Skip to main content

Oceanographic Conditions of the Eastern Tropical Pacific

  • Chapter
  • First Online:
Coral Reefs of the Eastern Tropical Pacific

Part of the book series: Coral Reefs of the World ((CORW,volume 8))

Abstract

The eastern Pacific warm pool supports reef-building corals, as well as distinct communities of plankton, fishes, marine mammals and birds. This habitat is characterized by warm, low-salinity surface water lying on top of a strong, shallow thermocline. It is bounded by the South Equatorial Current and equatorial cold tongue to the south, cooler and more saline subtropical water to the northwest, and cold eastern boundary currents to the north and south (California and Peru Currents). The continental boundary influences atmospheric forcing by gap winds during winter and by causing the rainy Intertropical Convergence Zone to be located north of the equator and over the warm pool. Patterns of waves, tides and tropical cyclones impinging on coral reefs are described. The structure and variability of water masses and circulation are determined by solar and atmospheric processes, both within and outside of the region. To the west of the Galápagos, surface circulation is predominantly the east-west equatorial currents. Near the coast, surface circulation is modified by the coastal boundary, local winds, eddies, and interaction with eastern boundary currents. Primary productivity depends on oceanic upwelling along the equator and local centers of upwelling and wind mixing in coastal waters. Eastern tropical Pacific surface waters are moderately productive. Phytoplankton productivity is limited by a lack of the micronutrient dissolved iron, except where local coastal processes provide a source, so that macronutrients such as nitrate are never depleted. Seasonal changes in solar forcing, winds, rainfall, surface temperature and salinity, and other environmental characteristics are described, although seasonality in this region is not as pronounced as at higher latitudes. In contrast, interannual variations caused by the El Niño-Southern Oscillation across the entire tropical Indo-Pacific are very important in this region (Chap. 4). Oxygen depletion is extreme below the sharp thermocline, with consequences for mesopelagic and subthermocline benthic organisms. Surface waters are relatively low pH and marginally carbonate-saturated. Climate change is predicted to lead to future oceanographic changes in this region: warming and acidification of surface waters, increased stratification and reduced productivity, and upwelling/mixing of hypoxic waters into the surface layer. These changes are likely to affect organisms and populations living in the eastern tropical Pacific.

Miguel F. Lavín—deceased (27 January 2014)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amador JA, Alfaro EJ, Lizano OG, Magaña VO (2006) Atmospheric forcing of the eastern tropical Pacific: a review. Prog Oceanogr 69(2–4):101–142

    Article  Google Scholar 

  • Baskett ML, Nisbet RM, Kappel CV, Mumbey PJ, Gaines SD (2010) Conservation management approaches to protecting the capacity for corals to respond to climate change: a theoretical comparison. Global Change Biol 16:1229–1246

    Article  Google Scholar 

  • Bonjean F, Lagerloef GSE (2002) Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J Phys Oceanogr 32:2938–2954

    Article  Google Scholar 

  • Brenes C, Lavín MF, Mascarenhas A Jr (2008) Geostrophic circulation between the Costa Rica Dome and Central America. Deep-Sea Res I 55:608–629

    Article  Google Scholar 

  • Camargo SJ, Robertson AW, Barnston AG, Ghil M (2008) Clustering of eastern North Pacific tropical cyclone tracks: ENSO and MJO effects. Geochem Geophys Geosyst 9(6). doi:10.1029/2007GC001861

  • Cao L, Caldeira K (2008) Atmospheric CO2 stabilization and ocean acidification. Geophys Res Lett 35. doi:10.1029/2008GL035072

  • Chaigneau, A, Abarca del Río R, Colas F (2006). Lagrangian study of the Panama Bight and surrounding regions. J Geophys Res 111. doi:10.1029/2006JC003530

  • Collins M, An S-I, Cai W, Ganachaud A, Guilyardi E, Jin F-F, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3:391–397

    Article  CAS  Google Scholar 

  • Cromwell T, Montgomery RB, Stroup ED (1954) Equatorial undercurrent in Pacific Ocean revealed by new methods. Science 119:648–649

    Article  CAS  Google Scholar 

  • Deser C, Alexander MA, Xie S-P, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Ann Rev Mar Sci 2:115–143

    Article  Google Scholar 

  • DiNezio PN, Clement AC, Vecchi GA, Soden BJ, Kirtman BP, Lee S-K (2009) Climate response of the equatorial Pacific to global warming. J Climate 22:4873–4892

    Article  Google Scholar 

  • Feely RA, Doney SC, Cooley SR (2009) Present conditions and future changes in a high-CO2 world. Oceanography 22(4):37–47

    Article  Google Scholar 

  • Fiedler PC (2002) The annual cycle and biological effects of the Costa Rica Dome. Deep-Sea Res I 49:321–338

    Article  Google Scholar 

  • Fiedler PC, Talley LD (2006) Hydrography of the eastern tropical Pacific: a review. Prog Oceanogr 69(2–4):143–180

    Article  Google Scholar 

  • Fiedler PC, Mendelssohn R, Palacios DM, Bograd SJ (2013) Pycnocline variations in the eastern tropical and North Pacific, 1958–2008. J Climate 26:583–599

    Article  Google Scholar 

  • Glynn PW, Mones AB, Podestá GP, Colbert A, Colgan MW (2016) El Niño-Southern Oscillation: Effects on Eastern Pacific Coral Reefs and Associated Biota. In: Glynn PW et al. (eds) Coral reefs of the eastern tropical Pacific. doi:10.1007/978-94-017-7499-4_8

  • Godínez VM, Beier E, Lavín MF, Kurczyn JA (2010) Circulation at the entrance of the Gulf of California from satellite altimeter and hydrographic observations. J Geophys Res 115. doi:10.1029/2009JC005705

  • Hastenrath S (1991) Climate dynamics of the tropics. Kluwer, Dordrecht, p 488

    Book  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  Google Scholar 

  • Huang RX (2010) Ocean circulation: wind-driven and thermohaline processes. Cambridge University Press, Cambridge. Online version available at: http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=3237

  • Intergovernmental Panel on Climate Change (2007) Fourth assessment report. http://www.ipcc.ch/publications_and_data/ar4/wg1/

  • Karstensen J, Stramma L, Visbeck M (2008) Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog Oceanogr 77:331–350

    Article  Google Scholar 

  • Kessler WS (2002) Mean three-dimensional circulation in the northeast tropical Pacific. J Phys Oceanogr 32:2457–2471

    Article  Google Scholar 

  • Kessler WS (2006) The circulation of the eastern tropical Pacific: a review. Prog Oceanogr 69(2–4):181–217

    Article  Google Scholar 

  • Kleypas JA, McManus JW, Meñez LAB (1999a) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Article  Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999b) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Article  CAS  Google Scholar 

  • Large WG, Nurser AJG (2001) Ocean surface water mass transformation. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate: observing and modeling the global ocean. Academic Press, New York, pp 317–336

    Chapter  Google Scholar 

  • Lavín MF, Beier E, Gómez J, Godínez VM, García J (2006) On the summer poleward coastal current off SW México. Geophys Res Lett 33. doi:10.1029/2005GL024686

  • Lee S-K, Enfield DB, Wang C (2007) What drives seasonal onset and decay of the Western Hemisphere warm pool? J Climate 20:2133–2146

    Article  Google Scholar 

  • Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836

    Article  Google Scholar 

  • Levin LA (2003) Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr Mar Biol 41:1–45

    Google Scholar 

  • Liang J-H, McWilliams JC, Gruber N (2009) High-frequency response of the ocean to mountain gap winds in the northeastern tropical Pacific. J Geophys Res 114. doi:10.1029/2009JC005370

  • Lirman D, Glynn PW, Baker AC, Leyte Morales GE (2001) Combined effects of three sequential storms on the Huatulco coral reef tract, Mexico. Bull Mar Sci 69:267–278

    Google Scholar 

  • Longhurst AR (2007) Ecological geography of the sea, 2nd edn. Academic Press, New York, p 542

    Google Scholar 

  • Lukas R (1986) The termination of the equatorial undercurrent in the eastern Pacific. Prog Oceanogr 16:63–90

    Article  Google Scholar 

  • Madden RA, Julian PR (1994) Observations of the 40–50-day tropical oscillation—a review. Mon Weather Rev 122:814–837

    Article  Google Scholar 

  • Maloney ED, Hartmann DL (2000) Modulation of eastern North Pacific hurricanes by the Madden-Julian Oscillation. J Climate 13:1451–1460

    Article  Google Scholar 

  • Manzello DP (2009) Reef development and resilience to acute (El Niño warming) and chronic (high-CO2) disturbances in the eastern tropical Pacific: a real-world climate change model, vol 2, pp 1299–1304. In: Proceedings of 11th International Coral Reef Symposium, Ft Lauderdale

    Google Scholar 

  • Manzello DP (2010) Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs 29:749–758

    Article  Google Scholar 

  • Manzello DP, Kleypas JA, Budd DA, Eakin CM, Glynn PW, Langdon C (2008) Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world. Proc Natl Acad Sci USA 105:10,450–10,455

    Google Scholar 

  • Manzello DP, Mark Eakin C, Glynn PW (2016) Effects of Global Warming and Ocean Acidification on Carbonate Budgets of Eastern Pacific Coral Reefs. In: Glynn PW et al. (eds) Coral reefs of the eastern tropical Pacific. doi:10.1007/978-94-017-7499-4_18

  • Paulmier A, Ruiz-Pino D (2009) Oxygen minimum zones (OMZs) in the modern ocean. Prog Oceanogr 80:113–128

    Article  Google Scholar 

  • Pennington JT, Mahoney KL, Kuwahara VS, Kolber DD, Calienes R, Chavez FP (2006) Primary production in the eastern tropical Pacific: a review. Prog Oceanogr 69(2–4):285–317

    Article  Google Scholar 

  • Philander SGH, Gu D, Halpern D, Lambert G, Lau N-C, Li T, Pacanowski RC (1996) Why the ITCZ is mostly north of the equator. J Climate 9:2958–2972

    Article  Google Scholar 

  • Raven J, Caldeira K, Elderfield H, Hoegh-Guldberg O, Liss P, Riebesell U, Shepherd J, Turley C, Watson A (2005) Ocean acidification due to increasing atmospheric carbon dioxide. Policy document 12/05, The Royal Society, London

    Google Scholar 

  • Risien CM, Chelton DB (2008) A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J Phys Oceanogr 38:2379–2413

    Article  Google Scholar 

  • Romero-Vadillo E, Zaytsev O, Morales-Pérez R (2007) Tropical cyclone statistics in the northeastern Pacific. Atmosfera 20:197–213

    Google Scholar 

  • Semedo A, Sušelj K, Rutgersson A, Sterl A (2011) A global view on the wind, sea and swell climate and variability from ERA-40. J Climate 24:1461–1479

    Article  Google Scholar 

  • Shea TJ, Trenberth KE, Reynolds RW (1992) A global monthly sea surface temperature climatology. J Climate 5:987–1001

    Article  Google Scholar 

  • Smith SV, Buddemeier RW (1992) Global change and coral reef ecosystems. Ann Rev Ecol Syst 23:89–118

    Article  Google Scholar 

  • Steinacher MF, Joos F, Frölicher TL, Bopp L, Cadule P, Cocco V, Doney SC, Gehlen M, Lindsay K, Moore JK, Schneider B, Segschneider J (2010) Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7:979–1005

    Article  CAS  Google Scholar 

  • Sterl A, Caires S (2005) Climatology, variability and extrema of ocean waves: the web-based KNMI/ERA-40 wave atlas. Int J Climatol 25:963–977

    Article  Google Scholar 

  • Stramma L, Johnson GC, Sprintall J, Mohrholz V (2008) Expanding oxygen-minimum zones in the tropical oceans. Science 320:655–658

    Article  CAS  Google Scholar 

  • Stramma L, Schmidtko S, Levin LA, Johnson GC (2010) Ocean oxygen minima expansions and their biological impacts. Deep-Sea Res I 57:587–595

    Article  CAS  Google Scholar 

  • Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW et al (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Res II 56:554–577

    Article  CAS  Google Scholar 

  • Talley LD, Pickard GL, Emery WJ, Swift JH (2011) Descriptive physical oceanography: an introduction, 6th edn. Academic Press, London, p 560

    Google Scholar 

  • Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Climate 20:4316–4340

    Article  Google Scholar 

  • Wang B (1994) Climatic regimes of tropical convection and rainfall. J Climate 7:1109–1118

    Article  Google Scholar 

  • Wang C, Enfield D (2001) The tropical western hemisphere warm pool. Geophys Res Lett 28:1635–1638

    Article  Google Scholar 

  • Willett CS, Leben R, Lavín MF (2006) Eddies and mesoscale processes in the eastern tropical Pacific: a review. Prog Oceanogr 69(2–4):218–238

    Article  Google Scholar 

  • Wyrtki K (1964) The thermal structure of the eastern Pacific Ocean. Deut Hydrograph Zeit, Ergänzungsheft A 6:84

    Google Scholar 

  • Wyrtki K (1966) Oceanography of the eastern equatorial Pacific Ocean. Oceanogr Mar Biol Ann Rev 4:33–68

    Google Scholar 

  • Wyrtki K (1967) Circulation and water masses in the eastern equatorial Pacific Ocean. Int J Oceanol Limn 1:117–147

    Google Scholar 

  • Wyrtki K (1981) An estimate of equatorial upwelling in the Pacific. J Phys Oceanogr 11:1205–1214

    Article  Google Scholar 

  • Xie L, Hsieh WW (1995) The global distribution of wind-induced upwelling. Fish Oceanogr 4:52–67

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Fiedler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fiedler, P.C., Lavín, M.F. (2017). Oceanographic Conditions of the Eastern Tropical Pacific. In: Glynn, P., Manzello, D., Enochs, I. (eds) Coral Reefs of the Eastern Tropical Pacific. Coral Reefs of the World, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7499-4_3

Download citation

Publish with us

Policies and ethics