Skip to main content

Part of the book series: RILEM Bookseries ((RILEM,volume 12))

Abstract

Due to remarkable physical properties, especially surface chemistry and excellent biological properties, such as low toxicity, biocompatibility and biodegradability, nanocellulose has gained much attention for its use as biomedical material in the last years. This type of material is widely applied in medical implants, tissue engineering, drug delivery, wound-healing, cardiovascular applications, among others. This paper presents a brief review on the use of nanocellulose in biomedical area. Three different types of nanocellulose, namely cellulose nanocrystals (CNC), cellulose nanofibrils (CNF) and bacterial cellulose (BC) are discussed in terms of their production processes, properties and promising applications, based on the most recent published scientific works. In the same way, possible nanocellulose functional modifications, such as fluorescent modification, with the aim to improve specific properties and behavior are also discussed. Finally, an overview about the future of nanocellulose-based materials in the biomedical field is presented and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abitbol T, Palermo A, Moran-Mirabal JM, Cranston ED (2013) Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents. Biomacromolecules 14:3278–84. doi: 10.1021/bm400879x

    Google Scholar 

  • Aravamudhan A, Ramos DM, Nip J, et al (2013) Cellulose and collagen derived micro-nano structured scaffolds for bone tissue engineering. J Biomed Nanotechnol 9:719–31.

    Google Scholar 

  • Aulin C, Ahok S, Josefsson P, et al (2009) Nanoscale cellulose films with different crystallinities and mesostructures - Their surface properties and interaction with water. Langmuir 25:7675–7685. doi: 10.1021/la900323n

    Google Scholar 

  • Azevedo EP, Retarekar R, Raghavan ML, Kumar V (2013) Mechanical properties of cellulose: chitosan blends for potential use as a coronary artery bypass graft. J Biomater Sci Polym Ed 24:239–52. doi: 10.1080/09205063.2012.690273

    Google Scholar 

  • Borges AC, Eyholzer C, Duc F, et al (2011) Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus. Acta Biomater 7:3412–3421.

    Google Scholar 

  • Brown R, Czaja W, Jeschke M, Young DJ (2007) Multiribbon nanocellulose as a matrix for wound healing.

    Google Scholar 

  • Bufalino L (2014) Filmes de nanocelulose a partir de resíduos madeireiros da Amazônia. Universidade Federal de Lavras

    Google Scholar 

  • Cheung H, Ho M, Lau K, et al (2009) Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos Part B Eng 40:655–663. doi: 10.1016/j.compositesb.2009.04.014

    Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12. doi: 10.1021/bm060620d

    Google Scholar 

  • De Olyveira GM, Manzine Costa LM, Basmaji P, Xavier Filho L (2011) Bacterial Nanocellulose for Medicine Regenerative. J Nanotechnol Eng Med 2:034001. doi: 10.1115/1.4004181

    Google Scholar 

  • Desvaux M (2005) Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev 29:741–64. doi: 10.1016/j.femsre.2004.11.003

    Google Scholar 

  • Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–1. doi: 10.1021/ja076196l

    Google Scholar 

  • Dugan JM, Gough JE, Eichhorn SJ (2013) Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine (Lond) 8:287–98. doi: 10.2217/nnm.12.211

    Google Scholar 

  • Esa F, Tasirin SM, Rahman NA (2014) Overview of Bacterial Cellulose Production and Application. Agric Agric Sci Procedia 2:113–119. doi: 10.1016/j.aaspro.2014.11.017

    Google Scholar 

  • Eyholzer C, Borges De Couraça a., Duc F, et al (2011) Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacement of the nucleus pulposus. Biomacromolecules 12:1419–1427. doi: 10.1021/bm101131b

    Google Scholar 

  • Ivanova EP, Bazaka K, Crawford RJ (2014) New Functional Biomaterials for Medicine and Healthcare. New Functional Biomaterials for Medicine and Healthcare. Elsevier, pp 32–70

    Google Scholar 

  • Jebali A, Hekmatimoghaddam S, Behzadi A, et al (2013) Antimicrobial activity of nanocellulose conjugated with allicin and lysozyme. Cellulose 20:2897–2907. doi: 10.1007/s10570-013-0084-3

    Google Scholar 

  • Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 41719:1–19. doi: 10.1002/app.41719

    Google Scholar 

  • Klemm D, Kramer F, Moritz S, et al (2011) Nanocelluloses: A new family of nature-based materials. Angew Chemie - Int Ed 50:5438–5466. doi: 10.1002/anie.201001273

    Google Scholar 

  • Klemm D, Schmauder H-P, Heinze T (2002) Biopolymers, Polysaccharides II: Polysaccharides from Eukaryotes. In: Vandamme E, De Baets S, Steinbüchel A (eds)Wiley, p 644

    Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose - artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603.

    Google Scholar 

  • Kolakovic R, Peltonen L, Laukkanen A, et al (2013) Evaluation of drug interactions with nanofibrillar cellulose. Eur J Pharm Biopharm 85:1238–44. doi: 10.1016/j.ejpb.2013.05.015

    Google Scholar 

  • Lee KY, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: Biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32. doi: 10.1002/mabi.201300298

    Google Scholar 

  • Lin N, Dufresne A (2014) Nanocellulose in biomedicine: Current status and future prospect. Eur Polym J 59:302–325. doi: 10.1016/j.eurpolymj.2014.07.025

    Google Scholar 

  • Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274. doi: 10.1039/c2nr30260h

    Google Scholar 

  • Lin S-P, Calvar IL, Catchmark JM, et al (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219.

    Google Scholar 

  • Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. J Polym Sci Part B Polym Phys 52:791–806. doi: 10.1002/polb.23490

    Google Scholar 

  • Moon RJ, Martini A, Nairn J, et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994.

    Google Scholar 

  • Namvar et al (2014) Potential use of plants fibres and their composites for biomedical applications. Bioresources Peer-revie:19.

    Google Scholar 

  • Nimeskern L, Martínez Ávila H, Sundberg J, et al (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21. doi: 10.1016/j.jmbbm.2013.03.005

    Google Scholar 

  • Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286.

    Google Scholar 

  • Quiroz-Castañeda RE, Folch-Mallol J (2013) Hydrolysis of Biomass Mediated by Cellulases for the Production of Sugars. In: Chandel AK, Silva SS (eds) Sustainable Degradation of Lignocellulosic Biomass - Techniques, Applications and Commercialization. InTech,

    Google Scholar 

  • Rebouillat S, Pla F (2013) State of the Art Manufacturing and Engineering of Nanocellulose: A Review of Available Data and Industrial Applications. J Biomater Nanobiotechnol 04:165–188. doi: 10.4236/jbnb.2013.42022

    Google Scholar 

  • Salas C, Nypelö T, Rodriguez-Abreu C, et al (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19:383–396. doi: 10.1016/j.cocis.2014.10.003

    Google Scholar 

  • Sonia T, Sharma C (2011) Chitosan and Its Derivatives for Drug Delivery Perspective. Adv Polym Sci 243:23–54. doi: 10.1007/12

  • Thakur VK (2014) Nanocellulose Polymer Nanocomposites: Fundamentals and Applications. Wiley

    Google Scholar 

  • Ticoalu A, Aravinthan T, Cardona F (2010) A review of current development in natural fiber composites for structural and infrastructure applications. South. Reg. Eng. Conf. 1–5.

    Google Scholar 

  • Weng L, Rostamzadeh P, Nooryshokry N, et al (2013) In vitro and in vivo evaluation of biodegradable embolic microspheres with tunable anticancer drug release. Acta Biomater 9:6823–33. doi: 10.1016/j.actbio.2013.02.017

    Google Scholar 

  • Winter B (2006) Nano-cellulose in Regenerative Medicine. Conference on Nanotechnology, Atlanta, GA.

    Google Scholar 

  • Xiong R, Lu C, Zhang W, et al (2013) Facile synthesis of tunable silver nanostructures for antibacterial application using cellulose nanocrystals. Carbohydr Polym 95:214–9. doi: 10.1016/j.carbpol.2013.02.077

    Google Scholar 

  • Xu X, Liu F, Jiang L, et al (2013) Cellulose Nanocrystals vs. Cellulose Nano fi brils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents. ACS Appl Mater 5:2999–3009.

    Google Scholar 

  • Yin N, Santos TMA, Auer GK, et al (2014) Bacterial cellulose as a substrate for microbial cell culture. Appl Environ Microbiol 80:1926–32. doi: 10.1128/AEM.03452-13

    Google Scholar 

  • Zander NE, Dong H, Steele J, Grant JT (2014) Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates. ACS Appl Mater Interfaces 6:18502–10. doi: 10.1021/am506007z

    Google Scholar 

  • Zhang Y, Nypelö T, Salas C, et al (2013) Cellulose Nanofibrils: From Strong Materials to Bioactive Surfaces. J Renew Mater 1:195–211. doi: 10.7569/JRM.2013.634115

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding by Ministério da Ciência, Tecnologia e Ensino Superior, FCT, Portugal under grant SFRH/BD/90324/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catarina Guise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 RILEM

About this paper

Cite this paper

Guise, C., Fangueiro, R. (2016). Biomedical Applications of Nanocellulose. In: Fangueiro, R., Rana, S. (eds) Natural Fibres: Advances in Science and Technology Towards Industrial Applications. RILEM Bookseries, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7515-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7515-1_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7513-7

  • Online ISBN: 978-94-017-7515-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics