Skip to main content

Imaging Techniques in the Evaluation of the Neurogenic Lower Urinary Tract Dysfunction (NLUTD)

  • Chapter
  • First Online:
Neurourology

Abstract

According to ICI 2017 imaging of the upper urinary tract upper urinary tract (UUT) is indicated in cases of NLUTD and urinary incontinence with high risk of renal damage (due to high storage and/or voiding detrusor pressure, e.g., myelodysplasia, spinal cord injury) [1]. There is however no general consensus how frequently this evaluation has been indicated and what test included. European Association of Urology guidelines (EAU) [2] and National Institute for Health and Care Excellence (NICE) guidelines [3] has similar although slightly different recommendations. Currently, the Canadian Urological Association (CUA) and the American Urological Association (AUA) lack guidelines for management of neurogenic bladder. This chapter describes imaging techniques in the evaluation of the patients with NLUTD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrams P, Cardozo L, Wagg A, Wein A. 6th International Consultation on Incontinence (2017) Tokyo, September 2016, incontinence, 6th Edition.

    Google Scholar 

  2. Pannek J, Blok B, Castro-Diaz D, Del Popolo G, Kramer G, Radziszewski P, Reitz A, Stöhrer M, Wyndaele JJ. Guidelines on neurogenic lower urinary tract dysfunction. European Association of Urology; 2013.

    Google Scholar 

  3. Urinary incontinence in neurological disease: management of lower urinary tract dysfunction in neurological disease. 2012. NICE. https://www.nice.org.uk/guidance/cg148/chapter/1-guidance. Accessed 3 Aug 2017.

  4. Wein AJ, Kavoussi LR, Novick AC, Partin AW, Peters CA. Campbell-Walsh urology. 10th ed. Philadelphia: Saunders; 2011.

    Google Scholar 

  5. Calenoff L, Neiman HL, Kaplan PE, Nannninga JB, Brandt TD, Hamilton BB. Urosonography in spinal cord injury patients. J Urol. 1982;128:1234–7.

    Article  CAS  Google Scholar 

  6. Abrams P, Agarwal M, Drake M. A proposed guideline for the urological management of patients with spinal cord injury. BJU Int. 2008;101:989–94.

    Article  Google Scholar 

  7. Cameron AP, Rodriguez GM, Schomer KG. Systematic review of urological follow-up after spinal cord injury. J Urol. 2012;187:391–7.

    Article  Google Scholar 

  8. Razden S, Leboeuf L, Meinback DS. Current practice patterns in the urologic surveillance and management of patients with spinal cord injury. Urol. 2003;61:893–6.

    Article  Google Scholar 

  9. Averbeck MA, Madersbacher H. Follow-up of the neuro-urological patient: a systematic review. BJU Int. 2015;115:39–46.

    Article  Google Scholar 

  10. Guzelkucuk U, Demir Y, Kesikburun S. Ultrasound findings of the urinary tract in patients with spinal cord injury: a study of 1005 cases. Spinal Cord. 2015;53:139–44.

    Article  CAS  Google Scholar 

  11. Akkoc Y, Cinar Y, Kismali R. Should complete and incomplete spinal cord injury patients receive the same attention in urodynamic evaluations and ultrasonography examinations of the upper urinary tract? Int J Rehabil Res. 2012;35:178–80.

    Article  Google Scholar 

  12. Elmelund M, Oturai PS, Toso B. Forty-five year follow-up on the renal function after spinal cord injury. Spinal Cord. 2016;54:445–51.

    Article  CAS  Google Scholar 

  13. Zhang Z, Liao L. Risk factors predicting upper urinary tract deterioration in patients with spinal cord injury: a prospective study. Spinal Cord. 2014;52:468–71.

    Article  CAS  Google Scholar 

  14. Tsai S, Ting H, Ho C. Use of sonography and radioisotope renography to diagnose hydronephrosis in patients with spinal cord injury. Arch Phys Med Rehabil. 2001;82:103–6.

    Article  CAS  Google Scholar 

  15. Bih L, Tsai S, Tung L. Sonographic diagnosis of hydronephrosis in patients with spinal cord injury: influence of bladder fullness. Arch Phys Med Rehabil. 1998;79:1537–9.

    Google Scholar 

  16. Vaidyanathan S, Hughes PS, Soni BM. A comparative stud of ultrasound examination of urinary tract performed on spinal cord injury patients with no urinary symptoms and spinal cord injury patients with symptoms related to urinary tract: do findings of ultrasound examination lead to changes in clinical management? Sci World J. 2006;30:2450–9.

    Article  Google Scholar 

  17. Tseng F, Bih R, Tsai S. Application of renal Doppler sonography in the diagnosis of obstructive uropathy in patients with spinal cord injury. Arch Phys Med Rehabil. 2004;85:1509–12.

    Article  Google Scholar 

  18. Alpajaro SIR, Bolong DT. The incidence and implications of hydronephrosis at initial presentation of patients with neurogenic bladder. Eur Urol Suppl. 2015;14:e498. (abstract)

    Article  Google Scholar 

  19. Capitanucci ML, Iacobelli BD, Siveri M. Long-term urological follow-up of occult spinal dysraphism in children. Eur J Pediatr Surg. 1996;6:25–6.

    Article  Google Scholar 

  20. Ma Y, Li B, Wang L. The predictive factors of hydronephrosis in patients with spina bifida: reports from China. In Urol Nephrol. 2013;45:687–93.

    Article  Google Scholar 

  21. Veenboer PW, Hobbelink MGG, Ruud Bosch JLH. Diagnostic accuracy of Tc-99m DMSA scintigraphy and renal ultrasonography for detecting renal scarring and relative function in patients with spinal dysraphism. Neurourol Urodyn. 2015;34:513–8.

    Article  CAS  Google Scholar 

  22. Lemack GE, Hawker K, Frohman E. Incidence of upper tract abnormalities in patients with neurovesical dysfunction secondary to multiple sclerosis: analysis of risk factors at initial urologic evaluation. Urology. 2005;65:854–7.

    Article  Google Scholar 

  23. Christman MS, Kalmus A, Casale P. Morbidity and efficacy of ureteroscopic stone treatment in patients with neurogenic bladder. J Urol. 2013;190:1479–83.

    Article  Google Scholar 

  24. Ganesan V, Chen WM, Jain R. Multiple sclerosis and nephrolithiasis: a matched-case comparative study. BJU Int. 2017;119:919–25.

    Article  CAS  Google Scholar 

  25. Kanno T, Kubota M, Funada S. The utility of the kidney-ureters-bladder radiograph as the sole imaging modality and its combination with ultrasonography for the detection of renal stones. Urology. 2017;104:40–4.

    Article  Google Scholar 

  26. Tins B, Teo HG, Popuri R. Follow-up imaging of the urinary tract in spinal injury patients: is a KUB necessary with every ultrasound? Spinal Cord. 2005;43:219–22.

    Article  CAS  Google Scholar 

  27. Bih L, Ho C, Tsai S. Bladder shape impact on the accuracy of ultrasonic estimation of bladder volume. Arch Phys Med Rehabil. 1998;79:1553–6.

    Article  CAS  Google Scholar 

  28. Patel U. Imaging modalities used for assessment of the bladder. In: Patel U, editor. Imaging and urodynamics of the lower urinary tract. London: Springer; 2010. p. 12. https://doi.org/10.1007/978-1-84882-836-0_2.

    Chapter  Google Scholar 

  29. Choe JH, Lee JY, Lee K. Accuracy and precision of a new portable ultrasound scanner, the BME-150A, in residual urine volume measurement: a comparison with the BladderScan BVI 3000. Int Urogynecol J Pelvic Floor Dysfunct. 2007;18(6):641–4.

    Article  Google Scholar 

  30. Park YH, Ku JH, Oh S. Accuracy of post-void residual urine volume measurement using a portable ultrasound bladder scanner with real-time pre-scan imaging. Neurourol Urodyn. 2011;30:335–8.

    Article  Google Scholar 

  31. Housami F, Drake M, Abrams P. The use of ultrasound-estimated bladder weight in diagnosing bladder outlet obstruction and detrusor overactivity in men with lower urinary tract symptoms. Indian J Urol. 2009;25(1):105–9.

    Article  Google Scholar 

  32. Oelke M. International consultation on incontinence-research society (ICI-RS) report on non-invasive urodynamics: the need of standardization of ultrasound bladder and detrusor wall thickness measurements to quantify bladder wall hypertrophy. Neurourol Urodyn. 2010;29:634–9.

    Article  Google Scholar 

  33. Panicker JN, Fowler CJ, Kessler TM. Lower urinary tract dysfunction in the neurological patient: clinical assessment and management. Lancet Neurol. 2015;14:720–32.

    Article  Google Scholar 

  34. Sturm RM, Cheng EY. Bladder wall thickness in the assessment of neurogenic bladder: a translational discussion of current clinical applications. Ann Transl Med. 2016;4:32.

    Article  Google Scholar 

  35. Silva JAF, de Castro Diniz Gonsalves M, de Melo RT. Association between the bladder wall thickness and urodynamic findings in patients with spinal cord injury. World J Urol. 2015;33:131–5.

    Article  Google Scholar 

  36. Tanaka H, Matsuka M, Moriya K. Ultrasonographic measurement of bladder wall thickness as a risk factor for upper urinary tract deterioration in children with myelodysplasia. J Urol. 2008;180:312–6.

    Article  Google Scholar 

  37. Kojima M, Inui E, Ochiai A. Possible use of ultrasonically-estimated bladder weight in patients with neurogenic bladder dysfunction. Neurourol Urodyn. 1996;15:641–9.

    Article  CAS  Google Scholar 

  38. Bayat M, Kumar V, Denis M. Correlation of ultrasound bladder vibrometry assessment of bladder compliance with urodynamic study results. PLoS One. 2017;12(6):e0179598.

    Article  Google Scholar 

  39. Sturm RM, Yerkes EB, Nicholas JL. Ultrasound shear wave elastography: a novel method to evaluate bladder pressure. J Urol. 2017;198:422–9.

    Article  Google Scholar 

  40. Bright E, Oelke M, Tubaro A, Abrams P. Ultrasound estimated bladder weight and measurement of bladder wall thickness—useful noninvasive methods for assessing the lower urinary tract? J Urol. 2010;184(5):1847–54.

    Article  Google Scholar 

  41. Wiseman OJ, Swinn MJ, Brady CM, Fowler CJ. Maximum urethral closure pressure and sphincter volume in women in retention. J Urol. 2002;167:367–71.

    Google Scholar 

  42. Flohr TG, Schaller S, Stierstorfer K, Bruder H, Ohnesorge BM, Schoepf UJ. Multi-detector row CT systems and image-reconstruction techniques. Radiology. 2005;235(3):756–73.

    Article  Google Scholar 

  43. Smith-Bindman R, Lipson J, Marcus R, Kim K-P, Mahesh M, Gould R, Berrington de Gonzalez A, Miglioretti DL. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169(22):2078–86.

    Article  Google Scholar 

  44. https://www.fda.gov/radiation-emittingproducts/radiationemittingproductsandprocedures/medicalimaging/medicalx-rays/ucm115317.htm. http://www.fda.gov/cdrh/CT/risks.html. Accessed July 2017.

  45. Amis ES Jr, Butler PF, Applegate KE, et al. American College of Radiology. American College of Radiology white paper on radiation dose in medicine. J Am Coll Radiol. 2007;4(5):272–84.

    Article  Google Scholar 

  46. Berrington de González A, et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med. 2009;169(22):2071–7.

    Article  Google Scholar 

  47. Demb J, Chu P, Nelson T, Hall D, Seibert A, Lamba R, Boone J, Krishnam M, Cagnon C, Bostani M, Gould R, Miglioretti D, Smith-Bindman R. Optimizing radiation doses for computed tomography across institutions dose auditing and best practices. JAMA Intern Med. 2017;177(6):810–7.

    Article  Google Scholar 

  48. Stenzl A, Kolle D, Eder R, Stoger A, Frank R, Bartsch G. Virtual reality of the lower urinary tract in women. Int Urogynecol J. 1999;10:248–53.

    Article  CAS  Google Scholar 

  49. Stenzl A, Frank R, Eder R, et al. 3-Dimentional computerized tomography and virtual reality endoscopy of the reconstructed lower urinary tract. J Urol. 1998;159(3):741–6.

    Article  CAS  Google Scholar 

  50. Crivellaro S, Mami E, Wald C, et al. Correlation between urodynamic function and 3D cat scan anatomy in neobladders: does it exist? Neurourol Urodyn. 2009;28(3):236–40.

    Article  CAS  Google Scholar 

  51. Arslan H, Ceylan K, Harman M, Yilmaz Y, Temizoz O, Can S. Virtual computed tomography cystoscopy in bladder pathologies. Int Braz J Urol. 2006;32(2):147–54.

    Article  Google Scholar 

  52. Perazella MA. Gadolinium-contrast toxicity in patients with kidney disease: nephrotoxicity and nephrogenic systemic fibrosis. Curr Drug Saf. 2008;3(1):67–75.

    Article  CAS  Google Scholar 

  53. Khawaja AZ, Cassidy DB, Al Shakarchi J, McGrogan DG, Inston NG, Jones RG. Revisiting the risks of MRI with gadolinium based contrast agents-review of literature and guidelines. Insights Imaging. 2015;6(5):553–8.

    Article  Google Scholar 

  54. Margulies RU, Hsu Y, Kearney R, Stein T, Umek WH, DeLancey JO. Appearance of the levator ani muscle subdivisions in magnetic resonance images. Obstet Gynecol. 2006;107(5):1064–9.

    Article  Google Scholar 

  55. Shipstone DP, Thomas DG, Darwent G, Morcos SK. Magnetic resonance urography in patients with neurogenic bladder dysfunction and spinal dysraphism. BJU Int. 2002;89:658–64.

    Article  CAS  Google Scholar 

  56. Roy C, Saussine C, Guth S, et al. MR urography in the evaluation of urinary tract obstruction. Abdom Imaging. 1998;23:27–34.

    Article  CAS  Google Scholar 

  57. Battal B, Kocaoglu M, Akgun V, Aydur E, Dayanc M, Ilica T. Feasibility of MR urography in patients with urinary diversion. J Med Imaging Radiat Oncol. 2011;55:542–50.

    Article  Google Scholar 

  58. Gousse AE, Barbaric ZL, Safir MH, Madjar S, Marumoto AK, Raz S. Dynamic half Fourier acquisition, single shot turbo spin-echo magnetic resonance imaging for evaluating the female pelvis. J Urol. 2000;164:1606.

    Article  CAS  Google Scholar 

  59. Comiter CV, Vasavada SP, Barbaric ZL, Gousse AE, Raz S. Grading pelvic prolapse and pelvic floor relaxation using dynamic magnetic resonance imaging. Urology. 1999;54:454.

    Article  CAS  Google Scholar 

  60. Hocaoglu Y, Roosen A, Herrmann K, Tritschler S, Stief C, Bauer RM. Real-time magnetic resonance imaging (MRI): anatomical changes during physiological voiding in men. BJU Int. 2011;109:234–9.

    Article  Google Scholar 

  61. Borghesi G, Simonetti R, Goldman SM, et al. Magnetic resonance imaging urodynamics. Technique development and preliminary results. Int Braz Urol. 2006;32:336–41.

    Article  Google Scholar 

  62. Shy M, Fung S, Boone TB, Karmonik C, Fletcher SG, Khavar R. Functional magnetic resonance imaging during urodynamic testing identifies brain structures initiating micturition. J Urol. 2014;192:1149–54.

    Article  Google Scholar 

  63. Khavari R, Karmonik C, Shy M, Fletcher S, Boone T. Functional magnetic resonance imaging with concurrent urodynamic testing identifies brain structures involved in micturition cycle in patients with multiple sclerosis. J Urol. 2017;197:438–44.

    Article  Google Scholar 

  64. Zempleni M-Z, Michels L, Mehnert U, Schurch B, Kollias S. Cortical substrate of bladder control in SCI and the effect of peripheral pudendal stimulation. NeuroImage. 2010;49:2983–94.

    Article  Google Scholar 

  65. Sakakibara R, Uchida Y, Ishii K, Kazui H, Hashimoto M, Ishikawa M, Yuasa T, Kishi M, Ogawa E, Tateno F, Uchiyama T, Yamamoto T, Yamanishi T, Terada H, the members of SINPHONI (Study of Idiopathic Normal Pressure Hydrocephalus On Neurological Improvement). Correlation of right frontal hypoperfusion and urinary dysfunction in iNPH: a SPECT study. Neurourol Urodyn. 2012;31:50–5.

    Article  Google Scholar 

  66. Kavia RB, DasGupta R, Critchley HD, et al. An fMRI study of the effect of sacral neuromodulation on brain responses in women with Fowler’s syndrome. BJU Int. 2010;105:366–72.

    Article  Google Scholar 

  67. DasGupta R, Critchley HD, Dolan RJ, et al. Changes in brain activity following sacral neuromodulation for urinary retention. J Urol. 2015;174:2268–72.

    Article  Google Scholar 

  68. Griffiths D, Fowler CJ. Brain imaging in Fowler’s syndrome. Curr Bladder Dysfunct Rep. 2010;5:114–8.

    Article  Google Scholar 

  69. Kitta T, Kakizaki H, Furuno T, Moriya K, Tanaka H, Shiga T, Tamaki N, Yabe I, Sasaki H, Nonomura K. Brain activation during detrusor overactivity in patients with Parkinson’s disease: a positron emission tomography study. J Urol. 2006;175:994–8.

    Article  Google Scholar 

  70. Herzog J, Weiss PH, Assmus A, Wefer B, Seif C, Braun PM, Pinsker MO, Herzog H, Volkmann J, Deuschl G, Fink GR. Improved sensory gating of urinary bladder afferents in Parkinson’s disease following subthalamic stimulation. Brain. 2008;131:132–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy B. Gajewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gajewski, J.B., Cox, A.R. (2019). Imaging Techniques in the Evaluation of the Neurogenic Lower Urinary Tract Dysfunction (NLUTD). In: Liao, L., Madersbacher, H. (eds) Neurourology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7509-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7509-0_20

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7507-6

  • Online ISBN: 978-94-017-7509-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics