Skip to main content

Insights from the Application of Genetics on Pocillopora-Symbiodinium Associations in the Eastern Tropical Pacific

  • Chapter
  • First Online:
Book cover Coral Reefs of the Eastern Tropical Pacific

Part of the book series: Coral Reefs of the World ((CORW,volume 8))

  • 3702 Accesses

Abstract

As one of the most widely distributed and most studied scleractinian genera in the world, Pocillopora encompasses an important group of corals. In the eastern tropical Pacific, Pocillopora species thrive and are the major reef-building scleractinian taxon, even though conditions are considered suboptimal for coral growth and reef development. Early observations on reproduction and species distributions appear to be complicated by high phenotypic diversity and often inaccurate species identifications. New genetic-based evidence reorganizes species classifications within Pocillopora by delimiting boundaries to genetic recombination. Such improvements toward a natural and accurate taxonomy have further revealed important patterns in Symbiodinium diversity and distribution associated with Pocillopora in the eastern Pacific. Here, I review work on genetic connectivity and symbiosis ecology that may explain physiological, ecological and evolutionary characteristics that account for the differential success of this coral genus in the marginal eastern tropical Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker AC, Starger CJ, McClanahan T, Glynn PW (2004) Corals’ adaptive response to climate change. Nature 430:410

    Article  Google Scholar 

  • Baums IB, Boulay JN, Polato NR, Hellberg ME (2012a) No gene flow across the Eastern Pacific Barrier in the reef-building coral Porites lobata. Mol Ecol 21:5418–5433

    Article  Google Scholar 

  • Baums IB, Boulay JN, Polato NR, Hellberg ME (2012b) Data from: No gene flow across the Eastern Pacific Barrier in the reef-building coral Porites lobata. doi:10.5061/dryad.7gp1f

  • Benzoni F, Stefani F, Pichon M, Galli P (2010) The name game: morpho-molecular species boundaries in the genus Psammocora (Cnidaria, Scleractinia). Zool J Linn Soc 160:421–456

    Article  Google Scholar 

  • Berkelmans R, van Oppen MJ (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc Lond, Ser B: Biol Sci 273:2305–2312

    Article  Google Scholar 

  • Bridle JR, Polechová J, Kawata M, Butlin RK (2010) Why is adaptation prevented at ecological margins? New insights from individual-based simulations. Ecol Lett 13:485–494

    Article  Google Scholar 

  • Bucher M, Wolfowicz I, Voss PA, Hambleton EA, Guse A (2016) Development and symbiosis establishment in the cnidarian endosymbiosis model Aiptasia sp. Sci Rep 6:19867. doi:10.1038/srep19867

  • Budd AF (1990) Longterm patterns of morphological variation within and among species of reef-corals and their relationship to sexual reproduction. Syst Biol 15:150–165

    Google Scholar 

  • Budd AF, Romano S, Smith N, Barbeitos M (2010) Rethinking the phylogeny of scleractinian corals: a review of morphological and molecular data. Integr Comp Biol 50:411–427

    Article  Google Scholar 

  • Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Mol Ecol Resour 166:465–529

    Google Scholar 

  • Burchard JE (1979) Coral fauna of the western Arabian Gulf. Arabian American Oil Company, Dhahran, Saudi Arabia, p 129

    Google Scholar 

  • Cairns SD (1999) Species richness of recent Scleractinia. Atoll Res Bull 459:1–45

    Article  Google Scholar 

  • Cantera JR, von Prahl H, Escobar JC, Peña E (1989) Sistemática de los corales del género Pocillopora del pacífico colombiano utilizando taxonomía numérica. Rev Biol Trop 37:23–28

    Google Scholar 

  • Combosch DJ, Vollmer SV (2011) Population genetics of an ecosystem-defining reef coral Pocillopora damicornis in the tropical eastern Pacific. PLoS ONE 6:e21200

    Article  CAS  Google Scholar 

  • Combosch DJ, Guzmán HM, Schuhmacher H, Vollmer SV (2008) Interspecific hybridization and restricted trans-Pacific gene flow in the tropical eastern Pacific Pocillopora. Mol Ecol 17:1304–1312

    Article  CAS  Google Scholar 

  • Cortés J (1997) Biology and geology of eastern Pacific coral reefs. Coral Reefs 16:S39–S46

    Article  Google Scholar 

  • Cortés J, Jiménez C (2003) Corals and coral reefs of the Pacific of Costa Rica: history, research and status. In: Cortes J (ed) Latin American coral reefs. Elsevier Science, Amsterdam, pp 361–386

    Chapter  Google Scholar 

  • Cunning R, Glynn PW, Baker AC (2013) Flexible associations between Pocillopora corals and Symbiodinium limit utility of symbiosis ecology in defining species. Coral Reefs 1–7

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Book  Google Scholar 

  • Dayan T, Simberloff D (2005) Ecological and community-wide character displacement: the next generation. Ecol Lett 8:875–894

    Article  Google Scholar 

  • Dionne M, Caron F, Dodson JJ, Bernatchez L (2008) Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation. Mol Ecol 17:2382–2396

    Article  CAS  Google Scholar 

  • Eakin CM (2001) A tale of two ENSO events: carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panama. Bull Mar Sci 69:171–186

    Google Scholar 

  • Flot J-F, Tillier S (2007) The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: the putative D-loop and a novel ORF of unknown function. Gene 401:80–87

    Article  CAS  Google Scholar 

  • Flot J-F, Magalon H, Cruaud C, Couloux A, Tillier S (2008) Patterns of genetic structure among Hawaiian corals of the genus Pocillopora yield clusters of individuals that are compatible with morphology. C R Biol 331:239–247

    Article  Google Scholar 

  • Flot J-F, Couloux A, Tillier S (2010) Haplowebs as a graphical tool for delimiting species: a revival of Doyle’s “field for recombination” approach and its application to the coral genus Pocillopora in Clipperton. BMC Evol Biol 10:372. doi:10.1186/1471-2148-10-372

    Article  Google Scholar 

  • Forsman ZH, Guzmán HM, Chen CA, Fox GE, Wellington GM (2005) An ITS region phylogeny of Siderastrea (Cnidaria: Anthozoa): is S. glynni endangered or introduced? Coral Reefs 24:343–347

    Article  Google Scholar 

  • Forsman ZH, Martinez JA, Maragos JE, Toonen RJ (2010) Resurrection of Porites hawaiiensis Vaughan, 1907; a Hawaiian coral obscured by small size, cryptic habitat, and confused taxonomy. Zootaxa 2624:67–68

    Google Scholar 

  • Forsman ZH, Johnston E, Brooks A, Adam TC, Toonen RJ (2013) Genetic evidence for regional isolation of Pocillopora corals from Moorea. Oceanography 26:153–155

    Article  Google Scholar 

  • Friedrich A, Merkert H, Fendert T, Hacker J, Proksch P, Hentschel U (1999) Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Mar Biol 134:461–470

    Article  Google Scholar 

  • Fukami H (2008) Short review: molecular phylogenetics analyses of reef corals. Galaxea 10:47–55

    Article  Google Scholar 

  • Fukami H, Budd AF, Paulay G, Sole-Cava A, Chen CA, Iwao K, Knowlton N (2004) Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427:832–835

    Article  CAS  Google Scholar 

  • Glynn PW (1976) Some physical and biological determinants of coral community structure in the eastern Pacific. Ecol Monogr 46:431–456

    Article  Google Scholar 

  • Glynn PW (1993) Monsoonal upwelling and episodic Acanthaster predation as probable controls of coral reef distribution and community structure in Oman, Indian Ocean. Atoll Res Bull 379:1–86

    Article  Google Scholar 

  • Glynn PW (1999) Pocillopora inflata, a new species of scleractinian coral (Cnidaria:Anthozoa) from the eastern Pacific. Pac Sci 53:168–180

    Google Scholar 

  • Glynn PW (2003) Coral communities and coral reefs of Ecuador. In: Cortes J (ed) Latin American coral reefs. Elsevier Science, Amsterdam, pp 449–472

    Chapter  Google Scholar 

  • Glynn PW, Ault J (2000) A biogeographic analysis and review of the far eastern Pacific coral reef region. Coral Reefs 19:1–23

    Article  Google Scholar 

  • Glynn PW, Colley SB (2008) Survival of brooding and broadcasting reef corals following large scale disturbances: is there any hope for broadcasting species during global warming? In: Proceedings of 11th International Coral Reef Symposium, vol 1, Ft Lauderdale, pp 361–365

    Google Scholar 

  • Glynn PW, Maté JL, Baker AC, Calderón MO (2001) Coral bleaching and mortality in Panama and Ecuador during the 1997-1998 El Niño-Southern Oscillation event: spatial/temporal patterns and comparisons with the 1982-1983 event. Bull Mar Sci 69:79–109

    Google Scholar 

  • Grigg RW, Hey R (1992) Paleoceanography of the Tropical Eastern Pacific Ocean. Science 255:172–178

    Article  CAS  Google Scholar 

  • Guzmán HM, Cortés J (1989) Growth rates of eight species of scleractinian corals in the eastern Pacific (Costa Rica). Bull Mar Sci 44:1186–1194

    Google Scholar 

  • Hannes AR, Barbeitos M, Coffroth MA (2009) Stability of symbiotic dinoflagellate type in the octocoral Briareum asbestinum. Mar Ecol Prog Ser 391:65–72

    Article  Google Scholar 

  • Hirose M, Reimer JD, Hidaka M, Suda S (2008) Phylogenetic analyses of potentially free-living Symbiodinium spp. isolated from coral reef sand in Okinawa. Japan. Mar Biol 155:105–112

    Article  Google Scholar 

  • Huang D, Licuanan WY, Baird AH, Fukami H (2011) Cleaning up the “Bigmessidae”: molecular phylogeny of scleractinian corals from Faviidae, Merulinidae Pectiniidae and Trachyphylliidae. BMC Evol Biol 11:37

    Article  Google Scholar 

  • Iglesias-Prieto R, Reyes-Bonilla H, Riosmena Rodríguez R (2003) Effects of 1997–1998 ENSO on coral reef communities in the Gulf of California, Mexico. Geofis Int 42:467–472

    Google Scholar 

  • Johansson F, Richter-Boix A (2013) Within-population developmental and morphological plasticity is mirrored in between-population differences: linking plasticity and diversity. Evol Biol 1–10

    Google Scholar 

  • Jokiel PL (1984) Long distance dispersal of reef corals by rafting. Coral Reefs 3:113–116

    Article  Google Scholar 

  • Kirkpatrick M, Barton NH (1997) Evolution of a species’ range. The Amer Nat 150:1–23

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Thornhill DJ (2011) Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS ONE 6:e29013

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Loh W, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054

    Article  Google Scholar 

  • LaJeunesse TC, Bhagooli R, Hidaka M, de Vantier L, Done T, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284:147–161

    Article  Google Scholar 

  • LaJeunesse TC, Reyes-Bonilla H, Warner ME (2007) Spring “bleaching” among Pocillopora in the Sea of Cortez. Eastern Pacific. Coral Reefs 26:265

    Article  Google Scholar 

  • LaJeunesse TC, Reyes-Bonilla H, Warner ME, Wills M, Schmidt GW, Fitt WK (2008) Specificity and stability in high latitude eastern Pacific coral–algal symbioses. Limnol Oceanogr 53:719–727

    Article  Google Scholar 

  • LaJeunesse TC, Loh W, Trench RK (2009) Do introduced endosymbiotic dinoflagellates ‘take’ to new hosts? Biol Invasions 11:995–1003

    Article  Google Scholar 

  • LaJeunesse TC, Pettay D, Sampayo EM (2010a) Long-standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr 37:785–800

    Article  Google Scholar 

  • LaJeunesse TC, Smith R, Pinzón JH, Pettay DT, McGinley M, Medina-Rosas P, Cupul-Magaña AL, Pérez A, Reyes-Bonilla H, Warner ME (2010b) Host-symbiont recombination vs. natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance. Proc R Soc Lond, Ser B: Biol Sci 277:2925–2934

    Article  Google Scholar 

  • LaJeunesse T, Wham D, Pettay D, Parkinson J, Keshavmurthy S, Chen C (2014) Ecologically differentiated, stress tolerant endosymbionts in the dinoflagellate genus Symbiodinium Clade D are different species. Phycologia 53:305–319

    Article  Google Scholar 

  • Lessios H, Robertson D (2006) Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier. Proc R Soc Lond, Ser B: Biol Sci 273:2201–2208

    Article  CAS  Google Scholar 

  • Maté JL (2003) Corals and coral reefs of the Pacific coast of Panamá. In: Cortes J (ed) Latin American coral reefs. Elsevier Science, Amsterdam, pp 387–418

    Chapter  Google Scholar 

  • McGinley MP, Aschaffenburg MD, Pettay DT, Smith RT, LaJeunesse TC, Warner ME (2012) Symbiodinium spp. in colonies of eastern Pacific Pocillopora spp. are highly stable despite the prevalence of low-abundance background populations. Mar Ecol Prog Ser 462:1–7

    Article  Google Scholar 

  • Muscatine L (1967) Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host. Science 156:516–519

    Article  CAS  Google Scholar 

  • Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z (ed) Ecosystems of the World 25. Elsevier, Amsterdam, pp 75–87

    Google Scholar 

  • Muscatine L, Porter J (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460

    Article  Google Scholar 

  • Pandolfi JM, Lovelock CE, Budd AF (2002) Character release following extinction in a Caribbean reef coral species complex. Evolution 56:479–501

    Article  Google Scholar 

  • Pearse VB, Muscatine L (1971) Role of symbiotic algae (zooxanthellae) in coral calcification. Biol Bull (Woods Hole) 141:350–363

    Article  CAS  Google Scholar 

  • Pettay DT, LaJeunesse T (2013) Long-range dispersal and high-latitude environments influence the population structure of a “stress-tolerant” dinoflagellate endosymbiont. PLoS ONE. doi:10.1371/journal.pone.0079208

    Google Scholar 

  • Pettay DT, Wham D, Pinzón JH, LaJeunesse TC (2011) Genotypic diversity and spatial-temporal distribution of Symbiodinium clones in an abundant reef coral. Mol Ecol 20:5197–5212

    Article  Google Scholar 

  • Pfennig DW, Pfennig KS (2012) Development and evolution of character displacement. Ann N Y Acad Sci 1256:89–107

    Article  Google Scholar 

  • Pinzón JH, Lajeunesse TC (2010) Data from: species delimitation of common reef corals in the genus Pocillopora using nucleotide sequence phylogenies, population genetics, and symbiosis ecology. doi:10.5061/dryad.7908

  • Pinzón JH, LaJeunesse TC (2011) Species delimitation of common reef corals in the genus Pocillopora using nucleotide sequence phylogenies, population genetics and symbiosis ecology. Mol Ecol 20:311–325

    Article  Google Scholar 

  • Pinzón JH, Reyes-Bonilla H, Baums I, LaJeunesse T (2012) Contrasting clonal structure of a single population of Pocillopora (Scleractinia) at two nearby sites in the Gulf of California. Coral Reefs 31:765–777

    Article  Google Scholar 

  • Pinzón JH, Sampayo EM, Cox EF, Chauka LJ, Chen CA, Voolstra CR, LaJeunesse TC (2013a) Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). J Biogeogr 40:1595–1608

    Article  Google Scholar 

  • Pinzón JH, Sampayo EM, Cox EF, Chauka LJ, Chen CA, Voolstra CR, LaJeunesse TC (2013b) Data from: Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). Dryad digital repository. doi:10.5061/dryad.jd512

  • Reyes-Bonilla H (2002) Checklist of valid names and synonyms of stony corals (Anthozoa: Scleractinia) from the eastern Pacific. J Nat Hist 36:1–13

    Article  Google Scholar 

  • Reyes-Bonilla H (2003) Coral reefs of the Pacific coast of Mexico. In: Cortés J (ed) Latin American coral reefs. Elsevier Science, pp 331–349

    Google Scholar 

  • Reyes-Bonilla H, Barraza JE (2003) Corals and associated marine communities from El Salvador. In: Cortés J (ed) Latin American coral reefs. Elsevier Science, Amsterdam, pp 351–360

    Google Scholar 

  • Richmond RH (1981) Energetic considerations in the dispersal of Pocillopora damicornis (Linnaeus) planulae. In: Proceedings of 4th International Coral Reef Symposium, vol 1, Manila, pp 153–156

    Google Scholar 

  • Richmond RH (1987a) Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar Biol 93:527–533

    Article  Google Scholar 

  • Richmond RH (1987b) Energetic relationships and biogeographical differences among fecundity, growth and reproduction in the reef coral Pocillopora damicornis. Bull Mar Sci 41:594–604

    Google Scholar 

  • Richmond RH, Jokiel PL (1984) Lunar periodicity in larva release in the reef coral Pocillopora damicornis at Enewetak and Hawaii. Bull Mar Sci 34:280–287

    Google Scholar 

  • Riegl BM, Purkis SJ eds (2012) Coral reefs of the Gulf: adaptation to climate extremes. Coral reefs of the world 3, Springer p 379

    Google Scholar 

  • Robinson BW, Pfennig DW (2013) Inducible competitors and adaptive diversification. Curr Zool 59:537–552

    Article  Google Scholar 

  • Rodriguez-Lanetty M, Wood-Charlson E, Hollingsworth L, Krupp D, Weis V (2006) Temporal and spatial infection dynamics indicate recognition events in the early hours of a dinoflagellate/coral symbiosis. Mar Biol 149:713–719

    Article  Google Scholar 

  • Rueffler C, Van Dooren TJM, Leimar O, Abrams PA (2006) Disruptive selection and then what? Trends Ecol Evol 21:238–245

    Article  Google Scholar 

  • Sampayo EM, Franceschinis L, Hoegh-Guldberg O, Dove S (2007) Niche partitioning of closely related symbiotic dinoflagellates. Mol Ecol 16:3721–3733

    Article  CAS  Google Scholar 

  • Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci USA 105:10,444–10,449

    Google Scholar 

  • Schmidt-Roach S, Lundgren P, Miller KJ, Gerlach G, Noreen AME, Andreakis N (2012) Assessing hidden species diversity in the coral Pocillopora damicornis from eastern Australia. Coral Reefs 1–12

    Google Scholar 

  • Schmidt-Roach S, Miller KJ, Lundgren P, Andreakis N (2014) With eyes wide open: a revision of species within and closely related to the Pocillopora damicornis species complex (Scleractinia; Pocilloporidae) using morphology and genetics. Zool J Linn Soc 170:1–33

    Article  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  CAS  Google Scholar 

  • Souter P (2010) Hidden genetic diversity in a key model species of coral. Mar Biol. doi:10.1007/s00227-009-1370-3

    Google Scholar 

  • Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian hosts—Symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol Syst 8:23–43

    Article  Google Scholar 

  • Stefani F, Benzoni F, Pichon M, Cancelliere C, Galli P (2008) A multidisciplinary approach to the definition of species boundaries in branching species of the coral genus Psammocora (Cnidaria, Scleractinia). Zool Scr 37:71–91

    Google Scholar 

  • Stefani F, Benzoni F, Yang SY, Pichon M, Galli P, Chen C (2011) Comparison of morphological and genetic analyses reveals cryptic divergence and morphological plasticity in Stylophora (Cnidaria, Scleractinia). Coral Reefs 30:1033–1049

    Article  Google Scholar 

  • Stoddart JA (1983) Asexual production of planulae in the coral Pocillopora damicornis. Mar Biol 76:279–284

    Article  Google Scholar 

  • Sutton D, Hoegh-Guldberg O (1990) Host-zooxanthella interactions in four temperate marine invertebrate symbioses: assessment of effect of host extracts on symbionts. Biol Bull (Woods Hole) 178:175–186

    Article  Google Scholar 

  • Swanson R, Hoegh-Guldberg O (1998) Amino acid synthesis in the symbiotic sea anemone Aiptasia pulchella. Mar Biol 131:83–93

    Article  CAS  Google Scholar 

  • Thornhill DJ, Lewis AM, Wham DC, LaJeunesse TC (2014) Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 68:352–367

    Article  CAS  Google Scholar 

  • Torda G, Schmidt-Roach S, Peplow L, Lundgren P, van Oppen MJH (2013) A rapid genetic assay for the identification of the most common Pocillopora damicornis genetic lineages on the Great Barrier Reef. PLoS ONE. doi:10.1371/journal.pone.0058447

    Google Scholar 

  • Toth LT, Aronson RB, Vollmer SV, Hobbs JW, Urrego DH, Cheng H, Enochs IC, Combosch DJ, van Woesik R, Macintyre IG (2012) ENSO drove 2500-year collapse of eastern Pacific coral reefs. Science 337:81–84

    Article  CAS  Google Scholar 

  • Traylor-Knowles N, Granger BR, Lubinski TJ, Parikh JR, Garamszegi S, Xia Y, Marto JA, Kaufman L, Finnerty JR (2011) Production of a reference transcriptome and transcriptomic database (PocilloporaBase) for the cauliflower coral Pocillopora damicornis. BMC Genomics 12:585

    Article  CAS  Google Scholar 

  • Trench RK (1979) The cell biology of plant-animal symbiosis. Annu Rev Plant Physiol 30:485–531

    Article  CAS  Google Scholar 

  • Veron JEN (1995) Corals in space and time. The biogeography and evolution of the Scleractinia. Comstock/Cornell, Ithaca and London, p 321

    Google Scholar 

  • Veron JE (2000) Corals of the world, 3 vols. Australian Institute of Marine Science, Townsville, pp 429, 463, 490

    Google Scholar 

  • Veron JE (2002) New species described in corals of the world. Australian Institute of Marine Science, Townsville, Australia

    Google Scholar 

  • Veron JEN, Marsh LM (1988) Hermatypic corals of Western Australia: records and annotated species list. Rec West Aust Mus 29:1–136

    Google Scholar 

  • Veron JE, Pichon M (1976) Scleractinia of eastern Australia. Part I. Families Thamnasteriidae, Astrocoeniidae, Pocilloporidae. Australian Institute of Marine Science, Monograph Series, vol 1, p 86

    Google Scholar 

  • Vidal-Dupiol J, Zoccola D, Tambutté E, Grunau C, Cosseau C, Smith KM, Freitag M, Dheilly NM, Allemand D, Tambutte S (2013) Genes related to ion-transport and energy production are upregulated in response to CO2-driven pH decrease in corals: New insights from transcriptome analysis. PLoS ONE 8:e58652. doi:10.1371/journal.pone.0058652

  • Yeoh S-R, Dai C-F (2010) The production of sexual and asexual larvae within single broods of the scleractinian coral, Pocillopora damicornis. Mar Biol 157:351–359

    Article  Google Scholar 

  • Zapata FA, Vargas-Ángel B (2003) Corals and coral reefs of the Pacific coast of Colombia. In: Cortés J (ed) Latin American coral reefs. Elsevier Science, Amsterdam, pp 419–448

    Chapter  Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude to Todd C. LaJeunesse for the Symbiodinium data provided and help with the manuscript. Scott Santos and Dan Thornhill provided comments during the review process. Zac Forsman provided the photographs of Pocillopora from Hawai’i. Finally, Peter Glynn, Waleska Castro and Whitney Mann offered helpful comments on early versions of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge H. Pinzón C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pinzón C., J.H. (2017). Insights from the Application of Genetics on Pocillopora-Symbiodinium Associations in the Eastern Tropical Pacific. In: Glynn, P., Manzello, D., Enochs, I. (eds) Coral Reefs of the Eastern Tropical Pacific. Coral Reefs of the World, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7499-4_14

Download citation

Publish with us

Policies and ethics