El Niño and Southern Oscillation (ENSO): A Review

  • Chunzai WangEmail author
  • Clara Deser
  • Jin-Yi Yu
  • Pedro DiNezio
  • Amy Clement
Part of the Coral Reefs of the World book series (CORW, volume 8)


The ENSO observing system in the tropical Pacific plays an important role in monitoring ENSO and helping improve the understanding and prediction of ENSO. Occurrence of ENSO has been explained as either a self-sustained and naturally oscillatory mode of the coupled ocean-atmosphere system or a stable mode triggered by stochastic forcing. In either case, ENSO involves the positive ocean-atmosphere feedback hypothesized by Bjerknes. After an El Niño reaches its mature phase, negative feedbacks are required to terminate growth of the mature El Niño anomalies in the central and eastern Pacific. Four negative feedbacks have been proposed: reflected Kelvin waves at the ocean western boundary, a discharge process due to Sverdrup transport, western Pacific wind-forced Kelvin waves, and anomalous zonal advections. These negative feedbacks may work together for terminating El Niño, with their relative importance varying with time. Because of different locations of maximum SST anomalies and associated atmospheric heating, El Niño events are classified as eastern and central Pacific warming events. The identification of two distinct types of El Niño offers a new way to examine global impacts of El Niño and to consider how El Niño may respond and feedback to a changing climate. In addition to interannual variations associated with ENSO, the tropical Pacific SSTs also fluctuate on longer timescales. The patterns of Pacific Decadal Variability (PDV) are very similar to those of ENSO. When SST anomalies are positive in the tropical eastern Pacific, they are negative to the west and over the central North and South Pacific, and positive over the tropical Indian Ocean and northeastern portions of the high-latitude Pacific Ocean. Many mechanisms have been proposed for explaining PDV. Changes in ENSO under global warming are uncertain. Increasing greenhouse gases change the mean states in the tropical Pacific, which in turn induce ENSO changes. Due to the fact that the change in mean tropical condition under global warming is quite uncertain, even during the past few decades, it is difficult to say whether ENSO will intensify or weaken, but it is very likely that ENSO will not disappear in the future.


Ocean-atmospheric interaction Climate variability Pacific decadal oscillation Climate impacts 



CW thanks Ms. L. Zhang for plotting Fig. 4.1 and helping modify Fig. 4.2 provided by Dr. M. McPhaden. CD would like to thank Dr. Toby Ault for useful discussions and Mr. Adam Phillips for technical assistance with the figures. We thank Dr. Paul Fiedler and an anonymous reviewer for their comments and suggestions. CW is supported by grants from NOAA’s Climate Program Office, and the base funding of NOAA AOML. NCAR is sponsored by the National Science Foundation (NSF). JYY acknowledges the support from NSF Grant ATM-0925396 and NOAA-MAPP Grant NA11OAR4310102. The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the funding agencies.


  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P-P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167Google Scholar
  2. Alexander MA (2010) Extratropical air-sea interaction, sea surface temperature variability, and the Pacific Decadal Oscillation. (PDO). In: Sun D, Bryan F (eds) Climate dynamics: why does climate vary, AGU Monogr 189, Washington D.C., pp 123–148Google Scholar
  3. Alexander MA, Bladé I, Newman M, Lanzante JR, Lau N-C, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Climate 15:2205–2231Google Scholar
  4. An S-I (2008) Interannual variations of the tropical ocean instability wave and ENSO. J Climate 21:3680–3686Google Scholar
  5. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:  10.1029/2006JC003798
  6. Barlow M, Nigam S, Berbery EH (2001) ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought, and stream flow. J Climate 14:2105–2128Google Scholar
  7. Barsugli JJ, Sardeshmukh PD (2002) Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J Climate 15:3427–3442Google Scholar
  8. Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere-ocean model: influence of the basic state, ocean geometry and nonlinearity. J Atmos Sci 45:1687–1712Google Scholar
  9. Biondi F, Gershunov A, Cayan DR (2001) North Pacific decadal climate variability since AD 1661. J Climate 14:5–10Google Scholar
  10. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172CrossRefGoogle Scholar
  11. Bunge L, Clarke AJ (2009) A verified estimation of the El Niño index NINO-3.4 since 1877. J Climate 22(14):3979–3992Google Scholar
  12. Chen G (2011) How does shifting Pacific Ocean warming modulate on tropical cyclone frequency over the South China Sea? J Climate 24:4695–4700Google Scholar
  13. Clarke AJ (2010) Analytical theory for the quasi-steady and low-frequency equatorial ocean response to wind forcing: the “tilt” and “warm water volume” modes. J Phys Oceanogr 40(1):121–137Google Scholar
  14. Clement AC, Seager R, Cane MA, Zebiak SE (1996) An ocean dynamical thermostat. J Climate 9:2190–2196Google Scholar
  15. Clement AC, Baker AC, Leloup J (2010) Climate change: patterns of tropical warming. Nature Geosci 3:8–9. doi: 10.1038/ngeo728
  16. Clement A, DiNezio P, Deser C (2011) Rethinking the ocean’s role in the Southern Oscillation. J Climate 24:4056–4072Google Scholar
  17. Collins M CMIP Modelling group (BMRC Australia, CCC Canada, CCSR/NIES Japan), and 12 others (2005) El Niño-or La Ñina-like climate change? Climate Dynam 24:89–104Google Scholar
  18. Collins M, An S-I, Cai W, Ganachaud A, Guilyardi E, Jin F-F, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geosci 3:391–397Google Scholar
  19. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose R, Rutledge G, Bessemoulin P (2011) The twentieth century reanalysis project. Q J Roy Meteor Soc 137:1–28Google Scholar
  20. D’Arrigo R, Wilson R, Deser C, Wiles G, Cook E, Villalba R, Tudhope A, Cole J, Linsley B (2005) Tropical North Pacific climate linkages over the past four centuries. J Climate 18:5253–5265Google Scholar
  21. Deser C, Blackmon ML (1995) On the relationship between tropical and North Pacific sea surface temperature variations. J Climate 8:1677–1680Google Scholar
  22. Deser C, Blackmon ML (1993) Surface climate variations over the North Atlantic Ocean during winter: 1900-1989. J Climate 6:1743–1753Google Scholar
  23. Deser C, Wallace JM (1990) Large-scale atmospheric circulation features of warm and cold episodes in the tropical Pacific. J Climate 3:1254–1281Google Scholar
  24. Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during boreal winter since 1900. J Climate 17:3109–3124Google Scholar
  25. Deser C, Phillips AS, Alexander MA (2010) Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett 37:L10701. doi: 10.1029/2010GL043321
  26. Deser C, Phillips AS, Tomas RA, Okumura YM, Alexander MA, Capotondi A, Scott JD, Kwon Y-O, Ohba M (2012) ENSO and Pacific decadal variability in the Community Climate System Model version 4. J Climate 25:2622–2651Google Scholar
  27. DeWeaver E, Nigam S (2004) On the forcing of ENSO teleconnections by anomalous heating and cooling. J Climate 17:3225–3235Google Scholar
  28. Di Lorenzo E, Schneider N, Cobb K, Franks P, Chhak K, Miller A, McWilliams J, Bograd S, Arango H, Curchitser E (2008) North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys Res Lett 35:L08607. doi:  10.1029/2007GL032838
  29. DiNezio PN, Clement AC, Vecchi G, Soden B, Kirtman B, Lee S-K (2009) Climate response of the equatorial Pacific to global warming. J Climate 22:4873–4892Google Scholar
  30. DiNezio PN, Clement AC, Vecchi GA (2010) Reconciling differing views of tropical Pacific climate change. Eos Trans AGU 91(16):141–142Google Scholar
  31. Dommenget D, Latif M (2008) Generation of hyper climate modes. Geophys Res Lett 35:L02706. doi: 10.1029/2007GL031087
  32. Dommenget D (2010) The slab ocean El Niño. Geophys Res Lett 37:L20701. doi: 10.1029/2010GL044888.1
  33. Fedorov AV, Philander SG (2001) A stability analysis of tropical ocean–atmosphere interactions: bridging measurements and theory for El Niño. J Climate 14:3086–3101Google Scholar
  34. Feng J, Li J (2011) Influence of El Niño Modoki on spring rainfall over south China. J Geophys Res-Atmos 116:D13102. doi: 10.1029/2010JD015160
  35. Galeotti S, Von der Heydt A, Huber M, Bice D, Dijkstra H, Jilbert T, Lanci L, Reichart G-J (2010) Evidence for active El Nino Southern Oscillation variability in the late Miocene greenhouse climate. Geology 38:419–422Google Scholar
  36. Gebbie G, Eisenman I, Wittenberg AT, Tziperman E (2007) Modulation of westerly wind bursts by sea surface temperature: a semi-stochastic feedback for ENSO. J Atmos Sci 64:3281–3295Google Scholar
  37. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J Roy Meteorol Soc 106:447–462CrossRefGoogle Scholar
  38. Glynn PW (1985) El Niño-associated disturbance to coral reefs and post disturbance mortality by Acanthaster planci. Mar Ecol Prog Ser 26:295–300Google Scholar
  39. Grove RH (1998) Global impact of the 1789-93 El Niño. Nature 393:318–319Google Scholar
  40. Guan B, Nigam S (2008) Pacific sea surface temperatures in the twentieth century: an evolution-centric analysis of variability and trend. J Climate 21:2790–2809Google Scholar
  41. Guilderson TP, Schrag DP (1998) Abrupt shift in subsurface temperatures in the tropical Pacific associated with changes in El Niño. Science 281:240–243Google Scholar
  42. Guilyardi E, Wittenberg A, Federov A, Collins M, Wang C, Capotondi A, Van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. Bull Am Meteorol Soc 90:325–340Google Scholar
  43. Harrison DE, Larkin NK (1997) Darwin sea level pressure, 1876–1996: evidence for climate change? Geophys Res Lett 24:1775–1782Google Scholar
  44. Hayes SP, Mangum L, Picaut J, Sumi JA, Takeuchi K (1991) TOGA-TAO: a moored array for real-time measurements in the tropical Pacific Ocean. Bull Am Meteorol Soc 72:339–347Google Scholar
  45. Hoerling MP, Kumar A (2002) Atmospheric response patterns associated with tropical forcing. J Climate 15:2184–2203Google Scholar
  46. Holland CL, Mitchum GT (2003) Interannual volume variability in the tropical Pacific. J Geophys Res-Oceans 108:3369. doi: 10.1029/2003JC001835
  47. Huber M, Caballero R (2003) Eocene El Nino: evidence for robust tropical dynamics in the “hothouse”. Science 299:877–881Google Scholar
  48. Hulme M, Osborn TJ, Johns TC (1998) Precipitation sensitivity to global warming: comparison of observations with HadCM2 simulations. Geophys Res Lett 25:3379–3382. doi: 10.1029/98GL02562
  49. Jin F-F (1997a) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829Google Scholar
  50. Jin F-F (1997b) An equatorial ocean recharge paradigm for ENSO. Part II: a stripped-down coupled model. J Atmos Sci 54:830–847Google Scholar
  51. Jin F-F, Kimoto M, Wang X (2001) A model of decadal ocean-atmosphere interaction in the North Pacific Basin. Geophys Res Lett 28:1531–1534Google Scholar
  52. Kao H-Y, Yu J-Y (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Climate 22:615–632Google Scholar
  53. Kessler WS (2002) Is ENSO a cycle or a series of events? Geophy Res Lett 29(23):2125. doi: 10.1029/2002GL015924
  54. Kim H-M, Webster PJ, Curry JA (2009) Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science 325:77–80Google Scholar
  55. Kim S-T, Jin F-F (2011) An ENSO stability analysis. Part II: results from the twentieth and twenty-first century simulations of the CMIP3 models. Climate Dynam 36:1609–1627Google Scholar
  56. Koutavas A, Joanidis S (2009) El Nino during the last glacial maximum. Geochim Cosmochim Acta 73:A690–A690Google Scholar
  57. Knutson TR, Manabe S (1995) Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean-atmosphere model. J Climate 8:2181–2199Google Scholar
  58. Kucharski F, Kang I-S, Farneti R, Feudale L (2011) Tropical Pacific response to 20th century Atlantic warming. Geophys Res Lett 38:L03702. doi: 10.1029/2010GL046248
  59. Kug J-S, Jin F-F, An S-I (2009) Two-types of El Niño events: cold tongue El Niño and warm pool El Niño. J Climate 22:1499–1515Google Scholar
  60. Kumar KK, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El Niño. Science 314:115–119Google Scholar
  61. Landsea CW, Knaff JA (2000) How much skill was there in forecasting the very strong 1997-98 El Niño? Bull Am Meteorol Soc 81:2107–2119Google Scholar
  62. Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L16705. doi: 10.1029/2005GL022860 CrossRefGoogle Scholar
  63. Lau K-M (1985) Elements of a stochastic-dynamical theory of the long-term variability of the El Niño-Southern Oscillation. J Atmos Sci 42:1552–1558Google Scholar
  64. Lee S-K, Wang C, Enfield DB (2010a) On the impact of central Pacific warming events on Atlantic tropical storm activity. Geophys Res Lett 37:L17702. doi: 10.1029/2010GL044459
  65. Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603. doi: 10.1029/2010GL044007
  66. Lee T, Hobbs WR, Willis JK, Halkides D, Fukumori I, Armstrong EM, Hayashi AK, Liu WT, Patzert W, Wang O (2010b) Record warming in the South Pacific and western Antarctica associated with the strong central-Pacific El Niño in 2009–10. Geophys Res Lett 37:L19704. doi:  10.1029/2010GL044865
  67. Lienert F, Fyfe JC, Merryfield WJ (2011) Do climate models capture the tropical influences on North Pacific sea surface temperature variability? J Climate 24:6203–6209Google Scholar
  68. Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44:2418–2436Google Scholar
  69. Liu Z, Vavrus SJ, He F, Wen N, Zhong Y (2006) Rethinking tropical ocean response to global warming: the enhanced equatorial warming. J Climate 18:4684–4700Google Scholar
  70. Liu Z (2012) Dynamics of interdecadal climate variability: a historical perspective. J Climate 25:1963–1995Google Scholar
  71. Mantua NJ, Battisti DS (1994) Evidence for the delayed oscillator mechanism for ENSO: the “observed” oceanic Kelvin mode in the far western Pacific. J Phys Oceanogr 24:691–699Google Scholar
  72. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis R (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079Google Scholar
  73. McPhaden MJ (1995) The tropical atmosphere ocean array is completed. Bull Am Meteor Soc 76:739–741Google Scholar
  74. McPhaden MJ, Busalacchi AJ, Cheney R, Donguy JR, Gage KS, Halpern D, Ji M, Julian P, Meyers G, Mitchum GT (1998) The Tropical Ocean-Global Atmosphere observing system: a decade of progress. J Geophy Res-Oceans 103:14,169–14,240Google Scholar
  75. McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific. Geophys Res Lett 38:L15709. doi: 10.1029/2011GL048275
  76. Meehl GA, Gent PR, Arblaster JM, Otto-Bliesner BL, Brady EC, Craig A (2001) Factors that affect the amplitude of El Niño in global coupled climate models. Climate Dynam 17:515–526Google Scholar
  77. Meehl GA, Washington WM (1996) El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature 382:56–60Google Scholar
  78. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A (2007) Global climate projections. Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 747–845Google Scholar
  79. Méssie M, Chavez F (2011) Global modes of sea surface temperature variability in relation to regional climate indices. J Climate 24:4314–4331Google Scholar
  80. Minobe S (1997) A 50–70 year climatic oscillation over the North Pacific and North America. Geophys Res Lett 24:683–686Google Scholar
  81. Minobe S (1999) Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: role in climatic regime shifts. Geophys Res Lett 26:855–858Google Scholar
  82. Mo KC, Higgins RW (1998) Tropical convection and precipitation regimes in the western United States. J Climate 11:2404–2423Google Scholar
  83. Mo KC (2010) Interdecadal modulation of the impact of ENSO on precipitation and temperature over the United States. J Climate 23:3639–3656Google Scholar
  84. Moore AM, Kleeman R (1999) Stochastic forcing of ENSO by the intraseasonal oscillation. J Climate 12:1199–1220Google Scholar
  85. Nakamura H, Lin HG, Yamagata T (1997) Decadal climate variability in the North Pacific in recent decades. Bull Am Meteorol Soc 78:2215–2226Google Scholar
  86. Neelin JD, Battisti DS, Hirst AC, Jin F-F, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. J Geophys Res-Oceans 103:14,262–14,290Google Scholar
  87. Newman M, Compo G, Alexander MA (2003) ENSO-forced variability of the Pacific Decadal Oscillation. J Climate 16:3853–3857Google Scholar
  88. Newman M (2007) Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J Climate 20:2333–2356Google Scholar
  89. Newman M, Shin S-I, Alexander MA (2011) Natural variation in ENSO flavors. Geophys Res Lett L14705. doi:  10.1029/2011GL047658
  90. Park W, Keenlyside N, Latif M, Ströh A, Redler R, Roeckner E, Madec G (2009) Tropical Pacific climate and its response to global warming in the Kiel climate model. J Climate 22:71–92Google Scholar
  91. Penland C, Sardeshmuhk P (1995) The optimal growth of tropical sea surface temperature anomalies. J Climate 8:1999–2024Google Scholar
  92. Philander SG (1985) El Niño and La Niña. J Atmos Sci 42:2652–2662Google Scholar
  93. Philander SG (1990) El Niño, La Niña, and the Southern Oscillation. Academic Press, London, p 289Google Scholar
  94. Philander SG, Fedorov A (2003) Is El Niño sporadic or cyclic? Annu Rev Earth Planet Sci 31:579–594Google Scholar
  95. Picaut J, Masia F, du Penhoat Y (1997) An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science 277:663–666Google Scholar
  96. Picaut J, Hackert E, Busalacchi AJ, Murtugudde R, Lagerloef GSE (2002) Mechanisms of the 1997–1998 El Niño–La Niña, as inferred from space-based observations. J Geophys Res-Oceans 107. doi:  10.1029/2001JC000850
  97. Pierce DW (2001) Distinguishing coupled ocean-atmosphere interactions from background noise in the North Pacific. Prog Oceanogr 49:331–352Google Scholar
  98. Power SB, Casey T, Folland C, Colman A, Mehta V (1999) Interdecadal modulation of the impact of ENSO on Australia. Climate Dynam 15:319–324Google Scholar
  99. Rajagopalan B, Lall U, Cane MA (1997) Anomalous ENSO occurrences: an alternative view. J Climate 10:2351–2357Google Scholar
  100. Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384Google Scholar
  101. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res-Atmos 108(D14):4407. doi: 10.1029/2002JD002670
  102. Rodriguez-Fonseca B, Polo I, García-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705. doi:  10.1029/2009GL040048
  103. Schneider N, Cornuelle BD (2005) The forcing of the Pacific Decadal Oscillation. J Climate 18:4355–4373Google Scholar
  104. Schopf PS, Suarez MJ (1988) Vacillations in a coupled ocean-atmosphere model. J Atmos Sci 45:549–566Google Scholar
  105. Scroxton N, Bonham SG, Rickaby REM, Lawrence SHF, Hermoso M, Haywood AM (2011) Persistent El Niño–Southern Oscillation variation during the Pliocene Epoch. Paleoceanography 26:PA2215. doi: 10.1029/2010PA002097
  106. Seager R, Murtugudde R (1997) Ocean dynamics, thermocline adjustment, and regulation of tropical SST. J Climate 10:521–534Google Scholar
  107. Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287Google Scholar
  108. Taschetto AS, England MH (2009) El Niño Modoki impacts on Australian rainfall. J Climate 22:3167–3174Google Scholar
  109. Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–697Google Scholar
  110. Trenberth KE, Hoar TJ (1997) El Niño and climate change. Geophys Res Lett 24:3057–3060Google Scholar
  111. Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Climate 14:1697–1701Google Scholar
  112. Tudhope AW, Chilcott CP, McCulloch MT, Cook ER, Chappell J, Ellam RM, Lea DW, Lough JM, Shimmield GB (2001) Variability in the El Nino-Southern Oscillation through a glacial-interglacial cycle. Science 291:1511–1517Google Scholar
  113. van Oldenborgh GJ, Philip SY, Collins M (2005) El Niño in a changing climate: a multi-model study. Ocean Sci 1:81–95Google Scholar
  114. Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76Google Scholar
  115. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Climate 20:4316–4340Google Scholar
  116. Vecchi GA, Clement A, Soden BJ (2008) Examining the tropical Pacific’s response to global warming. EOS, Trans Am Geophys Union 89:81–83Google Scholar
  117. Vecchi GA, Wittenberg AT (2010) El Niño and our future climate: where do we stand? Wiley Interdisc Rev: Climate Change 1:260–270. doi:  10.1002/wcc.33
  118. Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28:3923–3926Google Scholar
  119. Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Climate 16:2668–2675Google Scholar
  120. Vimont DJ (2005) The contribution of the interannual ENSO cycle to the spatial pattern of ENSO-like decadal variability. J Climate 18:2080–2092Google Scholar
  121. Vimont DJ, Alexander M, Fontaine A (2009) Midlatitude excitation of tropical variability in the Pacific: the role of thermodynamic coupling and seasonality. J Climate 22:518–534Google Scholar
  122. Von der Heydt AS, Nnafie A, Dijkstra HA (2011) Cold tongue/warm pool and ENSO dynamics in the Pliocene. Clim Past Discuss 7:997–1027. doi: 10.5194/cpd-7-997-2011
  123. von Storch H, Zwiers FW (2002) Statistical analysis in climate research. Cambridge University Press, Cambridge, UKGoogle Scholar
  124. Wang C (2000) On the atmospheric responses to tropical Pacific heating during the mature phase of El Niño. J Atmos Sci 57:3767–3781Google Scholar
  125. Wang C (2001) A unified oscillator model for the El Niño-Southern Oscillation. J Climate 14:98–115Google Scholar
  126. Wang C (2006) An overlooked feature of tropical climate: Inter-Pacific-Atlantic variability. Geophys Res Lett 33:L12702. doi: 10.1029/2006GL026324
  127. Wang G, Hendon HH (2007) Sensitivity of Australian rainfall to inter-El Nino variations. J Climate 20:4211–4226Google Scholar
  128. Wang C, Weisberg RH (2000) The 1997-98 El Niño evolution relative to previous El Niño events. J Climate 13:488–501Google Scholar
  129. Wang C, Kucharski F, Barimalala R, Bracco A (2009) Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans: a review of recent findings. Meteorol Z 18:445–454Google Scholar
  130. Wang C, Weisberg RH, Virmani JI (1999) Western Pacific interannual variability associated with the El Niño-Southern Oscillation. J Geophys Res 104:5131–5149Google Scholar
  131. Wang C, Picaut J (2004) Understanding ENSO physics—a review. In: Wang C, Xie S.-P, Carton J (eds) Earth’s climate: The Ocean-Atmosphere Interaction (pp 21–48). American Geophysical UnionGoogle Scholar
  132. Wara MW, Ravelo AC, Delaney ML (2005) Permanent El Niño-like conditions during the Pliocene warm period. Science 309:758–761Google Scholar
  133. Watanabe T, Suzuki A, Minobe S, Kawashima T, Kameo K, Minoshima K, Aguilar YM, Wani R, Kawahata H, Sowa K, Nagai T, Kase T (2011) Permanent El Niño during the Pliocene warm period not supported by coral evidence. Nature 471:209–211. doi: 10.1038/nature09777
  134. Weisberg RH, Wang C (1997) A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys Res Lett 24:779–782Google Scholar
  135. Weng H, Wu G, Liu Y, Behera SK, Yamagata T (2011) Anomalous summer climate in China influenced by the tropical Indo-Pacific Oceans. Climate Dynam 36:769–782. doi: 10.1007/s00382-009-0658-9
  136. White WB, Tourre YM, Barlow M, Dettinger M (2003) A delayed action oscillator shared by biennal, interannual, and decadal signals in the Pacific Basin. J Geophys Res-Oceans 108, 3070. doi:10.1029/2002JC001490Google Scholar
  137. Wyrtki K (1975) El Niño—the dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J Phys Oceanogr 5:572–584Google Scholar
  138. Wyrtki K (1985) Water displacements in the Pacific and the genesis of El Niño cycles. J Geophys Res 90:7129–7132Google Scholar
  139. Yeh S-W, Kug J-S, Dewitte B, Kirtman B, Jin F-F (2009) Recent changes in El Niño and its projection under global warming. Nature 461:511–515Google Scholar
  140. Yu B, Boer GJ (2004) The role of the western Pacific in decadal variability. Geophys Res Lett 31:L02204. doi: 10.1029/2003GL018471
  141. Yu J-Y, Kao H-Y (2007) Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958-2001. J Geophys Res 112:D13106. doi: 10.1029/2006JD007654
  142. Yu J-Y, Kao H-Y, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the equatorial central Pacific. J Climate 23:2869–2884Google Scholar
  143. Zebiak SE, Cane MA (1987) A model El Niño-Southern Oscillation. Mon Weather Rev 115:2262–2278Google Scholar
  144. Zhang M, Song H (2006) Evidence of deceleration of atmospheric vertical overturning circulation over the tropical Pacific. Geophys Res Lett 33:L12701. doi: 10.1029/2006GL025942
  145. Zhang Q, Guan Y, Yang H (2008) ENSO amplitude change in observation and coupled models. Adv Atmos Sci 25:361–366Google Scholar
  146. Zhang W, Jin F-F, Li J, Ren H-L (2011) Contrasting impacts of two-type El Niño over the western north Pacific during boreal autumn. J Meteor Soc Jap 89:563–569Google Scholar
  147. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Climate 10:1004–1020Google Scholar
  148. Zheng W, Braconnot P, Guilyardi E, Merkel U, Yu Y (2008) ENSO at 6 ka and 21 ka from ocean–atmosphere coupled model simulations. Climate Dynam 30:745–762Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Chunzai Wang
    • 1
    Email author
  • Clara Deser
    • 2
  • Jin-Yi Yu
    • 3
  • Pedro DiNezio
    • 4
  • Amy Clement
    • 5
  1. 1.NOAA/Atlantic Oceanographic and Meteorological LaboratoryMiamiUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.University of California at IrvineIrvineUSA
  4. 4.International Pacific Research Center, University of HawaiiHonoluluUSA
  5. 5.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA

Personalised recommendations