Skip to main content

Covered Karst Landforms

  • Chapter
  • First Online:
Covered Karsts

Part of the book series: Springer Geology ((SPRINGERGEOL))

  • 835 Accesses

Abstract

The landforms of covered karst, originated in cryptokarst or concealed karst environment, are presented. Cryptokarst landforms include caprock dolines, ponors, blind valleys, epigenetic valleys and remnant caves. Typical concealed karst landforms are subsidence dolines, closed gullies (blind gullies) and blind suffosion gullies. On both types of covered karst, karren, depressions of superficial deposit and covered karst ponors occur. Numerous varieties of covered karst landforms are distinguished. According to their morphology, karren represent 15 varieties. According to their origin, caprock dolines represent 3; according to size, dropout dolines represent 8; and according to size, morphology and environment, suffosion dolines represent 8 varieties. Subsidence dolines are characterised by morphological parameters (distinguishing between features of karstic and non-karstic origin), ground plan, cross-section and shape of slope. The patterns of doline groups and their morphological environments are demonstrated as well as some varieties of subsidence pseudokarst depressions. Ponors are grouped according to their positions occupied in the karst into karst marginal and karst interior ponors. Karst interior ponors show four varieties according to the position of the rock boundary, while covered karst ponors have three varieties. Depressions of superficial deposit are characterised and grouped according to their position, bedrock morphology, cover sediments and degree of coveredness. Where it is reasonable, covered karst landforms on evaporites are presented separately (karren, salt step, solution subsidence trough, solution-induced depositional basin). The pseudokarst-covered karst landforms are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrejchuk V (2002) Collapse above the world’s largest potash mine (Ural, Russia). Int J Speleol 31(4):137–158

    Article  Google Scholar 

  • Andrejchuk V, Eraso A (1996) Karren landform on the artificial salt massives in the Ural area. In: Fornós IJ, Ginés Á (eds) Karren landforms. Universitat de les Illes Balears, Palma de Mallorca, pp 243–252

    Google Scholar 

  • Andrejchuk V, Klimchouk A (2002) Mechanism of karst of the fore-Ural region, Russia (from observations in the Kungurskaja Cave). Int J Speleol N 31(1–4):89–114

    Article  Google Scholar 

  • Balázs D (1970) Zsombolyok a Central Kentucky Karszton (Shafts on the Central Kentucky Karst). Karszt és Barlang I:21–24 (in Hungarian)

    Google Scholar 

  • Balázs D (1984) Exhumált trópusi őskarszt Lapinha vidékén (Minas Gerais, Brazília) (Exhumed tropical paleokarst in the Lapinha area) (Minas Gerais, Brazil). Karszt és Barlang II:87–92 (in Hungarian)

    Google Scholar 

  • Barrére P (1964) Le relief karstique dans l’ouest des Pyrénées centrales. Rev. Belge Géogr. Ed. Soc. Roy. Belge Géogr. Special Publ., Karst et Climats Froids 88(1–2):9–62

    Google Scholar 

  • Beck BF (1986) A generalized genetic framework for the development of sinkholes and karst in Florida, USA. Environ Geol Water Sci 8:5–18

    Article  Google Scholar 

  • Beck BF, Sinclair WC (1986) Sinkholes in Florida: an introduction. Florida Sinkhole Research Institute Report 85–86-4, 16 p

    Google Scholar 

  • Bell FG, Culshaw MG, Cripps JC (1999) A review of selected engineering geological characteristics of English chalk. Eng Geol 54:237–269

    Article  Google Scholar 

  • Bennett D (1997) Finding a foothold. New Civil Engineer (4 Dec) pp 24–25

    Google Scholar 

  • Bergado DT, Selvanayagam AN (1987) Pile foundation problems in Kuala Lumpur Limestone, Malaysia. Q J Eng Geol 20:159–175

    Article  Google Scholar 

  • Bögli A (1960) Kalklösung und Karrenbildung. Zeitschrift für Geomorphologie, Suppl. 2:4–21 (an English translation by E. Werner was published in Cave Geology 1(1):3–28, 1975)

    Google Scholar 

  • Bögli A (1976) Die wichtigsten Karrenformen der Kalkalpen. In: Karst processes and relevant landforms. Department of Geography, Philosophical Faculty, Ljubljana, pp 141–149

    Google Scholar 

  • Bögli A (1980) Karst hydrology and physical speleology. Springer, Berlin, 284 p

    Book  Google Scholar 

  • Brink ABA, Partridge TC (1965) Transvaal karst: some considerations of development and morphology, with special reference to sinkholes and subsidence in the Far West Rand. S Afr Geogr J 47:11–34

    Article  Google Scholar 

  • Brook GA (2004) Africa, Sub-Sahara. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 20–23

    Google Scholar 

  • Brook GA, Allison TL (1986) Fracture mapping and ground subsidence susceptibility modelling in covered karst terrain: the example of Dougherty County, Georgia. Int Assoc Hydrol Sci 151:595–606

    Google Scholar 

  • Brook GA, Fenney TP (1996) Morphology and denudation of quartzite and limestone pavements in Southern Africa and North America: are they small scale versions of labyrinth karst? In: Fornós IJ, Ginés Á (eds) Karren landforms. Universitat de les Illes Balears, Palma de Mallorca, pp 25–39

    Google Scholar 

  • Brook GA, Ford DC (1978) The origin of labyrinth and tower karst and the climatic conditions necessary for their development. Nature 275:493–496

    Article  Google Scholar 

  • Bull PA (1977) Cave boulder chokes and doline relationships. In: Proceedings of the 7th international congress speleology, pp 93–96

    Google Scholar 

  • Bull PA (1980) The antiquity of caves and dolines in the British Isles. Z Geomorphol 36:217–232

    Google Scholar 

  • Chen Z, Song LH, Sweeting MM (1986) The pinnacle karst of the Stone Forest, Lunan, Yunnan. China: an example of a subjacent karst. In: Paterson K, Sweeting MM (eds) New directions in karst. Geo Books, Norwich, pp 597–607

    Google Scholar 

  • Clozier R (1940) Les Causses du Quency. Librairie J.-B. Baillère et Fils, Paris, 183 p

    Google Scholar 

  • Cooper AH (1998) Subsidence hazards caused by the dissolution of Permian gypsum in England: geology, investigation and remediation. Geol Soc Eng Group Spec Publ 15:265–275

    Google Scholar 

  • Cooper AH, Waltham AC (1999) Subsidence caused by gypsum dissolution at Ripon North Yorkshire. Q J Eng Geol 32:305–310

    Article  Google Scholar 

  • Coxon C (1986) A study of the hydrology and geomorphology of turloughs. Unpublished PhD thesis, University of Dublin

    Google Scholar 

  • Cramer H (1941) Die Systematik der Karsdolinen. N Jb Miner Geol Paleontol 85:293–382

    Google Scholar 

  • Crawford N (1984) Karst landform development along the Cumberland Plateau escarpment of Tennessee. In: LaFleur RS (ed) Groundwater as a geomorphic agent. Allen and Unwin, Boston, pp 294–339

    Google Scholar 

  • Culshaw MG, Waltham AC (1987) Natural and artificial cavities as ground engineering hazards. Q Journal Eng Geol 20:139–150

    Article  Google Scholar 

  • Curtis LF, Courtney FM, Trudgill ST (1976) Soils in the British Isles. Longman, London, 364 p

    Google Scholar 

  • Cvijič J (1893) ‘Das Karstphänomen’. Versuch einer morphologishen Monographie. Geogr Abh A Penck 5(3):217–329

    Google Scholar 

  • Davies WE, LeGrand H (1972) Karst of the United States. In: Herak M, Stringfield VT (eds) Important karst regions of the northern hemisphere. Elsevier, Amsterdam, pp 467–505

    Google Scholar 

  • Derbyshire E, Meng X, Dijkstra TA (eds) (2000) In the thick loess terrain of north-west China. Wiley, New York, 288 p

    Google Scholar 

  • Dicken S (1935) Kentucky karst landscapes. J Geol 43:708–728

    Article  Google Scholar 

  • Drumm EC, Kane WF, Yoon CJ (1990) Application of limit plasticity of the stability of sinkholes. Eng Geol 29:213–225

    Article  Google Scholar 

  • Edmonds CN (2001) Predicting natural cavities in chalk. Geol Soc Eng Geol Spec Publ 18:283–293

    Google Scholar 

  • Fagg CC (1923) The recession of the chalk escarpment. Proc Croydon Nat Hist Sci Soc 9:93–112

    Google Scholar 

  • Fagg CC (1954) The coombes and embayments of the chalk escarpment. Proc Croydon Nat Hist Sci Soc 12:117–131

    Google Scholar 

  • Ford DC, Lundbeg J (1987) A review of dissolutional rills in limestone and other soluble rocks. Catena Suppl 8:119–140

    Google Scholar 

  • Ford DC, Williams PW (1989) Karst geomorphology and hydrology. Unwin Hyman, London, 601 p

    Book  Google Scholar 

  • Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, 561 p

    Book  Google Scholar 

  • Forti P, Sauro M (1996) Gypsum karst of Italy. Int J Speleol 25(3–4):239–250

    Google Scholar 

  • Gams I (1962) Slope doline slovenije v primerjalni metodi (Blind valleys in comparative method). Zbornik v. kongresa geografov FLRJ v Ljubljani, Ljubljana, pp 185–190

    Google Scholar 

  • Gams I (1971) Podtalne kraške oblike (Subsoil karst forms). Geografski Vestn 43:27–45

    Google Scholar 

  • Gams I (1976) Forms of subsoil karst. In: Proceedings of the 6th international congress of speleology, Olomouc. Academia, Prague, pp 169–179

    Google Scholar 

  • Gams I (1994) Types of contact karst. Geogr Fis Din Quateraria 17:37–46

    Google Scholar 

  • Gams I, Otoničar B, Slabe T (2011) Development of slope and related subsoil karren: a case study from Bela Krajina, SE-Slovenia. Acta Cartologica 40(2):329–340

    Google Scholar 

  • Gardner RAM (1983) Aelianite. In: Goudie AS, Pye K (eds) Chemical sediments and geomorphology. Academic, London, pp 265–300

    Google Scholar 

  • Ginés Á (1990) Utilización de las morfologías de lapiaz como geoindicadores ecológicos en la Serra de Tramuntana (Mallorca). Endins 16:27–39

    Google Scholar 

  • Ginés Á (1996) Quantitative data as a base for the morphometrical definition of rillenkarren features found on limestones. In: Fornós IJ, Ginés Á (eds) Karren landforms. Universitat de les Illes Balears, Palma de Mallorca, pp 177–191

    Google Scholar 

  • Ginés Á (2004) Karren. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 470–473

    Google Scholar 

  • Ginés Á (2009) Karrenfield landscapes and karren landforms. In: Ginés Á, Knez M, Slabe T, Dreybrodt W (eds) Karst rock features. Karren sculpturing. Zalozba ZRC. Institut za raziskovanje krasa ZRC SAZU, Postojna, Carsologica 9, pp 13–24

    Google Scholar 

  • Goeppert N, Goldscheider N, Scholz H (2011) Karst geomorphology of carbanatic conglomerates in the Folded Molasse zone of the Northern Alps (Austria/Germany). Geomorphology 130:289–298

    Article  Google Scholar 

  • Gómez-Pujol L, Fornós JJ (2009) Coastal karren in the Balearic Islands. In: Ginés Á, Knez M, Slabe T, Dreybrodt W (eds) Karst rock features. Karren sculpturing. Zalozba ZRC. Institut za raziskovanje krasa ZRC SAZU, Postojna-Ljubljana., Carsologica 9, pp 487–502

    Google Scholar 

  • Gorbunova KA (1979) Morphology and hydrogeology of gypsum karst. All-Union Karst and Speleology Institute, Perm, 93 p (In Russian)

    Google Scholar 

  • Grimes KG (1994) The south-east karst province of South Australia. Environ Geol 23:134–138

    Article  Google Scholar 

  • Grimes KG (2004) Solution pipes of petrified forests? Drifting sands and drifting opinions! Vict Nat 121(1):14–22

    Google Scholar 

  • Grimes KG (2009a) Solution pipes and pinnacles in syngenetic karst. In: Ginés Á, Knez M, Slabe T, Dreybrodt W (eds) Karst rock features, karren sculpturing. Zalozba ZRC. Institut za raziskovanje krasa ZRC SAZU, Postojna, Carsologica 9, pp 513–523

    Google Scholar 

  • Grimes KG (2009b) Laterite Karst. Unpublished poster displayed at the 7th international conference on geomorphology (ANZIAG), Melbourne, 6 p

    Google Scholar 

  • Grimes KG (2012) Surface karst features of the Judbarra/Gregory National Park, Northern Territory, Australia. Helictite 41:15–36

    Google Scholar 

  • Grimes KG, Spate AP (2008) Laterite karst (Andysez No 53). ACKMA J 73:49–52

    Google Scholar 

  • Gunn J (2004) Fluviokarst. In: Gunn J (ed) Encyclopedia of caves and karst science. Taylor and Fitzroy Dearborn, London, pp 363–364

    Google Scholar 

  • Gunn J (2006) Turloughs and tiankengs: distinctive doline forms. Speleogenesis Evol Karst Aquifers 4(1):1–4

    Google Scholar 

  • Gvozdetskiy NA (1981) Karst. Izd-vo Myszl’, Moscow, 214 p

    Google Scholar 

  • Halliday WR (2004) Pseudokarst. In: Gunn J (ed) Encyclopedia of caves and Karst science. Fitzroy Dearborn, New York, pp 604–608

    Google Scholar 

  • Haserodt K (1965) Untersuchungen zur Hohen- und Altersgliederung der Karstformen in den Nördlichen Kalkalpen. Münchner Geogr. H. 27. Regensburg, 114p

    Google Scholar 

  • Hevesi A (1978) A Bükk szerkezet- és felszínfejlődése. (An outline of structural and geomorphological development of Bükk Mts). Földr Ért 27(2):169–203 (in Hungarian)

    Google Scholar 

  • Hevesi A (1980) Adatok a Bükk hegység negyedidőszaki ősföldrajzi képéhez (Data to the quaternary paleogeographical features of the Bükk Mountains) Földtani Közlöny 110(3–4):540–550 (in Hungarian)

    Google Scholar 

  • Hose LD, Strong TR (1981) The genetic relationship between breccia pipes and caves in non-karstic terranes in northern Arizona. In: Proceedings 8th international congress speleology. National Speleological Society, Huntsville, pp 136–138

    Google Scholar 

  • Howard AD (1963) The development of karst features. Bull Nat Spel Soc 25:45–65

    Google Scholar 

  • Hundt R (1950) Erdfalltektonik. Knapp, Halle, 145 p

    Google Scholar 

  • Hyatt JA, Wilkes HP, Jacobs PM (1999) Spatial relationships between new and old sinkholes in covered karst, Albany, Georgia, USA. In: Beck BF, Pettit AJ, Herring JG (eds) Hydrogeology and engineering geology of sinkholes and karsts. Balkema, Rotterdam, pp 37–44

    Google Scholar 

  • Jakucs L (1956) Adatok az Aggteleki-hegység és barlangjainak morfogenetikájához (Some data to the morphogenetics of the mountains and caves of Aggtelek). Földrajzi Közlemények 80(1):25–35 (in Hungarian)

    Google Scholar 

  • Jakucs L (1971) A karsztok morfogenetikája (Morphogenetics of karsts). A karsztfejlődés varienciái. Akadémiai Kiadó, Budapest, 310 p (in Hungarian)

    Google Scholar 

  • Jakucs L (1977) Morphogenetics of karst regions. Adam Hilger, Bristol, 283 p

    Google Scholar 

  • Jakucs L (1980) A karszt biológiai produktum! (Karst is a biological product). Földrajzi Közlemények 104(4):331–344 (in Hungarian)

    Google Scholar 

  • Jammal SE (1984) Maturation of the Winter Park sinkhole. In: Beck BF (ed) Sinkholes: their geology, engineering and environmental impact. Balkema, Rotterdam, pp 363–369

    Google Scholar 

  • Jennings JN (1973) Karst. The M.I.T Press, Cambridge, MA, 253 p

    Google Scholar 

  • Jennings JN (1985) Karst geomorphology. Basil Blackwell, New York, 293 p

    Google Scholar 

  • Jennings JN, Bao H, Spate AP (1980) Equilibrium versus events in river behaviour and blind valleys Yarrango billy, New South Wales. Helectite 18:39–54

    Google Scholar 

  • Johnson KS (1987) Development of the Wink Sink in West Texas due to salt dissolution and collapse. In: Beck BF, Wilson WL (eds) Karst hydrogeology: engineering and environmental implication. Balkema, Brookfield, pp 127–136

    Google Scholar 

  • Johnson KS (1989) Development of the Wink Sink in West Texas, USA, due to salt dissolution and collapse. Environ Geol Water Sci 14:81–92

    Article  Google Scholar 

  • Johnson KS, Collins EW, Seni SJ (2003) Sinkholes and land subsidence due to salt dissolution near wink, west Texas and other sites in western Texas and New Mexico. Okla Geol Surv Circ 109:163–195

    Google Scholar 

  • Károlyi MS, Ford DC (1983) The goose arm karst, Newfoundland. J Hydrol 61(1–3):181–186

    Article  Google Scholar 

  • Kirkaldy JF (1950) Solution in the calk in the Mimms Valley. Herts Proc Geol Ass 61:219–224

    Article  Google Scholar 

  • Klimchouk A (2004) Evaporite karst. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 343–347

    Google Scholar 

  • Klimchouk A, Andrejchuk V (1996) Breakdown development in cover beds and landscape features induced by interstratal gypsum karst. Int J Speleol 24(3–4):127–144

    Article  Google Scholar 

  • Klimchouk A, Andrejchuk V (2002) Karst breakdown mechanisms from observations in the gypsum caves of the western Ukraine: implications for subsidence hazard assessment. Speleogenesis Evol Karst Aquifers (www.speleogenesis.info), 1(1):20 p

  • Knez M, Slabe T (2002) Lithologic and morphological properties and rock relief of the Lunan stone forests. In: Gabrovšek F (ed) Evolution of karst: from prekarst to cessation. Karst Research Institute ZRC SAZU, Postojna, pp 259–266

    Google Scholar 

  • Knez M, Slabe T, Travassos LEP (2011) Karren on laminar calcarenitic rock of Lagoa Santa (Minas Gerais, Brazil). Acta Carstologica 40(2):357–367

    Google Scholar 

  • Korzhuev SS (1961) Merzlotnyi karst Srednego Prilen’ya i nekotorye osobennosti yego proyavleniya. (The Middle-Lena frozen karst and its characteristics). In: Sokolov NI, Gvozdetskiy NA, Balashov LS (eds) Regionalnoe karstovedenie. Izdatelstvo AN SSSR, Moscow, pp 207–220

    Google Scholar 

  • Kozma K, Holló S (2010) A Berva-pataki víznyelő kialakulása és pusztulása az egri Berva-bérc lábánál (The development and denudation of the ponor of Berva stream near the Berva mount in Eger) . Karsztfejlődés XV:103–112 (in Hungarian)

    Google Scholar 

  • Láng S (1971) A hazai karsztok és környékük lepusztulásának egyes kérdései (Some questions of the denudation of Hungarian karsts and their environments). Karszt és Barlang I:1–4 (in Hungarian)

    Google Scholar 

  • Lehmann H (1936) Morphologische Studien auf Java. Engelhorn, Stuttgart, 114 p

    Google Scholar 

  • Lu Y, Cooper AH (1997) Gypsum karst geohazards in China. In: Beck BF, Stephenson JB (eds) Engineering geology and hydrogeology of karst terrains. Balkema, Rotterdam, pp 117–126

    Google Scholar 

  • Lucas J (1872) Studies in Nidderdale. (Reprint Publication) Forgotten Books Hongkong, 319 p

    Google Scholar 

  • Macaluso T, Sauro U (1996) The karren in evaporite rocks: a proposal of classification. In: Fornós IJ, Ginés Á (eds) Karren landforms. Universitat de les Illes Balears, Palma de Mallorca, pp 277–291

    Google Scholar 

  • Macaluso T, Madonia G, Palmer A, Sauro U (2001) Atlante dei karren nelle evaporiti della Sicilia (Atlas of the karren in the evaporitic rocks of Sicily). Quaderni del Museo Geologico G. G. Gemmellaro 5. Dipartimento di Geologia e Geodesia, Universitá degli Studi di Palermo. 143 p

    Google Scholar 

  • Madonia G, Sauro U (2009) The karren landscapes in the evaporitic rocks of Sicily. In: Ginés Á, Knez M, Slabe T, Dreybrodt W (eds) Karst rock features. Karren sculpturing. Zalozba ZRC. Institut za raziskovanje krasa ZRC SAZU, Postojna-Ljubljana, Carsologica 9, pp 525–533

    Google Scholar 

  • Maire R, Zhang S, Song S (1991) Génese des karsts subtropicaux de Chine du sud (Guizhou, Sichuan, Hubei). Grottes Karsts Trop Chin Meridionale Karstologia Mém 4:162–186

    Google Scholar 

  • Martinez JD, Johnson KS, Neal JT (1998) Sinkholes in evaporite rocks. Am Sci 86:38–51

    Article  Google Scholar 

  • Martini JEJ, Grimes KG (2012) Epikarstic Maze cave development: Bullita cave system, Judbarra/Gregory Karst, tropical Australia. Helictite 41:37–66

    Google Scholar 

  • Mckee ED, Ward WC (1983) Eolian environment. In: Scholle PA, Bebout DE, Moore CH (eds) Carbonate depositional environments. American Association of Petroleum Geologists Memoir 33. American Association of Petroleum Geologists, Tulsa, pp 131–170

    Google Scholar 

  • Mendonca AF, Pires ACB, Barros JGC (1993) Pseudo-sinkholes in lateritic terrains, Brasilia, Brazil. In: Beck BF (ed) Applied karst geology. Balkema, Rotterdam, pp 43–49

    Google Scholar 

  • Móga J (2001) A szerkezet és kőzetfelépítés szerepe a Szilicei-fennsík karsztos felszínformáinak kialakításában. Karsztfejlődés VI:143–159 (in Hungarian)

    Google Scholar 

  • Olive WW (1957) Solution subsidence troughs, castile formation of gypsum plain, Texas and New Mexico. Geol Soc Am Bull 68(B693):351–358

    Article  Google Scholar 

  • Ollier C (1984) Weathering. Longman, London, 270 p

    Google Scholar 

  • Ollier CD, Tratman EK (1969) Geomorphology of the caves. In: Tratman EL (ed) The caves of northwest Clare, Ireland. David and Charles, Newton Abbot, pp 59–95

    Google Scholar 

  • Origo (2013) Gyilkos víznyelők (Killer Ponors) http://www.origo.hu/archivum/20130924-oriasi-karokat-okozhatnak-a-viznyelok.html (in Hungarian)

  • Paton JR (1963) The origin of the limestone hills of Malaya. J Trop Geogr 18:137–147

    Google Scholar 

  • Penck A (1924) Das unterirdische Karstphänomen. Receuil de Travaux offert à J. Cvijič, Belgrade, pp 175–197

    Google Scholar 

  • Perna G, Sauro U (1978) Atlante delle microforme di dissoluzione carsica superficiale del Trentino e del Veneto. Museo Tridentino, Trento, 176 p

    Google Scholar 

  • Pfeiffer D, Hahn J (1972) Karst of Germany. In: Herak M, Stringfield VT (eds) Karst, important karst regions of the northern hemisphere. Elsevier, Amsterdam, pp 189–223

    Google Scholar 

  • Pigott CD (1965) The structure of limestone surfaces in Derbyshire. Geogr J 131:41–44

    Article  Google Scholar 

  • Pinchemel P (1954) Les plaines de craie du Nord-Ouest du bassin parisien et du Sud-Est du bassin de londres, et leurs bordures. Armand Colin, Paris, 502 p

    Google Scholar 

  • Plan L, Decker K (2006) Quantitative karst morphology of the Hochschwab plateau Eastern Alps, Austria. Z Geomorphol N F 147:29–54

    Google Scholar 

  • Pohl ER (1955) Vertical shafts in limestone caves. Natl Speleol Soc Occas Pap 2:24

    Google Scholar 

  • Quinlan JF, Smith AR, Johnson KS (1986) Gypsum karst and salt karst of the United States of America. Le Grotte Ital 4(13):73–92

    Google Scholar 

  • Rodet J (1992) La Craie et ses Karsts Centre de Géomorphologie du Centre. National de la Recherche Scientifique, Caen, 560 p

    Google Scholar 

  • Roglič J (1964) Karst valleys in the Dinaric Karst. Erdkunde 18:113–116

    Article  Google Scholar 

  • Sásdi L (1987) Gipszkarszt jelenségek Alsótelekesen (Gypsum karst phenomena at Alsótelekes). Karszt és Barlang I-II:17–22 (in Hungarian)

    Google Scholar 

  • Slabe T (1992) Naravni in poskusni obnaplavinski jamski skalni relief (Natural and experimental cave rocky relief on the contact of water and sediments). Acta Carsologica 21:7–34

    Google Scholar 

  • Slabe T (1995) Cave rocky relief. Znanstvenaraziskovalni Center Sazu, Llubljana, 128 p

    Google Scholar 

  • Slabe T (1999) Subcutaneous rock forms. Acta Carsologica 28(2):255–271

    Google Scholar 

  • Slabe T, Liu H (2009) Significant subsoil rock forms. In: Knez M, Slabe T, Dreybrodt W (eds) Karst rock features. Karren sculpturing. Zalozba ZRC. Institut za raziskovanje krasa ZRC SAZU, Postojna, Carsologica 9, pp 123–137

    Google Scholar 

  • Smith DI, High C, Nicholson FH (1969) Limestone solution and the caves. In: Tratman EK (ed) The caves of northwest Clare, Ireland. David and Charles, Newton Abbot, pp 96–123

    Google Scholar 

  • Solomonov N, Kolosov P, Kipriyanova L, Knapp HD, Zhuravlev A, Trofimova E, Maksakovskiy N, Butorin A, Petrovskaya E (2010) Nominaciya Prirodiny Park ‘Lenskie Stolby’ (Rossiyskaya Federaciya). http://www.nhpfund.ru/files/lenapillars-nature park-nomination-ru.pdf

  • Soriano MA, Simón JL (2001) Subsidence rates of alluvial dolines in the central Ebro basin, Northeastern Spain. In: Beck BF, Herring JG (eds) Geotechnical and environmental applications of karst geology and hydrology. Balkema, Lisse, pp 47–52

    Google Scholar 

  • Sparks BW, Lewis WV (1957) Escarpment dry valleys near Pegsdon, Hertfordshire. Proc Geol Ass 68:26–38

    Article  Google Scholar 

  • Sperling CHB, Goudie AS, Stoddart DR, Poole GG (1977) Dolines of the Dorset chalklands and other areas in southern Britain. Trans Ins Br Geogr 2:205–223

    Article  Google Scholar 

  • Spooner J (1971) Mufulira interim report. Min J 276:122

    Google Scholar 

  • Sweeting MM (1955) Landforms in North-West Country Clare, Ireland. Trans Inst Br Geogr 21:218–249

    Google Scholar 

  • Sweeting MM (1973) Karst landforms. Columbia University Press, New York, 362 p

    Google Scholar 

  • Szunyogh G (1999) A talajelborítás hatása a karros formakincs fejlődésre (The effect of soil cover on the development of karren features). Karsztfejlődés III:31–42 (in Hungarian)

    Google Scholar 

  • Tan BK (1987) Some geotechnical of urban development over limestone terrain in Malaysia. Bull Int Assoc Eng Geol 35:57–63

    Article  Google Scholar 

  • Tharp TM (1999) Mechanics of upward propagation of cover-collapse sinkholes. Eng Geol 52:23–33

    Article  Google Scholar 

  • Thomas TM (1954) Swallow holes on the millstone grit and carboniferous limestone of the south Wales coalfield. Geogr J 120:468–475

    Article  Google Scholar 

  • Thomas TM (1963) Solution subsidence in southeast Carmarthenshire and southwest Breconshire. Trans Inst Br Geogr 33:45–60

    Google Scholar 

  • Thomas TM (1974) The South Wales interstratal karst. Trans Br Cave Res Assoc 1:131–152

    Google Scholar 

  • Trudgill ST (1976) Limestone erosion under soil. In: Panos V (ed) Proceedings of the 6th international congress of speleology II. Ba. Academia, Prague, pp 409–422

    Google Scholar 

  • Trudgill ST (1985) Limestone geomorphology. Longman, New York, 196 p

    Google Scholar 

  • Trudgill ST (1986) Limestone weathering under a soil cover and the evolution of limestone pavements, Malham district, North Yorkshire, UK. In: Paterson K, Sweeting MM (eds) New directions in karst. Geobooks, Norwich, pp 461–471

    Google Scholar 

  • Urai JL, Spiers CJ, Zwart HJ, Lister GS (1986) Weakening of rock salt by water during long-term creep. Nature 324:554–557

    Article  Google Scholar 

  • Veress M (1992) Karsztmorfológiai sajátosságok a Pádis fedett karsztjának példáján (Karstmorphological characteristics using an example of the covered karst of Pádis). Földrajzi Közlemények 114(3–4):125–141 (in Hungarian)

    Google Scholar 

  • Veress M (2000) Covered karst evolution Northern Bakony mountains, W-Hungary. A Bakony Természettud. Kut. Eredményei 23, Bakonyi Természettudományi Múzeum, Zirc, 167 p

    Google Scholar 

  • Veress M (2005) A horvátországi Locrum szigetének tengerparti karsztjai (Coastal karren of the Locrum island, Croatia). Karsztfejlődés X:207–219 (in Hungarian)

    Google Scholar 

  • Veress M (2008) Covered karstification on the karsts of Hungary. In: Kertész Á, Kovács Z (eds) Dimensions and trends in Hungarian geography. Geographical Research Institute Hungarian Academy of Sciences, Budapest, pp 69–90

    Google Scholar 

  • Veress M (2009a) Rinnenkarren. In: Ginés Á, Knez M, Slabe T, Dreybrodt W (eds) Karst rock features, karren sculpturing. Zalozba ZRC. Institut za raziskovanje krasa ZRC SAZU, Postojna-Ljubljana, Carsologica 9, pp 151–159

    Google Scholar 

  • Veress M (2009b) Investigation of covered karst form development using geophysical measurements. Z Geomorphol 53(4):469–486

    Article  Google Scholar 

  • Veress M (2010a) Karst environments. Karren formation in high mountains. Springer, Dordrecht, 230 p

    Book  Google Scholar 

  • Veress M (2010b) A magyarországi eltemetett és rejtett karsztos térszínek felszínfejlődése (Development of cryptokarstic and latent karstic surfaces in Hungary). Földrajzi Közlemények 134(4):373–391 (in Hungarian)

    Google Scholar 

  • Veress M (2012) Glacial erosion and karst evolution (Karren on the surfaces formed by glaciers). In: Veress B, Szigethy J (eds) Horizons in earth science research. Nova Science, New York, pp 1–94

    Google Scholar 

  • Veress M, Futó J (1987) Adatok a Hódos-éri Likas-kő morfogenetikájához (Contributions to the morphogenesis of the Likas-kő of the Hódos-ér). Karszt és Barlang I–II:9–16 (in Hungarian)

    Google Scholar 

  • Veress M, Péntek K (1996) Theoretical model of surface karstic processes. Z Geomorphol 40(4):461–476

    Google Scholar 

  • Veress M, Szabó L, Zentai Z (1998) Mésztartalomhoz köthető felszínfejlődés a Kőszegi-hegységben (Surface development based on calcareous content in the Kőszeg Mts). Földrajzi Értesítő 47(4):495–514 (in Hungarian)

    Google Scholar 

  • Veress M, Zentai Z, Kovács Gy (1999) Álkarros formák a Bosco Seccoi forrás (Asiagói-fennsík) környékén (Pseudokarren features near the Bosco Secco spring, Asiago plateau). Karsztfejlődés II:19–29 (in Hungarian)

    Google Scholar 

  • Veress M, Tóth G, Zentai Z, Schläffer R (2008a) Kürtőképződés egy madagaszkári sziklás parton (Chimney development on a rocky coast of Madagascar). Karsztfejlődés XIII:135–149 (in Hungarian)

    Google Scholar 

  • Veress M, Lóczy D, Zentai Z, Tóth G, Schläffer R (2008b) The origin of the Bemaraha tsingy (Madagascar). Int J Speleol 37(2):131–142

    Article  Google Scholar 

  • Veress M, Tóth G, Zentai Z, Schläffer R (2009) The Ankarana tsingy and its development. Carpathian J Earth and Environ Sci 4(1):95–108

    Google Scholar 

  • Veress M, Puskás J, Zentai Z, Zs B (2011) Development of karren formation on the Saltic Hill of Praid (Transylvanian Basin, Romania). Carpathian J Earth and Environ Sci 6(2):183–194

    Google Scholar 

  • Walters RF (1977) Land subsidence in central Kansas related to salt dissolution. Bull Kansas Geol Surv 214:82 p

    Google Scholar 

  • Waltham AC (1984) Some features of karst geomorphology in South China. Cave Sci 11:185–199

    Google Scholar 

  • Waltham AC, Fookes PG (2003) Engineering classification of karst ground conditions. Q J Eng Geol Hydrogeol 36:101–118

    Article  Google Scholar 

  • Waltham T, Bell F, Culshaw M (2005) Sinkholes and subsidence. Springer, Berlin, 382 p

    Google Scholar 

  • Warwick GT (1964) Dry valleys in the southern Pennines, England. Erdkunde 18:116–123

    Article  Google Scholar 

  • Wassmann TH (1979) Mining subsidence in the East Netherlands. In: Saxena SK (ed) Evaluation and prediction of subsidence. American Society Civil Engineers, New York, pp 283–302

    Google Scholar 

  • Webb JA, Grimes KG, Lewis ID (2010) Volcanogenic origin of cenotes near Mt. Gambier, southeastern Australia. Geomorphology 119(112):40–52

    Google Scholar 

  • Wenrich KJ, Sutphin HB (1994) Grand Canyon caves, breccia pipes and mineral deposits. Geol Today 10:97–104

    Article  Google Scholar 

  • White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, New York, 464 p

    Google Scholar 

  • White WB, Watson RA, Pohl ER, Brucker R (1970) The central Kentucky karst. Geogr Rev 60(1):88–115

    Article  Google Scholar 

  • Wilford GE, Wall JRD (1965) Karst topography in Sarawak. J Trop Geogr 21:44–70

    Google Scholar 

  • Williams PW (1970) Limestone morphology in Ireland. Irish Geographical Studies, Department of Geography, Queen’s University, Belfast, pp 105–124

    Google Scholar 

  • Williams PW (1983) The role of the subcutaneous zone in karst hydrology. J Hydrol 61:45–67

    Article  Google Scholar 

  • Williams PW (2004) Dolines. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 304–310

    Google Scholar 

  • Yu Y, Yang B (1997) Paleoenvironment during formation of Lunan Stone Forest. In: Song L, Waltham AC, Cao N, Wang F (eds) Stone forest: a treasure of natural heritage. Proceedings of the international symposium for Lunan Shilin to apply for World Natural Heritage Status, China Environmental, Science Press, Beijing, pp 63–67

    Google Scholar 

  • Zeeden C, Hark M, Hambach U, Markovič SB, Zöller L (2007) Depression on the Titel loess Plateau: form – pattern – genesis. Geogr Pannonica 11:4–8

    Google Scholar 

  • Zseni A (2004) Talaj alatti karrformák (Subsoil karren features). Karsztfejlődés IX:157–175 (in Hungarian)

    Google Scholar 

  • Zseni A (2009) Subsoil shaping. In: Knez M, Slabe T, Dreybrodt W (eds) Karst rock features. Karren sculpturing. Zalozba ZRC. Institut za raziskovanje krasa ZRC SAZU, Postojna-Ljubljana, Carsologica 9, pp 103–121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Veress, M. (2016). Covered Karst Landforms. In: Covered Karsts. Springer Geology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7518-2_5

Download citation

Publish with us

Policies and ethics