Reef-Based Reconstructions of Eastern Pacific Climate Variability

  • Julia ColeEmail author
  • Alexander W. Tudhope
Part of the Coral Reefs of the World book series (CORW, volume 8)


In the eastern tropical Pacific, large spatial gradients in climate conditions are associated with oceanic upwelling and the position of the Intertropical Convergence Zone (ITCZ). Dramatic shifts in these systems occur during extremes of the El Niño-Southern Oscillation (ENSO), which also reverberate throughout the global climate system. Motivated by the need to understand ENSO history, and underpinned by ecological research, many of the earliest coral paleoclimate studies originated from the eastern Pacific. Early work in Galápagos, Costa Rica, and Panama highlighted the usefulness of a diverse array of tracers that record past environmental change. Longer records of coral δ18O have delineated the range of natural variability in ENSO and identified a rich spectrum of tropical Pacific variance that extends into multidecadal and century time scales. Coral-based reconstructions of ocean temperatures generally show strong warming trends, except in Galápagos, where existing records do not span the full 20th century and where strong interannual variability impedes detection of smaller trends. Coral records complement sediment-based and terrestrial records in terms of their length, resolution, and sensitivity. A more complete understanding of variability in the eastern tropical Pacific should emerge from ongoing and future work that integrates reef-based paleorecords with other paleoclimate reconstructions and model simulations. In addition, analysis of additional proxies—e.g. of circulation, pH, and salinity—is recommended to complement temperature reconstructions and provide useful reconstructions of changes in climate, oceanography, and reef stress.


Paleoclimate Coral Galápagos El Niño Sea surface temperature 



We thank Peter Glynn, Gerard Wellington, Stuart Banks, Lenín Cruz, Roberto Pepolas, and all our colleagues who have provided encouragement, information and samples that have advanced reef-based paleoclimatic studies in the eastern Pacific. We gratefully acknowledge research support from NSF (JEC: OCE 1416148 and OCE 0957881) and NERC (AWT) that allows us to continue work in Galápagos, and we deeply appreciate the support of the Charles Darwin Research Station and the Galápagos National Park in furthering our research. We thank our colleagues on Galápagos paleoclimate research projects: Colin Chilcott, Meriwether Wilson, Diane Thompson, Jonathan Overpeck, and Jessica Conroy, Jennifer Suarez, and Gloria Jimenez. We also thank the editors for their hard work in organizing the publication of this book. We are grateful to P. Glynn, D. Lea, and J. Carriquiry for comments that have improved the manuscript.


  1. Ault TR, Cole JE, Evans MN, Barnett H, Abram NJ, Tudhope AW, Linsley BK (2009) Intensified decadal variability in tropical climate during the late 19th century. Geophys Res Lett 36. doi: 10.1029/2008GL036924
  2. Brown DP, Comrie AC (2004) A winter precipitation ‘dipole’ in the western United States associated with multidecadal ENSO variability. Geophys Res Lett 31. doi: 10.1029/2003GL018726
  3. Brown J, Collins M, Tudhope AW, Toniazzo T (2008) Modelling mid-Holocene tropical climate and ENSO variability: towards constraining predictions of future change with palaeo-data. Clim Dyn 30:19–36 CrossRefGoogle Scholar
  4. Carriquiry JD, Risk MJ, Schwarcz HP (1988) Timing and temperature record from the stable isotopes of the 1982–1983 El Niño warming event in eastern Pacific corals. Palaios 3:359–364Google Scholar
  5. Carriquiry JD, Risk MJ, Schwarcz HP (1994) Stable-Isotope Geochemistry of Corals from Costa-Rica as Proxy Indicator of the El-Nino Southern Oscillation (Enso). Geochim Cosmochim Acta 58:335–351Google Scholar
  6. Carriquiry JD, Villaescusa JA (2010) Coral Cd/Ca and Mn/Ca records of ENSO variability in the Gulf of California. Clim Past 6:401–410CrossRefGoogle Scholar
  7. Chazen CR, Altabet MA, Herbert TD (2009) Abrupt mid-Holocene onset of centennial-scale climate variability on the Peru-Chile Margin. Geophys Res Lett. doi: 10.1029/2009GL039749
  8. Cobb KM, Charles CD, Cheng H, Edwards RL (2003) El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature 424:271–276CrossRefGoogle Scholar
  9. Cobb KM, Westphal N, Sayani HR, Watson JT, Di Lorenzo E, Cheng H, Edwards RL, Charles CD (2013) Highly variable El Niño-Southern Oscillation throughout the Holocene. Science 339:67–70CrossRefGoogle Scholar
  10. Cole JE (2003) Holocene coral records: windows on tropical climate variability. In: McKay A, Battarbee R, Birks J, Oldfield F (eds) Global change in the Holocene. Arnold, London, pp 168–184Google Scholar
  11. Cole JE, Cook ER (1998) The changing relationship between ENSO variability and moisture balance in the continental United States. Geophys Res Lett 25:4529–4532CrossRefGoogle Scholar
  12. Cole JE, Fairbanks RG, Shen GT (1993) The spectrum of recent variability in the Southern Oscillation: Results from a Tarawa Atoll coral. Science 262:1790–1793Google Scholar
  13. Collins M, Soon-Il A, Wenju C, Genachaud A, Guilyardi E, Fei-Fei J, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific ocean and El Niño. Nat Geosci 3:391–397CrossRefGoogle Scholar
  14. Conroy JL, Overpeck JT, Cole JE, Shanahan TM, Steinitz-Kannan M (2008) Holocene changes in eastern tropical Pacific climate inferred from a Galapagos lake sediment record. Quat Sci Rev 27:1166–1180CrossRefGoogle Scholar
  15. Conroy JL, Restrepo A, Overpeck JT, Steinitz-Kannan M, Cole JE, Bush MB, Colinvaux PA (2009) Unprecedented recent warming of surface temperatures in the eastern tropical Pacific Ocean. Nat Geosci 2:46–50CrossRefGoogle Scholar
  16. Correge T (2006) Sea surface temperature and salinity reconstruction from coral geochemical tracers. Paleogeogr Paleoclimatol Paleoecol 232:408–428CrossRefGoogle Scholar
  17. Damassa TD, Cole JE, Barnett H, Ault TR, McClanahan TR (2006) Enhanced multidecadal climate variability in the 17th century from coral isotope records in the western Indian Ocean. Paleoceanography. doi: 10.1029/2005PA001217 Google Scholar
  18. Delaney ML, Linn LJ, Druffel ERM (1993) Seasonal cycles of manganese and cadmium in coral from the Galápagos Islands. Geochim Cosmochim Acta 57:347–354CrossRefGoogle Scholar
  19. Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during boreal winter since 1900. J Climate 17:3109–3124CrossRefGoogle Scholar
  20. Deser C, Alexander MA, Xie SP, Phillips AS (2010a) Sea surface temperature variability: patterns and mechanisms. Annu Rev Mar Sci 2:115–143CrossRefGoogle Scholar
  21. Deser C, Phillips AS, Alexander MA (2010b) Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett. doi: 10.1029/2010GL043321 Google Scholar
  22. Dewitte B, Vazquez-Cuervo J, Goubanova K, Illig S, Takahashi K, Cambon G, Purca S, Correa D, Gutierrez D, Sifeddine A, Ortlieb L (2012) Change in El Niño flavours over 1958–2008: implications for the long-term trend of the upwelling off Peru. Deep-Sea Res II 77–80:143–156CrossRefGoogle Scholar
  23. DiNezio PN, Clement AC, Vecchi GA, Soden BJ, Kirtman BP (2009) Climate response of the equatorial Pacific to global warming. J Climate 22:4873–4892CrossRefGoogle Scholar
  24. DiNezio PN, Clement A, Vecchi GA, Soden B, Broccoli AJ, Otto-Bliesner BL, Braconnot P (2011) The response of the Walker circulation to Last Glacial Maximum forcing: implications for detection in proxies. Paleoceanography 26. doi: 10.1029/2010PA002083
  25. Dissard D, Douville E, Reynaud S, Juillet-Leclerc A, Montagna P, Louvat P, McCulloch M (2012) Light and temperature effect on δ11B and B/Ca ratios of the zooxanthellate coral Acropora sp.: results from culturing experiments. Biogeosci Discus 9:5969–6014CrossRefGoogle Scholar
  26. Druffel EM (1981) Radiocarbon in annual coral rings from the eastern tropical Pacific Ocean. Geophys Res Lett 8:59–62CrossRefGoogle Scholar
  27. Druffel ERM (2002) Radiocarbon in corals: records of the carbon cycle, surface circulation, and climate. Oceanography 15:122–127CrossRefGoogle Scholar
  28. Druffel ERM, Griffin S, Beaupré SR, Dunbar RB (2007) Oceanic climate and circulation changes during the past four centuries from radiocarbon in corals. Geophys Res Lett. doi: 10.1029/2006GL028681 Google Scholar
  29. Druffel ERM, Griffin S, Glynn DS, Dunbar RB, Mucciarone DA, Toggweiler JR (2014) Seasonal radiocarbon and oxygen isotopes in a Galapagos coral: calibration with climate indices. Geophys Res Lett 41(14):5099–5105. doi: 10.1002/2014GL060504 CrossRefGoogle Scholar
  30. Dubois N, Kienast M, Normandeau C, Herbert TD (2009) Eastern equatorial Pacific cold tongue during the Last Glacial Maximum as seen from alkenone paleothermometry. Paleoceanography. doi: 10.1029/2009PA001781 Google Scholar
  31. Dunbar RB, Wellington GM, Colgan MW, Glynn PW (1994) Eastern Pacific sea surface temperature since 1600 A.D.: the δ18O record of climate variability in Galápagos corals. Paleoceanography 9:291–316CrossRefGoogle Scholar
  32. Dunbar R, Linsley B, Wellington GM (1996) Eastern Pacific corals monitor El Niño/Southern Oscillation, precipitation, and sea surface temperature variability over the past 3 centuries. In: Jones PD, Bradley R, Jouzel J (eds) Climatic fluctuations and forcing mechanisms of the last 2000 years. Springer, New York, pp 375–407Google Scholar
  33. England MH, McGregor S, Spence P, Meehl GA, Timmermann A, Cai W, Sen Gupta A, McPhaden MJ, Purich A, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change 4:222–227CrossRefGoogle Scholar
  34. Evans M, Kaplan A, Cane M (2002) Pacific sea surface temperature field reconstruction from coral δ18O data using reduced space objective analysis. Paleoceanography 17(1):7–1, 7–13Google Scholar
  35. Garreaud RD, Battisti DS (1999) Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J Climate 12:2113–2123CrossRefGoogle Scholar
  36. Gershunov A, Barnett TP (1998) Interdecadal modulation of ENSO teleconnections. B Am Meteorol Soc 79:2715–2725CrossRefGoogle Scholar
  37. Glynn PW (1994) State of coral reefs in the Galápagos Islands: natural vs anthropogenic impacts. Mar Pollut Bull 29:131–140CrossRefGoogle Scholar
  38. Glynn PW, Riegl B, Correa AMS, Baums IB (2009) Rapid recovery of a coral reef at Darwin Island, Galápagos Islands. Galapagos Res 66:6–13Google Scholar
  39. Glynn PW, Riegl B, Purkis S, Kerr JM, Smith TB (2015) Coral reef recovery in the Galápagos Islands: the northernmost islands (Darwin and Wenman). Coral Reefs. doi: 10.007/s00338-015-1280-4 Google Scholar
  40. Grottoli AG, Wellington GM (1999) Effect of light and zooplankton on skeletal delta C-13 values in the eastern Pacific corals Pavona clavus and Pavona gigantea. Coral Reefs 18:29–41CrossRefGoogle Scholar
  41. Guilderson TP, Schrag DP (1998) Abrupt shifts in subsurface temperatures in the tropical Pacific associated with changes in El Niño. Science 281:240–243CrossRefGoogle Scholar
  42. Guilderson TP, Schrag DP (1999) Reliability of coral records from the western Pacific warm pool: a comparison using age-optimized records. Paleoceanography 4:457–464CrossRefGoogle Scholar
  43. Haug GH, Hughen KA, Sigman DM, Peterson LC, Rohl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1304–1308CrossRefGoogle Scholar
  44. Holland CL, Scott RB, An S-I, Taylor FW (2007) Propagating decadal sea surface temperature signal identified in modern proxy records of the tropical Pacific. Climate Dynam 28:163–179CrossRefGoogle Scholar
  45. Honisch B, Hemming NG, Grottoli AG, Amat A, Hanson GN, et al. (2004) Assessing scleractinian corals as recorders for paleo-pH: Empirical calibration and vital effects. Geochim Cosmochim Acta 68:3675–3685Google Scholar
  46. Inoue M, Suwa R, Suzuki A, Sakai K, Kawahata H (2011) Effects of seawater pH on growth and skeletal U/Ca ratios of Acropora digitifera coral polyps. Geophys Res Lett 38(12). doi: 10.1029/2011GL047786
  47. Karnauskas KB, Seager R, Kaplan A, Kushnir Y, Cane MA (2009) Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean. J Climate 22:4316–4321CrossRefGoogle Scholar
  48. Kessler WS (2006) The circulation of the eastern tropical Pacific: a review. Prog Oceanogr 69:181–217CrossRefGoogle Scholar
  49. Kienast M, MacIntyre G, Dubois N, Higginson S, Normandeau C, Chazen C, Herbert TD (2012) Alkenone unsaturation in surface sediments from the eastern equatorial Pacific: implications for SST reconstructions. Paleoceanography 27(1). doi: 10.1029/2011PA002254
  50. Kosaka Y, Xie S-P (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407CrossRefGoogle Scholar
  51. Koutavas A, Joanides S (2012) El Niño-Southern Oscillation extrema in the Holocene and Last Glacial Maximum. Paleoceanography 27(4). doi: 10.1029/2012PA002378
  52. Koutavas A, Lynch-Stieglitz J (2003) Glacial-interglacial dynamics of the eastern equatorial Pacific cold tongue Intertropical Convergence Zone system reconstructed from oxygen isotope records. Paleoceanography 18(4). doi: 10.1029/2003PA000894
  53. Koutavas A, Sachs JP (2008) Northern timing of deglaciation in the eastern equatorial Pacific from alkenone paleothermometry. Paleoceanography 23(4). doi: 10.1029/2008PA001593
  54. Koutavas A, Lynch-Stieglitz J, Marchitto TM, Sachs JP (2002) El Niño-like pattern in ice age tropical Pacific sea surface temperature. Science 297:226–230CrossRefGoogle Scholar
  55. Koutavas A, Demenocal PB, Olive GC, Lynch-Stieglitz J (2006) Mid-Holocene El Niño-Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments. Geology 34:993–996CrossRefGoogle Scholar
  56. LaVigne M, Field MP, Anagnostou E, Grottoli AG, Wellington GM, Sherrell RM (2008) Skeletal P/Ca tracks upwelling in Gulf of Panama coral: evidence for a new seawater phosphate proxy. Geophys Res Lett 35(5). doi: 10.1029/2007GL031926
  57. LaVigne M, Matthews KA, Grottoli AG, Cobb KM, Anagnostou E, Cabioch G, Sherrell RM (2010) Coral skeleton P/Ca proxy for seawater phosphate: multi-colony calibration with a contemporaneous seawater phosphate record. Geochim Cosmochim Acta 74:1282–1293CrossRefGoogle Scholar
  58. Lea DW, Boyle EA, Shen GT (1989) Coralline barium records temporal variability in equatorial Pacific upwelling. Nature 340:373–376CrossRefGoogle Scholar
  59. Lea DW, Pak DK, Belanger CL, Spero HJ, Hall MA, Shackleton NJ (2006) Paleoclimate history of Galápagos surface waters over the last 135,000 year. Quat Sci Rev 25(11–12):1152–1167CrossRefGoogle Scholar
  60. Linn LJ, Delaney ML, Druffel ERM (1990) Trace metals in contemporary and seventeenth-century Galápagos coral: records of seasonal and annual variations. Geochim Cosmochim Acta 54:387–394CrossRefGoogle Scholar
  61. Linsley BK, Dunbar RB, Wellington GM, Mucciarone DA (1994) A coral-based reconstruction of Intertropical Convergence Zone variability over Central America since 1707. J Geophys Res 99:9977–9994CrossRefGoogle Scholar
  62. Linsley BK, Messier RG, Dunbar RB (1999) Assessing between-colony oxygen isotope variability in the coral Porites lobata at Clipperton Atoll. Coral Reefs 18:13–27CrossRefGoogle Scholar
  63. Linsley BK, Ren L, Dunbar RB, Howe SS (2000) El Niño-Southern Oscillation (ENSO) and decadal-scale climate variability at 10 N in the eastern Pacific from 1893 to 1994: a coral-based reconstruction from Clipperton Atoll. Paleoceanography 15:322–335CrossRefGoogle Scholar
  64. Linsley BP, Zhang A, Kaplan S, Howe S, Wellington GM (2008) Interdecadal-decadal climate variability from multicoral oxygen isotope records in the South Pacific Convergence Zone region since 1650 A.D. Paleoceanography 23. doi: 10.1029/2007PA001539
  65. Liu Z (2012) Dynamics of interdecadal climate variability: a historical perspective. J Climate 25:1963–1995CrossRefGoogle Scholar
  66. Lough JM (2004) A strategy to improve the contribution of coral data to high-resolution paleoclimatology. Paleogeogr Paleoclimat Paleoecol 204:115–143CrossRefGoogle Scholar
  67. Lough JM (2010) Climate records from corals. Wiley Interdiscip Rev-Climate Change 1:318–331CrossRefGoogle Scholar
  68. Lough JM, Cooper TF (2011) New insights from coral growth band studies in an era of rapid environmental change. Earth-Sci Rev 108:170–184CrossRefGoogle Scholar
  69. Mann ME, Cane MA, Zebiak SE, Clement A (2005) Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J Climate 18:447–456CrossRefGoogle Scholar
  70. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal oscillation with impacts on salmon production. B Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  71. Manzello D (2010) Ocean acidification hot spots: spatiotemporal dynamics of the seawater CO2 system of eastern Pacific coral reefs. Limnol Oceanogr 55:239–248CrossRefGoogle Scholar
  72. Marchitto TM, Muscheler R, Ortiz JD, Carriquiry JD, van Geen A (2010) Dynamical response of the tropical Pacific Ocean to solar forcing during the early Holocene. Science 330:1378–1381CrossRefGoogle Scholar
  73. Matear RJ, McNeil BI (2006) Comment on “Preindustrial to modern interdecadal variability in coral reef pH”. Science 314:595–595Google Scholar
  74. Matthews KA, Grottoli AG, McDonough WF, Palardy JE (2008) Upwelling, species, and depth effects on coral skeletal cadmium-to-calcium ratios (Cd/Ca). Geochim Cosmochim Ac 72:4537–4550CrossRefGoogle Scholar
  75. McConnaughey TA (1989) C-13 and O-18 isotopic disequilibria in biological carbonates: I. Patterns. Geochim Cosmochim Ac 53:151–162CrossRefGoogle Scholar
  76. McCulloch M, Falter J, Trotter J, Montagna P (2012) Coral resilience to ocean acidification and global warming through pH up-regulation. Nature Climate Change 2:623–627CrossRefGoogle Scholar
  77. Meehl GA, Arblaster JM (2009) A lagged warm event-like response to peaks in solar forcing in the Pacific region. J Climate 22:3647–3660CrossRefGoogle Scholar
  78. Meehl GA, Arblaster JM, Matthes K, Sassi F, van Loon H (2009) Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science 325:1114–1118CrossRefGoogle Scholar
  79. Meehl GA, Hu A, Arblaster JM, Fasullo J, Trenberth KE (2013) Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific oscillation. J Climate 26:7298–7310CrossRefGoogle Scholar
  80. Mestas-Nuñez AM, Miller AJ (2006) Interdecadal variability and climate change in the eastern tropical Pacific: a review. Prog Oceanogr 69:267–284CrossRefGoogle Scholar
  81. Moy CM, Seltzer GO, Rodbell DT, Anderson DM (2002) Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420:162–164CrossRefGoogle Scholar
  82. Nurhati IS, Cobb KM, Di Lorenzo E (2011) Decadal-Scale SST and Salinity Variations in the Central Tropical Pacific: Signatures of Natural and Anthropogenic Climate Change. J Climate 24:3294–3308Google Scholar
  83. Pak D (2012) Palaeoclimate analogue complexity. Nat Geosci 5:450–451CrossRefGoogle Scholar
  84. Palacios DM (2004) Seasonal patterns of sea-surface temperature and ocean color around the Galápagos: regional and local influences. Deep-Sea Res Part II-Top Stud Oceanogr 51:43–57CrossRefGoogle Scholar
  85. Pelejero C, Calvo E, Hoegh-Guldberg O (2010) Paleo-perspectives on ocean acidification. Trends Ecol Evol 25(6):332–344Google Scholar
  86. Raven J, Caldeira K, Elderfield H, Hoegh-Guldberg O, Liss P, Riebesell U, Shepherd J, Turley C, Watson A (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society. Available online at
  87. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J Geophys Res-Atmos 108. doi: 10.1029/2002JD002670
  88. Rein B, Luckge A, Sirocko F (2004) A major Holocene ENSO anomaly during the Medieval period. Geophys Res Lett 31:17. doi: 10.1029/2004GL020161 CrossRefGoogle Scholar
  89. Rein B, Luckge A, Reinhardt L, Sirocko F, Wolf A, Dullo WC (2005) El Niño variability off Peru during the last 20,000 years. Paleoceanography 20(4). doi: 10.1029/2004PA001099
  90. Rodgers KB, Schrag DP, Cane MA, Naik NH (2000) The bomb C-14 transient in the Pacific Ocean. J Geophys Res-Oceans 105(C4):8489–8512CrossRefGoogle Scholar
  91. Rodgers KB, Aumont O, Madec G, Menkes C, Blanke B, Monfray P, Orr JC, Schrag DP (2004) Radiocarbon as a thermocline proxy for the eastern equatorial Pacific. Geophys Res Lett 31(14). doi:  10.1029/2004GL019764
  92. Sachs JP, Sachse D, Smittenberg RH, Zhang ZH, Battisti DS, Golubic S (2009) Southward movement of the intertropical convergence zone, AD 1400-1850. Nat Geosci 2:519–525CrossRefGoogle Scholar
  93. Sadekov A, Ganeshram R, Pichevin L, Berdin R, McClymont E, Elderfield H, Tudhope AW (2013) Palaeoclimate reconstructions reveal a strong link between El Niño-Southern Oscillation and tropical Pacific mean state. Nat Commun 4:1–8. doi: 10.1038/ncomms3692 CrossRefGoogle Scholar
  94. Schrag DP (1999) Rapid analysis of high-precision Sr/Ca ratios in scleractinian corals and other marine carbonates. Paleoceanography 14:97–102CrossRefGoogle Scholar
  95. Shen GT, Dunbar RB (1995) Environmental controls on uranium in reef corals. Geochim Cosmochim Ac 59:2009–2024CrossRefGoogle Scholar
  96. Shen GT, Boyle EA, Lea DW (1987) Cadmium in corals as a tracer of historical upwelling and industrial fallout. Nature 328:794–796CrossRefGoogle Scholar
  97. Shen GT, Campbell TM, Dunbar RB, Wellington GM, Colgan MW, Glynn PW (1991) Paleochemistry of manganese in corals from the Galápagos Islands. Coral Reefs 10:91–101CrossRefGoogle Scholar
  98. Shen GT, Cole JE, Lea DW, Linn LJ, McConnaughey TA, Fairbanks RG (1992) Surface ocean variability at Galápagos from 1936–1982: calibration of geochemical tracers in corals. Paleoceanography 7:563–588CrossRefGoogle Scholar
  99. Steinhilber F, Beer J, Fröhlich C (2009) Total solar irradiance during the Holocene. Geophys Res Lett 36. doi: 10.1029/2009GL040142
  100. Thompson DM, Ault TR, Evans MN, Cole JE, Emile-Geay J (2011) Comparison of observed and simulated tropical climate trends using a forward model of coral δ18O. Geophys Res Lett 38(14). doi: 10.1029/2011GL048224
  101. Toth LT, Aronson RB, Vollmer SV, Hobbs JW, Urrego DH, Cheng H, Enochs IC, Combosch DJ, van Woesik R, Macintyre IG (2012) ENSO drove 2500-year collapse of eastern Pacific coral reefs. Science 337:81–84CrossRefGoogle Scholar
  102. Trenberth KE, Shea DJ (1987) On the evolution of the Southern Oscillation. Mon Weather Rev 115:3078–3096CrossRefGoogle Scholar
  103. Trotter J, Montagna P, McCulloch M, Silenzi S, Reynaud S, Mortimer G, Martin S, Ferrier-Pages C, Gattuso JP, Rodolfo-Metapa R (2011) Quantifying the pH ‘vital effect’ in the temperate zooxanthellate coral Cladocora caespitosa: validation of the boron seawater pH proxy. Earth Planet Sc Lett 303:163–173CrossRefGoogle Scholar
  104. Tudhope AW, Shimmield GB, Chilcott CP, Jebb M, Fallick AE, Dalgleish AN (1995) Recent changes in climate in the far western equatorial Pacific and their relationship to the southern oscillation: oxygen isotope records from massive corals, Papua New Guinea. Earth Planet Sc Lett 136:575–590CrossRefGoogle Scholar
  105. Tudhope AW, Chilcott CP, McCulloch MT, Cook ER, Chappell J, Ellam RM, Lea DW, Lough JM, Shimmield GB (2001) Variability in the El Niño Southern Oscillation through a glacial-interglacial cycle. Science 291:1511–1517CrossRefGoogle Scholar
  106. Tudhope A, Cole JE, Chilcott CP, Ellam RM, Brown J, Collins M, Barnett H, Lea DW (2008) Evidence for changes in ENSO in the mid-late Holocene from fossil corals in Galápagos. EOS: Trans AGU 89(53). Fall Meet Suppl, Abstract PP21D-06Google Scholar
  107. Urban FE, Cole JE, Overpeck JT (2000) Modification of tropical Pacific variability by its mean state inferred from a 155 year coral record. Nature 407:989–991CrossRefGoogle Scholar
  108. Vecchi GA, Clement A, Soden BJ (2008) Examining the tropical Pacific’s response to global warming. EOS: Trans AGU 89(9):81, 83Google Scholar
  109. Villaescusa JA, Carriquiry JD (2004) Calibration of Sr/Ca and Mg/Ca paleothermometers in coral Porites sp from San Benedicto Island, Revillagigedo Archipelago, Mexico. Ciencias Marinas 30:603–618Google Scholar
  110. Waelbrook C, Paul A, Kucera M, Rosell-Melé A, Weinelt M, Schneider R, Mix AC et al (2009) Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature Geosci 2(2):127–132CrossRefGoogle Scholar
  111. Wellington GM, Glynn PW (2007) Responses of coral reefs to El Niño-Southern Oscillation sea-warming events. In: Aronson RB (ed) Geological approaches to coral reef ecology. Springer, Berlin, pp 342–385CrossRefGoogle Scholar
  112. Wellington GM, Dunbar RB, Merlen G (1996) Calibration of stable oxygen isotope signatures in Galápagos corals. Paleoceanography 11:467–480CrossRefGoogle Scholar
  113. Wilson R, Tudhope A, Brohan P, Briffa K, Osborn T, Tett S (2006) Two-hundred-fifty years of reconstructed and modeled tropical temperatures. J Geophys Res-Oceans. doi: 10.1029/2005JC003188 Google Scholar
  114. Wolff M (2010) Galapagos does not show recent warming but increased seasonality. Galapagos Res 67:38–44Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Geosciences and Atmospheric SciencesUniversity of ArizonaTucsonUSA
  2. 2.School of GeoSciencesGrant Institute, University of EdinburghEdinburghUK

Personalised recommendations