Skip to main content

Pathology and Pathophysiology of the Lower Urinary Tract

  • Chapter
  • First Online:
Neurourology
  • 1154 Accesses

Abstract

The knowledge on the ultrastructure of the lower urinary tract (LUT) has increased substantially during the last decades. This has resulted in the discovery of new structures and a detailed picture of tissue, nerves, receptors, transmitters acting to create sensation, motor relaxation, bladder wall elasticity and muscle contraction. It has led to stronger hypothesis on how bladder and urethra work in normal and in pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haferkamp A. Ultrastructure of neurogenic bladders. In: Corcos J, Ginsberg D, Karsenty G, editors. Textbook of the neurogenic bladder. 3rd ed. Boca Raton: CRC Press; 2016. p. 89–96.

    Google Scholar 

  2. Brading AF, McCloskey KD. Mechanisms of disease: specialized interstitial cells of the urinary tract—an assessment of current knowledge. Nat Clin Pract Urol. 2005;2:546–54.

    Article  Google Scholar 

  3. McCloskey KD. Interstitial cells of Cajal in the urinary tract. Handb Exp Pharmacol. 2011;202:233–54.

    Article  CAS  Google Scholar 

  4. Fry CH. Interstitial cells in the urinary tract, where are they and what do they do? BJU Int. 2014;114:434–5.

    PubMed  Google Scholar 

  5. Gevaert T, De Vos R, Everaerts W, et al. Characterization of upper lamina propria interstitial cells in bladders from patients with neurogenic detrusor overactivity and bladder pain syndrome. J Cell Mol Med. 2011;15:2586–93.

    Article  Google Scholar 

  6. Kanai A, Fry C, Hanna-Mitchell A, et al. Do we understand any more about bladder interstitial cells?-ICI-RS 2013. Neurourol Urodyn. 2014;33:573–6.

    Article  Google Scholar 

  7. De Groat WC, Yoshimura N. Changes in afferent activity after spinal cord injury. Neurourol Urodyn. 2010;29:63–76.

    Article  Google Scholar 

  8. Crowe R, Moss HE, Chapple CR, et al. Patients with lower motor spinal cord lesion: a decrease of vasoactive intestinal polypeptide, calcitonin gene-related peptide and substance P, but not neuropeptide Y and somatostatin-immunoreactive nerves in the detrusor muscle of the bladder. J Urol. 1991;145:600–4.

    Article  CAS  Google Scholar 

  9. Shapiro E, Becich MJ, Perlman E, et al. Bladder wall abnormalities in myelodysplastic bladders: a computer assisted morphometric analysis. J Urol. 1991;145:1024–9.

    Article  CAS  Google Scholar 

  10. Van Velzen D, Krishnan KR, Parsons KF, et al. Comparative pathology of dome and trigone of urinary bladder mucosa in paraplegics and tetraplegics. Paraplegia. 1995;33:565–72.

    PubMed  Google Scholar 

  11. van Velzen D, Krishnan KR, Parsons KF, et al. Epidermal growth factor receptor in the vesical urothelium of paraplegic and tetraplegic patients: an immunohistochemical study. Spinal Cord. 1996;34:578–86.

    Article  Google Scholar 

  12. Vaidyanathan S, van Velzen D, Krishnan KR, et al. Nerve fibres in urothelium and submucosa of neuropathic urinary bladder: an immunohistochemical study with S-100 and neurofilament. Paraplegia. 1996;34:137–51.

    CAS  PubMed  Google Scholar 

  13. Ballouhey Q, Panicker JN, Mazerolles C, et al. Sphingosine Kinase 1 urothelial expression is increased in patients with neurogenic detrusor overactivity. Int Braz J Urol. 2015;41:1141–7.

    Article  Google Scholar 

  14. Traini C, Del Popolo G, Lazzeri M, et al. γEpithelial Na(+) Channel (γENaC) and the Acid-Sensing Ion Channel 1 (ASIC1) expression in the urothelium of patients with neurogenic detrusor overactivity. BJU Int. 2015;116:797–804.

    Article  CAS  Google Scholar 

  15. Janzen J, Vuong PN, Bersch U, et al. Bladder tissue biopsies in spinal cord injured patients: histopathologic aspects of 61 cases. Neurourol Urodyn. 1998;17:525–30.

    Article  CAS  Google Scholar 

  16. Janzen J, Bersch U, Pietsch-Breitfeld B, et al. Urinary bladder biopsies in spinal cord injured patients. Spinal Cord. 2001;39:568–70.

    Article  CAS  Google Scholar 

  17. Schlager TA, Grady R, Mills SE, et al. Bladder epithelium is abnormal in patients with neurogenic bladder due to myelomeningocele. Spinal Cord. 2004;42:163–8.

    Article  CAS  Google Scholar 

  18. Elbadawi A, Resnick NM, Dörsam J, et al. Structural basis of neurogenic bladder dysfunction. I. Methods of prospective ultrastructural study and overview of the findings. J Urol. 2003;169:540–6.

    Article  Google Scholar 

  19. Haferkamp A, Dörsam J, Resnick NM, et al. Structural basis of neurogenic bladder dysfunction. II. Myogenic basis of detrusor hyperreflexia. J Urol. 2003;169:547–54.

    Article  Google Scholar 

  20. Haferkamp A, Dörsam J, Resnick NM, et al. Structural basis of neurogenic bladder dysfunction. III. Intrinsic detrusor innervation. J Urol. 2003;169:555–62.

    Article  Google Scholar 

  21. Wiseman OJ, Brady CM, Hussain IF, et al. The ultrastructure of bladder lamina propria nerves in healthy subjects and patients with detrusor hyperreflexia. J Urol. 2002;168:2040–5.

    Article  Google Scholar 

  22. Neal DE, Bogue PR, Williams RE. Histological appearances of the nerves of the bladder in patients with denervation of the bladder after excision of the rectum. Br J Urol. 1982;54:658–66.

    Article  CAS  Google Scholar 

  23. Burnstock G. Purinergic signalling in the urinary tract in health and disease. Purinergic Signal. 2014;10:103–55.

    Article  CAS  Google Scholar 

  24. Datta SN, Roosen A, Pullen A, et al. Immunohistochemical expression of muscarinic receptors in the urothelium and suburothelium of neurogenic and idiopathic overactive human bladders, and changes with botulinum neurotoxin administration. J Urol. 2010;184:2578–85.

    Article  CAS  Google Scholar 

  25. Apostolidis AN, Yiangou Y, Brady CM, et al. Endothelial nitric oxide synthase expression in neurogenic urinary bladders treated with intravesical resiniferatoxin. BJU Int. 2004;93:336–40.

    Article  CAS  Google Scholar 

  26. Altuntas CZ, Daneshgari F, Izgi K, et al. Connective tissue and its growth factor CTGF distinguish the morphometric and molecular remodeling of the bladder in a model of neurogenic bladder. Am J Physiol Renal Physiol. 2012;303:F1363–9.

    Article  CAS  Google Scholar 

  27. Landau EH, Jayanthi VR, Churchill BM, et al. Loss of elasticity in dysfunctional bladders: urodynamic and histochemical correlation. J Urol. 1994;152:702–5.

    Article  CAS  Google Scholar 

  28. Compérat E, Reitz A, Delcourt A, et al. Histologic features in the urinary bladder wall affected from neurogenic overactivity—a comparison of inflammation, oedema and fibrosis with and without injection of botulinum toxin type A. Eur Urol. 2006;50:1058–64.

    Article  Google Scholar 

  29. Howard PS, Renfrow D, Schechter NM, et al. Mast cell chymase is a possible mediator of neurogenic bladder fibrosis. Neurourol Urodyn. 2004;23:374–82.

    Article  CAS  Google Scholar 

  30. Deveaud CM, Macarak EJ, Kucich U, et al. Molecular analysis of collagens in bladder fibrosis. J Urol. 1998;160:1518–27.

    Article  CAS  Google Scholar 

  31. Lincoln J, Crowe R, Bokor J, et al. Adrenergic and cholinergic innervation of the smooth and striated muscle components of the urethra from patients with spinal cord injury. J Urol. 1986;135:402–8.

    Article  CAS  Google Scholar 

  32. Crowe R, Burnstock G, Light JK. Adrenergic innervation of the striated muscle of the intrinsic external urethral sphincter from patients with lower motor spinal cord lesion. J Urol. 1989;141:47–9.

    Article  CAS  Google Scholar 

  33. Crowe R, Burnstock G, Light JK. Spinal cord lesions at different levels affect either the adrenergic or vasoactive intestinal polypeptide-immunoreactive nerves in the human urethra. J Urol. 1988;140:1412–4.

    Article  CAS  Google Scholar 

  34. Milner P, Crowe R, Burnstock G, et al. Neuropeptide Y- and vasoactive intestinal polypeptide-containing nerves in the intrinsic external urethral sphincter in the areflexic bladder compared to detrusor-sphincter dyssynergia in patients with spinal cord injury. J Urol. 1987;138:888–92.

    Article  CAS  Google Scholar 

  35. Delnay KM, Stonehill WH, Goldman H, et al. Bladder histological changes associated with chronic indwelling urinary catheter. J Urol. 1999;161:1106–8.

    Article  CAS  Google Scholar 

  36. Vaidyanathan S, Mansour P, Soni BM, et al. The method of bladder drainage in spinal cord injury patients may influence the histological changes in the mucosa of neuropathic bladder—a hypothesis. BMC Urol. 2002;30:2–5.

    Google Scholar 

  37. Wall BM, Dmochowski RR, Malecha M, et al. Inducible nitric oxide synthase in the bladder of spinal cord injured patients with a chronic indwelling urinary catheter. J Urol. 2001;165:1457–61.

    Article  CAS  Google Scholar 

  38. Vaidyanathan S, McDicken IW, Ikin AJ, et al. A study of cytokeratin 20 immunostaining in the urothelium of neuropathic bladder of patients with spinal cord injury. BMC Urol. 2002;2:7.

    Article  Google Scholar 

  39. Vaidyanathan S, McDicken IW, Mansour P, et al. Detection of early squamous metaplasia in bladder biopsies of spinal cord injury patients by immunostaining for cytokeratin 14. Spinal Cord. 2003;41:432–4.

    Article  CAS  Google Scholar 

  40. Ozkan B, Demirkesen O, Durak H, et al. Which factors predict upper urinary tract deterioration in overactive neurogenic bladder dysfunction? Urology. 2005;66:99–104.

    Article  Google Scholar 

  41. Di Tonno F, Siracusano S, Ciciliato S, et al. Morphological changes on the intestinal mucosa in orthotopic neobladder. Urol Int. 2012;89:67–70.

    Article  Google Scholar 

  42. Cetinel S, San T, Cetinel B, et al. Early histological changes of ileal mucosa after augmentation cystoplasty. Acta Histochem. 2001;103:335–46.

    Article  CAS  Google Scholar 

  43. Carlén B, Willén R, Månsson W. Mucosal ultrastructure of continent cecal reservoir for urine and its ileal nipple valve 2-9 years after construction. J Urol. 1990;143:372–6.

    Article  Google Scholar 

  44. Wyndaele JJ, Maderbacher H, Castro D, et al. Chapter 17: Neurologic urinary and fecal incontinence. In: Abrams P, Cardozo L, Khoury S, Wein A, editors. Incontinence, vol. 2. Plymouth: Health Publications; 2004. p. 1059–162.

    Google Scholar 

  45. Powell CR. Not all neurogenic bladders are the same: a proposal for a new neurogenic bladder classification system. Transl Androl Urol. 2016;5:12–21.

    PubMed  PubMed Central  Google Scholar 

  46. Pavlakis AJ, Siroky MB, Wheeler JS Jr, et al. Supplementation of cystometrography with simultaneous perineal floor and rectus abdominis electromyography. J Urol. 1983;129:1179–81.

    Article  CAS  Google Scholar 

  47. Brocklehurst JC, Andrews K, Richards B, et al. Incidence and correlates of incontinence in stroke patients. J Am Geriatr Soc. 1985;33:540–2.

    Article  CAS  Google Scholar 

  48. Griffiths D. Functional imaging of structures involved in neural control of the LUT. In: Vodušek DB, Boller F, editors. Neurology of sexual and bladder disorders, Handbook of clinical neurology, vol. 130. Amsterdam: Elsevier; 2015. p. 121–33.

    Chapter  Google Scholar 

  49. de Groat WC, Griffiths D, Yoshimura N. Neural control of the lower urinary tract. Compr Physiol. 2015;5:327–96.

    PubMed  PubMed Central  Google Scholar 

  50. Sakakibara R. Lower urinary tract dysfunction in patients with brain lesions. In: Vodušek DB, Boller F, editors. Neurology of sexual and bladder disorders, Handbook of clinical neurology, vol. 130. Amsterdam: Elsevier; 2015. p. 269–87.

    Chapter  Google Scholar 

  51. Mehnert U, Nehiba M. Neuro-urological dysfunction of the lower urinary tract in CNS diseases: pathophysiology, epidemiology, and treatment options. Urologe A. 2012;51:189–97.

    Article  CAS  Google Scholar 

  52. Shrestha R, Millington O, Brewer J, et al. Is central nervous system an immune-privileged site? Kathmandu Univ Med J (KUMJ). 2013;11:102–7.

    Article  CAS  Google Scholar 

  53. Weld KJ, Dmochowski RR. Association of level of injury and bladder behavior in patients with post-traumatic spinal cord injury. Urology. 2000;55:490–4.

    Article  CAS  Google Scholar 

  54. Wyndaele JJ. Investigation of the afferent nerves of the lower urinary tract in patients with ‘complete’ and ‘incomplete’ spinal cord injury. Paraplegia. 1991;29:490–4.

    CAS  PubMed  Google Scholar 

  55. Wyndaele JJ. Correlation between clinical neurological data and urodynamic function in spinal cord injured patients. Spinal Cord. 1997;35:213–6.

    Article  CAS  Google Scholar 

  56. Shinno Y. An electromyographic study of detrusor sphincter dyssynergia in the neurogenic vesical dysfunction. Part 1. Its type and further sub-typing based on the analysis of motor unit. Nihon Hinyokika Gakkai Zasshi. 1989;80:1436–42.

    CAS  PubMed  Google Scholar 

  57. Liu N, Zhou M, Biering-Sørensen F, et al. Iatrogenic urological triggers of autonomic dysreflexia: a systematic review. Spinal Cord. 2015;53:500–9.

    Article  CAS  Google Scholar 

  58. Molliqaj G, Payer M, Schaller K, et al. Acute traumatic central cord syndrome: a comprehensive review. Neurochirurgie. 2014;60:5–11.

    Article  CAS  Google Scholar 

  59. Sakakibara R, Hattori T, Tojo M, et al. The location of the paths subserving micturition: studies in patients with cervical myelopathy. J Auton Nerv Syst. 1995;55:165–8.

    Article  CAS  Google Scholar 

  60. Yasuda K, Yamanishi T, Hattori T, et al. Lower urinary tract dysfunction in the anterior spinal artery syndrome. J Urol. 1993;150:1182–4.

    Article  CAS  Google Scholar 

  61. Sakakibara R, Hattori T, Uchiyama T, et al. Urinary dysfunction in Brown-Sequard syndrome. Neurourol Urodyn. 2001;20:661–7.

    Article  CAS  Google Scholar 

  62. Smith CP, Kraus SR, Nickell KG, et al. Video urodynamic findings in men with the central cord syndrome. J Urol. 2000;164:2014–7.

    Article  CAS  Google Scholar 

  63. Nath M, Wheeler JS Jr, Walter JS. Urologic aspects of traumatic central cord syndrome. J Am Paraplegia Soc. 1993;16:160–4.

    Article  CAS  Google Scholar 

  64. Scivoletto G, Cosentino E, Morganti B, et al. Clinical prognostic factors for bladder function recovery of patients with spinal cord and cauda equina lesions. Disabil Rehabil. 2008;30:330–7.

    Article  CAS  Google Scholar 

  65. Gitelman A, Hishmeh S, Morelli BN, et al. Cauda equina syndrome: a comprehensive review. Am J Orthop (Belle Mead NJ). 2008;37:556–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Jacques Wyndaele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wyndaele, J.J. (2019). Pathology and Pathophysiology of the Lower Urinary Tract. In: Liao, L., Madersbacher, H. (eds) Neurourology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7509-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7509-0_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7507-6

  • Online ISBN: 978-94-017-7509-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics