol 21(9):958–959

    Article  CAS  PubMed  Google Scholar 

  • Furniss RL, Carolin VM (1977) Western forest insects. U.S. Department of Agriculture, Miscellaneous Publication 1339. Washington, DC, 654 p

    Google Scholar 

  • Gatehouse AMR, Ferry N, Edwards MG, Bell HA (2011) Insect resistant biotech crops and their impacts on beneficial arthropods. Philos Trans R Soc B Biol sci 366(1569):1438–1452

    Google Scholar 

  • Génissel A, Leplé J-C, Millet N, Augustin S, Jouanin L, Pilate G (2003a) High tolerance against Chrysomela tremulae of transgenic poplar plants expressing a synthetic cry3A gene from Bacillus thuringiensis ssp tenebrionis. Mol Breeding 11:103–110

    Article  Google Scholar 

  • Génissel A, Augustin S, Courtin C, Pilate G, Lorme P, Bourguet D (2003b) High level of resistance to Bt plants in the absence of man-made changes. Proc R Soc Lond B 270:791–797

    Article  Google Scholar 

  • Gill RI, Ellis BE, Isman MB (2003) Tryptamine-induced resistance in tryptophan decarboxylase transgenic poplar and tobacco plants against their specific herbivores. J Chem Ecol 29(4):779–793

    Article  CAS  PubMed  Google Scholar 

  • Grace LJ, Charity JA, Gresham B, Kay N, Walter C (2005) Insect resistant transgenic Pinus radiata. Plant Cell Rep 24(2):103–111

    Article  CAS  PubMed  Google Scholar 

  • Guynup S (2010) Blending old and new in reforesting. Sci Am 82–83

    Google Scholar 

  • Häggman H, Raybould A, Borem A, Fox T, Handley L. Hertzberg M, Lu MZ, Macdonald P, Oguchi T, Pasquali G, Pearson L, Peter G, Quemada H, Séguin A, Tattersall K, Ulian E, Walter C, McLean M (2013) Genetically engineered trees for plantation forests: key considerations for environmental risk assessment. Plant Biotechnol J 11(7):785–798

    Google Scholar 

  • Harcourt RL, Kyozuka J, Floyd RB, Bateman KS, Tanaka H, Decroocq V, Llewellyn DJ, Zhu X, Peacock WJ, Dennis ES (2000) Insect- and herbicide-resistant transgenic eucalypts. Mol Breeding 6(3):307–315

    Article  CAS  Google Scholar 

  • Head G, Surber JB, Watson JA, Martin JW, Duan JJ (2002) No detection of Cry1Ac protein in soil after multiple years of transgenic Bt cotton (Bollgard) use. Environ Entomol 31(1):30–36

    Article  CAS  Google Scholar 

  • Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 11:122–123

    Google Scholar 

  • Hjältén J, Lindau A, Wennström A, Blomberg P, Witzell J, Hurry V, Ericson L (2007) Unintentional changes of defence traits in GM trees can influence plant herbivore interactions. Basic Appl Ecol 8(3):434–443

    Article  Google Scholar 

  • Hjältén J, Axelsson EP, Julkunen-Tiitto R, Wennström A, Pilate G (2013) Innate and introduced resistance traits in genetically modified aspen trees and their effect on leaf beetle feeding. PLoS ONE 8(9):e73819. doi:10.1371/journal.pone.0073819

    Article  PubMed Central  PubMed  Google Scholar 

  • Hogervorst PAM, Wäckers FL, Woodring J, Romeis J (2009) Snowdrop lectin (Galanthus nivalis agglutinin) in aphid honeydew negatively affects survival of a honeydew-consuming parasitoid. Agric For Entomol 11(2):161–173

    Article  Google Scholar 

  • Hu JJ, Li SM, Lu MZ (2007) Stability of insect-resistance of Bt transformed Populus nigra plantation and its effects on the natural enemies of insects. For Res Chin Acad For 20:656–659 (in Chinese, English abstract)

    Google Scholar 

  • Klocko A, Viswanath V, Ma C, James RR, Cardineau G, Skinner J, Oppert BS, Payne P, Miller L, Meilan R (2014) Bt-Cry3Aa expression reduces insect damage and improves growth in field-grown hybrid poplar. Can J For Res 44(1):28–35

    Article  CAS  Google Scholar 

  • Kosonen M, Keski-Saari S, Ruuhola T, Constabel CP, Julkunen-Tiitto R (2012) Effects of overproduction of condensed tannins and elevated temperature on chemical and ecological traits of genetically modified hybrid aspens (Populus tremula × P. tremuloides). J Chem Ecol 38(10):1235–1246

    Article  CAS  PubMed  Google Scholar 

  • Lachance DA, Hamel LP, Pelletier F, Valéro JR, Bernier-Cardou M, Chapman K, van Frankenhuyzen K, Séguin A (2007) Expression of a Bacillus thuringiensis cry1Ab gene in transgenic white spruce and its efficacy against the spruce budworm (Choristoneura fumiferana). Tree Genet Genomes 3(2):153–167

    Article  Google Scholar 

  • Lamarche J, Hamelin RC (2007) No evidence of an impact on the Rhizosphere Diazotroph community by the expression of Bacillus thuringiensis Cry1Ab toxin by Bt white spruce. Appl Environ Microbiol 73(20):6577–6583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lamarche J, Stefani FO, Séguin A, Hamelin RC (2011) Impact of endochitinase-transformed white spruce on soil fungal communities under greenhouse conditions. FEMS Microbiol Ecol 76(2):199–208

    Article  CAS  PubMed  Google Scholar 

  • Lavery PB, Mead DJ (2000) Pinus radiata: a narrow endemic from North America takes on the world. In: Richardson DM (ed) Ecology and biogeography of pinus. Cambridge University Press, Cambridge, pp 433–441

    Google Scholar 

  • LeBlanc PM, Hamelin RC, Filion M (2007) Alteration of soil rhizosphere communities following genetic transformation of white spruce. Appl Environ Microbiol 73(13):4128–4134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ledford H (2014) Brazil considers transgenic trees. Genetically modified eucalyptus could be a global test case. Nature 512:357. doi:10.1038/512357a

    Article  CAS  PubMed  Google Scholar 

  • Lei Z, Shanjun J, Xingfu J, Haixia Y, Lizhi L (2011) The influence of Cry1Ab toxin on the growth and development of Microplitis pallidipes. Plant Prot Beijing 37(6):107–111 (in Chinese, English abstract)

    Google Scholar 

  • Leplé JC, Bonade-Bottino M, Augustin S, Pilate G, Le Tan VD, Delplanque A, Cornu D, Jouanin L (1995) Toxicity to Chrysomela tremulae (Coleoptera: Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Mol Breeding 1(4):319–328

    Google Scholar 

  • Liu XZ, Liu Z, Yang YM, Zhang HY (2010) Production of transgenic Pinus armandii plants harbouring btCryIII(A) gene. Biol Plant 54(4):711. doi:10.1007/s10535-010-0126-8

    Article  Google Scholar 

  • Maheswaran G, Pridmore L, Franz P, Anderson MA (2007) A proteinase inhibitor from Nicotiana alata inhibits the normal development of light-brown apple moth, Epiphyas postvittana in transgenic apple plants. Plant Cell Rep 26(6):773–782

    Article  CAS  PubMed  Google Scholar 

  • Markwick NP, Docherty LC, Phung MM, Lester MT, Murray C, Yao JL, Mitra DS, Cohen D, Beuning LL, Kutty-Amma S, Christeller JT (2003) Transgenic tobacco and apple plants expressing biotin-binding proteins are resistant to two cosmopolitan insect pests, potato tuber moth and lightbrown apple moth, respectively. Transgenic Res 12(6):671–681

    Article  CAS  PubMed  Google Scholar 

  • McCafferty HRK, Moore PH, Zhu YJ (2008) Papaya transformed with the Galanthus nivalis GNA gene produces a biologically active lectin with spider mite control activity. Plant Sci 175(3):385–393

    Article  CAS  Google Scholar 

  • McCown BH, McCabe DE, Russell DR, Robinson DJ, Barton KA, Raffa KF (1991) Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Rep 9(10):590–594

    Article  CAS  PubMed  Google Scholar 

  • Merkle SA, Andrade GM, Nairn CJ, Powell WA, Maynard CA (2007) Restoration of threatened species: a noble cause for transgenic trees. Tree Genet Genomes 3(2):111–118

    Article  Google Scholar 

  • Noël A, Levasseur C, Le VQ, Séguin A (2005) Enhanced resistance to fungal pathogens in forest trees by genetic transformation of black spruce and hybrid poplar with a Trichoderma harzianum endochitinase gene. Physiol Mol Plant Pathol 67(2):92–99

    Article  Google Scholar 

  • Pasonen HL, Seppanen SK, Degefu Y, Rytkonen A, von Weissenberg K, Pappinen A (2004) Field performance of chitinase transgenic silver birches (Betula pendula): resistance to fungal diseases. Theor Appl Genet 109(3):562–570

    Article  CAS  PubMed  Google Scholar 

  • Post KH, Parry D (2011) Non-target effects of transgenic blight-resistant American chestnut (Fagales: Fagaceae) on insect herbivores. Environ Entomol 40(4):955–963

    Article  CAS  PubMed  Google Scholar 

  • Ramputh AI, Arnason JT, Cass L, Simmonds JA (2002) Reduced herbivory of the European corn borer (Ostrinia nubilalis) on corn transformed with germin, a wheat oxalate oxidase gene. Plant Sci 162(3):431–440

    Google Scholar 

  • Robischon M (2006a) Field trials with transgenic trees—state of the art and developments. In: Fladung M, Ewald D (eds) Tree transgenesis; Recent developments. Springer, Berlin

    Google Scholar 

  • Robischon M (2006b) Gift und Gentechnik im Garten der Ameisen Hymenoptera Formicidae. Entomol Z 116(2):61–65 (in German, English abstract)

    Google Scholar 

  • Saxena D, Stotzky G (2000) Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ. FEMS Microbiol Ecol 33(1):35–39

    Article  CAS  PubMed  Google Scholar 

  • Schlüter U, Benchabane M, Munger A, Kiggundu A, Vorster J, Goulet MC, Cloutier C, Michaud D (2010) Recombinant protease inhibitors for herbivore pest control: a multitrophic perspective. J Exp Bot 61(15):4169–4183

    Article  PubMed  Google Scholar 

  • Schnitzler F-R, Burgess EPJ, Kean AM, Philip BA, Barraclough EI, Malone LA, Walter C (2010) No unintended impacts of transgenic pine (Pinus radiata) trees on above ground invertebrate communities. Environ Entomol 39(4):1359–1368

    Article  PubMed  Google Scholar 

  • Scorza R, Callahan A, Dardick C, Ravelonandro M, Polak J, Malinowski T, Zagrai J, Cambra M, Kamenova I (2013) Genetic engineering of Plum pox virus resistance: ‘HoneySweet’ plum—from concept to product. Plant Cell Tissue Organ Cult 115(1):1–12

    Article  CAS  Google Scholar 

  • Shang A-Q, Tain C-W, Zhao L-J, Tian Y-C (2008) Establishment of genetic transformation system of Euonymus japonicus ‘Cu Zhi’ mediated by Agrobacterium tumefaciens. Acta Hortic Sinica 35(3):409–414

    CAS  Google Scholar 

  • Stefani FOP, Hamelin RC (2010) Current state of genetically modified plant impact on target and non-target funi. Environ Rev 18:441–475

    Google Scholar 

  • Tabashnik BE, Gassmann AJ, Crowder DW, Carrière Y (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26(2):199–202

    Google Scholar 

  • Tang W, Tian Y (2003) Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified delta-endotoxin gene of Bacillus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud. J Exp Bot 54(383):835–844

    Article  CAS  PubMed  Google Scholar 

  • Tian YC, Zheng JB, Yu HM, Liang HY, Li CQ, Wang JM (2000) Studies of transgenic hybrid poplar 741 carrying two insect-resistant genes. Acta Bot Sinica 42:263–268

    CAS  Google Scholar 

  • Tiimonen H, Aronen T, Laakso T, Saranpää P, Chiang V, Ylioja T, Roininen H, Häggman H (2005) Does lignin modification affect feeding preference or growth performance of insect herbivores in transgenic silver birch (Betula pendula Roth)? Planta 222(4):699–708

    Article  CAS  PubMed  Google Scholar 

  • USDA Aphis (2012) Permit application 11-052-101rm received from ArborGen. Field testing of genetically engineered Eucalyptus grandis × Eucalyptus urophylla. Final Environmental Assessment, Apr 2012

    Google Scholar 

  • Valenzuela S, Balocchi C, Rodríguez J (2006) Transgenic trees and forestry biosafety. Electr J Biotechnol 9(3) (Special Issue)

    Google Scholar 

  • Van Rensburg JBJ (2007) First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. S Afr J Plant Soil 24(3):147–151

    Article  Google Scholar 

  • Vihervuori L, Pasonen HL, Lyytikäinen-Saarenmaa P (2008) Density and composition of an insect population in a field trial of chitinase transgenic and wild-type silver birch (Betula pendula) clones. Environ Entomol 37(6):1582–1591

    Article  CAS  PubMed  Google Scholar 

  • Wang JH, Constabel CP (2004) Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta 220(1):87–96

    Article  CAS  PubMed  Google Scholar 

  • Wu NF, Sun Q, Yao B, Fan YL, Rao HY, Huang MR, Wang MX (2000) Insect-resistant transgenic poplar expressing AaIT gene. Chin J Biotechnol Sheng Wu Gong Cheng Xue Bao 16:129–33 (in Chinese, English abstract)

    Google Scholar 

  • Wullschleger SD, Jansson S, Taylor G (2002) Genomics and forest biology: Populus emerges as the perennial favorite. Plant Cell 14(11):2651–2655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang ZN, Ingelbrecht I, Louzada E, Skaria M, Mirkov TE (2000) Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red (Citrus paradisi Macf.). Plant Cell Rep 119(12):1203–1211

    Article  Google Scholar 

  • Yang L, Sun Y, Xie L, Liang A (2010) A novel approach for in situ bud transformation of Populus by Agrobacterium. Scand J For Res 25(1):2010. doi:10.1080/02827580903228870

    Article  Google Scholar 

  • Yang LY, Sun Y, Hao YS, Wang YX (2013a) Effects of transgenic poplar leaves with binary insect-resistance genes used as feed for rabbits. World Rabbit Sci 21(4):257–261. doi:10.4995/wrs.2013.1188

    Article  CAS  Google Scholar 

  • Yang L, Sun Y, Wang Y, Hao Y (2013b) Effects of dietary transgenic poplar leaf pellets on performance and tissues in rabbits. J Sci Food Agric 11. doi:10.1002/jsfa.6388

    Google Scholar 

  • Ye X, Busov V, Zhao N, Meilan R, McDonnel LM, Coleman HD, Mansfield SD, Chen F, Li Y, Cheng Z-M (2011) Transgenic Populus trees for forest products, bioenergy, and functional genomics. Crit Rev Plant Sci 30:415–434

    Article  Google Scholar 

  • Yuan S, Yang M, Gao B (2011) Additive insect-resistant effects of transgenic triploid Chinese white poplar against Clostera anachoreta. Front Agric China 5(2):237–240. doi:10.1007/s11703-011-1076-4

    Article  Google Scholar 

  • Zhan YG, Liu ZH, Wang YC, Wang ZY, Yang CP, Liu GF (2001) Transformation of insect resistant gene into birch. J Northeast For Univ 29:4–6

    CAS  Google Scholar 

  • Zhang Q, Lin SZ, Zhang ZY, Lin YZ (2002) Test of insect-resistance of transgenic poplar with CpTI gene. For Stud China 4:27–32

    Google Scholar 

  • Zhang Q, Zhang ZY, Lin SZ, Lin YZ (2005) Resistance of transgenic hybrid triploids in Populus tomentosa Carr. against 3 species of Lepidopterans following two winter dormancies conferred by high level expression of cowpea trypsin inhibitor gene. Silvae Genetica 54(3):108–116

    Google Scholar 

  • Zhang H, Harry DE, Ma C, Yuceer C, Hsu CY, Vikram V, Shevchenko O, Etherington E, Strauss SH (2010) Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus. J Exp Bot 61(10):2549–2560. doi:10.1093/jxb/erq092 Epub 2010 Apr 20

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Chen M, Zhang X, Luan H, Diao S, Tian Y, Su X (2011a) Laboratory and field evaluation of the transgenic Populus alba × Populus glandulosa expressing double coleopteran-resistance genes. Tree Physiol 31(5):567–573

    Article  PubMed  Google Scholar 

  • Zhang B, Chen M, Zhang X, Luan H, Tian Y, Su X (2011b) Expression of Bt-Cry3A in transgenic Populus alba × P. glandulosa and its effects on target and non-target pests and the arthropod community. Transgenic Res 20(3):523–532

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Wang MJ, Zhao ST, Hu JJ, Lu MZ (2010) Changes in freezing tolerance in hybrid poplar caused by up- and down-regulation of PtFAD2 gene expression. Transgenic Res 19(4):647–654

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Robischon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Robischon, M. (2016). Potential Environmental Impact of Insect-Resistant Transgenic Trees. In: Vettori, C., et al. Biosafety of Forest Transgenic Trees. Forestry Sciences, vol 82. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7531-1_9

Download citation

Publish with us

Policies and ethics