Insights from the Application of Genetics on Pocillopora-Symbiodinium Associations in the Eastern Tropical Pacific

  • Jorge H. Pinzón C.Email author
Part of the Coral Reefs of the World book series (CORW, volume 8)


As one of the most widely distributed and most studied scleractinian genera in the world, Pocillopora encompasses an important group of corals. In the eastern tropical Pacific, Pocillopora species thrive and are the major reef-building scleractinian taxon, even though conditions are considered suboptimal for coral growth and reef development. Early observations on reproduction and species distributions appear to be complicated by high phenotypic diversity and often inaccurate species identifications. New genetic-based evidence reorganizes species classifications within Pocillopora by delimiting boundaries to genetic recombination. Such improvements toward a natural and accurate taxonomy have further revealed important patterns in Symbiodinium diversity and distribution associated with Pocillopora in the eastern Pacific. Here, I review work on genetic connectivity and symbiosis ecology that may explain physiological, ecological and evolutionary characteristics that account for the differential success of this coral genus in the marginal eastern tropical Pacific.


Symbiosis Coevolution Coral-algae interactions Genetic connectivity Diversity 



I would like to express my gratitude to Todd C. LaJeunesse for the Symbiodinium data provided and help with the manuscript. Scott Santos and Dan Thornhill provided comments during the review process. Zac Forsman provided the photographs of Pocillopora from Hawai’i. Finally, Peter Glynn, Waleska Castro and Whitney Mann offered helpful comments on early versions of this chapter.


  1. Baker AC, Starger CJ, McClanahan T, Glynn PW (2004) Corals’ adaptive response to climate change. Nature 430:410CrossRefGoogle Scholar
  2. Baums IB, Boulay JN, Polato NR, Hellberg ME (2012a) No gene flow across the Eastern Pacific Barrier in the reef-building coral Porites lobata. Mol Ecol 21:5418–5433CrossRefGoogle Scholar
  3. Baums IB, Boulay JN, Polato NR, Hellberg ME (2012b) Data from: No gene flow across the Eastern Pacific Barrier in the reef-building coral Porites lobata. doi: 10.5061/dryad.7gp1f
  4. Benzoni F, Stefani F, Pichon M, Galli P (2010) The name game: morpho-molecular species boundaries in the genus Psammocora (Cnidaria, Scleractinia). Zool J Linn Soc 160:421–456CrossRefGoogle Scholar
  5. Berkelmans R, van Oppen MJ (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc Lond, Ser B: Biol Sci 273:2305–2312CrossRefGoogle Scholar
  6. Bridle JR, Polechová J, Kawata M, Butlin RK (2010) Why is adaptation prevented at ecological margins? New insights from individual-based simulations. Ecol Lett 13:485–494CrossRefGoogle Scholar
  7. Bucher M, Wolfowicz I, Voss PA, Hambleton EA, Guse A (2016) Development and symbiosis establishment in the cnidarian endosymbiosis model Aiptasia sp. Sci Rep 6:19867. doi: 10.1038/srep19867
  8. Budd AF (1990) Longterm patterns of morphological variation within and among species of reef-corals and their relationship to sexual reproduction. Syst Biol 15:150–165Google Scholar
  9. Budd AF, Romano S, Smith N, Barbeitos M (2010) Rethinking the phylogeny of scleractinian corals: a review of morphological and molecular data. Integr Comp Biol 50:411–427CrossRefGoogle Scholar
  10. Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Mol Ecol Resour 166:465–529Google Scholar
  11. Burchard JE (1979) Coral fauna of the western Arabian Gulf. Arabian American Oil Company, Dhahran, Saudi Arabia, p 129Google Scholar
  12. Cairns SD (1999) Species richness of recent Scleractinia. Atoll Res Bull 459:1–45CrossRefGoogle Scholar
  13. Cantera JR, von Prahl H, Escobar JC, Peña E (1989) Sistemática de los corales del género Pocillopora del pacífico colombiano utilizando taxonomía numérica. Rev Biol Trop 37:23–28Google Scholar
  14. Combosch DJ, Vollmer SV (2011) Population genetics of an ecosystem-defining reef coral Pocillopora damicornis in the tropical eastern Pacific. PLoS ONE 6:e21200CrossRefGoogle Scholar
  15. Combosch DJ, Guzmán HM, Schuhmacher H, Vollmer SV (2008) Interspecific hybridization and restricted trans-Pacific gene flow in the tropical eastern Pacific Pocillopora. Mol Ecol 17:1304–1312CrossRefGoogle Scholar
  16. Cortés J (1997) Biology and geology of eastern Pacific coral reefs. Coral Reefs 16:S39–S46CrossRefGoogle Scholar
  17. Cortés J, Jiménez C (2003) Corals and coral reefs of the Pacific of Costa Rica: history, research and status. In: Cortes J (ed) Latin American coral reefs. Elsevier Science, Amsterdam, pp 361–386CrossRefGoogle Scholar
  18. Cunning R, Glynn PW, Baker AC (2013) Flexible associations between Pocillopora corals and Symbiodinium limit utility of symbiosis ecology in defining species. Coral Reefs 1–7Google Scholar
  19. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonCrossRefGoogle Scholar
  20. Dayan T, Simberloff D (2005) Ecological and community-wide character displacement: the next generation. Ecol Lett 8:875–894CrossRefGoogle Scholar
  21. Dionne M, Caron F, Dodson JJ, Bernatchez L (2008) Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation. Mol Ecol 17:2382–2396CrossRefGoogle Scholar
  22. Eakin CM (2001) A tale of two ENSO events: carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panama. Bull Mar Sci 69:171–186Google Scholar
  23. Flot J-F, Tillier S (2007) The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: the putative D-loop and a novel ORF of unknown function. Gene 401:80–87CrossRefGoogle Scholar
  24. Flot J-F, Magalon H, Cruaud C, Couloux A, Tillier S (2008) Patterns of genetic structure among Hawaiian corals of the genus Pocillopora yield clusters of individuals that are compatible with morphology. C R Biol 331:239–247CrossRefGoogle Scholar
  25. Flot J-F, Couloux A, Tillier S (2010) Haplowebs as a graphical tool for delimiting species: a revival of Doyle’s “field for recombination” approach and its application to the coral genus Pocillopora in Clipperton. BMC Evol Biol 10:372. doi: 10.1186/1471-2148-10-372 CrossRefGoogle Scholar
  26. Forsman ZH, Guzmán HM, Chen CA, Fox GE, Wellington GM (2005) An ITS region phylogeny of Siderastrea (Cnidaria: Anthozoa): is S. glynni endangered or introduced? Coral Reefs 24:343–347CrossRefGoogle Scholar
  27. Forsman ZH, Martinez JA, Maragos JE, Toonen RJ (2010) Resurrection of Porites hawaiiensis Vaughan, 1907; a Hawaiian coral obscured by small size, cryptic habitat, and confused taxonomy. Zootaxa 2624:67–68Google Scholar
  28. Forsman ZH, Johnston E, Brooks A, Adam TC, Toonen RJ (2013) Genetic evidence for regional isolation of Pocillopora corals from Moorea. Oceanography 26:153–155CrossRefGoogle Scholar
  29. Friedrich A, Merkert H, Fendert T, Hacker J, Proksch P, Hentschel U (1999) Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Mar Biol 134:461–470CrossRefGoogle Scholar
  30. Fukami H (2008) Short review: molecular phylogenetics analyses of reef corals. Galaxea 10:47–55CrossRefGoogle Scholar
  31. Fukami H, Budd AF, Paulay G, Sole-Cava A, Chen CA, Iwao K, Knowlton N (2004) Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427:832–835CrossRefGoogle Scholar
  32. Glynn PW (1976) Some physical and biological determinants of coral community structure in the eastern Pacific. Ecol Monogr 46:431–456CrossRefGoogle Scholar
  33. Glynn PW (1993) Monsoonal upwelling and episodic Acanthaster predation as probable controls of coral reef distribution and community structure in Oman, Indian Ocean. Atoll Res Bull 379:1–86CrossRefGoogle Scholar
  34. Glynn PW (1999) Pocillopora inflata, a new species of scleractinian coral (Cnidaria:Anthozoa) from the eastern Pacific. Pac Sci 53:168–180Google Scholar
  35. Glynn PW (2003) Coral communities and coral reefs of Ecuador. In: Cortes J (ed) Latin American coral reefs. Elsevier Science, Amsterdam, pp 449–472CrossRefGoogle Scholar
  36. Glynn PW, Ault J (2000) A biogeographic analysis and review of the far eastern Pacific coral reef region. Coral Reefs 19:1–23CrossRefGoogle Scholar
  37. Glynn PW, Colley SB (2008) Survival of brooding and broadcasting reef corals following large scale disturbances: is there any hope for broadcasting species during global warming? In: Proceedings of 11th International Coral Reef Symposium, vol 1, Ft Lauderdale, pp 361–365Google Scholar
  38. Glynn PW, Maté JL, Baker AC, Calderón MO (2001) Coral bleaching and mortality in Panama and Ecuador during the 1997-1998 El Niño-Southern Oscillation event: spatial/temporal patterns and comparisons with the 1982-1983 event. Bull Mar Sci 69:79–109Google Scholar
  39. Grigg RW, Hey R (1992) Paleoceanography of the Tropical Eastern Pacific Ocean. Science 255:172–178CrossRefGoogle Scholar
  40. Guzmán HM, Cortés J (1989) Growth rates of eight species of scleractinian corals in the eastern Pacific (Costa Rica). Bull Mar Sci 44:1186–1194Google Scholar
  41. Hannes AR, Barbeitos M, Coffroth MA (2009) Stability of symbiotic dinoflagellate type in the octocoral Briareum asbestinum. Mar Ecol Prog Ser 391:65–72CrossRefGoogle Scholar
  42. Hirose M, Reimer JD, Hidaka M, Suda S (2008) Phylogenetic analyses of potentially free-living Symbiodinium spp. isolated from coral reef sand in Okinawa. Japan. Mar Biol 155:105–112CrossRefGoogle Scholar
  43. Huang D, Licuanan WY, Baird AH, Fukami H (2011) Cleaning up the “Bigmessidae”: molecular phylogeny of scleractinian corals from Faviidae, Merulinidae Pectiniidae and Trachyphylliidae. BMC Evol Biol 11:37CrossRefGoogle Scholar
  44. Iglesias-Prieto R, Reyes-Bonilla H, Riosmena Rodríguez R (2003) Effects of 1997–1998 ENSO on coral reef communities in the Gulf of California, Mexico. Geofis Int 42:467–472Google Scholar
  45. Johansson F, Richter-Boix A (2013) Within-population developmental and morphological plasticity is mirrored in between-population differences: linking plasticity and diversity. Evol Biol 1–10Google Scholar
  46. Jokiel PL (1984) Long distance dispersal of reef corals by rafting. Coral Reefs 3:113–116CrossRefGoogle Scholar
  47. Kirkpatrick M, Barton NH (1997) Evolution of a species’ range. The Amer Nat 150:1–23CrossRefGoogle Scholar
  48. LaJeunesse TC, Thornhill DJ (2011) Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS ONE 6:e29013CrossRefGoogle Scholar
  49. LaJeunesse TC, Loh W, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054CrossRefGoogle Scholar
  50. LaJeunesse TC, Bhagooli R, Hidaka M, de Vantier L, Done T, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284:147–161CrossRefGoogle Scholar
  51. LaJeunesse TC, Reyes-Bonilla H, Warner ME (2007) Spring “bleaching” among Pocillopora in the Sea of Cortez. Eastern Pacific. Coral Reefs 26:265CrossRefGoogle Scholar
  52. LaJeunesse TC, Reyes-Bonilla H, Warner ME, Wills M, Schmidt GW, Fitt WK (2008) Specificity and stability in high latitude eastern Pacific coral–algal symbioses. Limnol Oceanogr 53:719–727CrossRefGoogle Scholar
  53. LaJeunesse TC, Loh W, Trench RK (2009) Do introduced endosymbiotic dinoflagellates ‘take’ to new hosts? Biol Invasions 11:995–1003CrossRefGoogle Scholar
  54. LaJeunesse TC, Pettay D, Sampayo EM (2010a) Long-standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr 37:785–800CrossRefGoogle Scholar
  55. LaJeunesse TC, Smith R, Pinzón JH, Pettay DT, McGinley M, Medina-Rosas P, Cupul-Magaña AL, Pérez A, Reyes-Bonilla H, Warner ME (2010b) Host-symbiont recombination vs. natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance. Proc R Soc Lond, Ser B: Biol Sci 277:2925–2934CrossRefGoogle Scholar
  56. LaJeunesse T, Wham D, Pettay D, Parkinson J, Keshavmurthy S, Chen C (2014) Ecologically differentiated, stress tolerant endosymbionts in the dinoflagellate genus Symbiodinium Clade D are different species. Phycologia 53:305–319CrossRefGoogle Scholar
  57. Lessios H, Robertson D (2006) Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier. Proc R Soc Lond, Ser B: Biol Sci 273:2201–2208CrossRefGoogle Scholar
  58. Maté JL (2003) Corals and coral reefs of the Pacific coast of Panamá. In: Cortes J (ed) Latin American coral reefs. Elsevier Science, Amsterdam, pp 387–418CrossRefGoogle Scholar
  59. McGinley MP, Aschaffenburg MD, Pettay DT, Smith RT, LaJeunesse TC, Warner ME (2012) Symbiodinium spp. in colonies of eastern Pacific Pocillopora spp. are highly stable despite the prevalence of low-abundance background populations. Mar Ecol Prog Ser 462:1–7CrossRefGoogle Scholar
  60. Muscatine L (1967) Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host. Science 156:516–519CrossRefGoogle Scholar
  61. Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z (ed) Ecosystems of the World 25. Elsevier, Amsterdam, pp 75–87Google Scholar
  62. Muscatine L, Porter J (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460CrossRefGoogle Scholar
  63. Pandolfi JM, Lovelock CE, Budd AF (2002) Character release following extinction in a Caribbean reef coral species complex. Evolution 56:479–501CrossRefGoogle Scholar
  64. Pearse VB, Muscatine L (1971) Role of symbiotic algae (zooxanthellae) in coral calcification. Biol Bull (Woods Hole) 141:350–363CrossRefGoogle Scholar
  65. Pettay DT, LaJeunesse T (2013) Long-range dispersal and high-latitude environments influence the population structure of a “stress-tolerant” dinoflagellate endosymbiont. PLoS ONE. doi: 10.1371/journal.pone.0079208 Google Scholar
  66. Pettay DT, Wham D, Pinzón JH, LaJeunesse TC (2011) Genotypic diversity and spatial-temporal distribution of Symbiodinium clones in an abundant reef coral. Mol Ecol 20:5197–5212CrossRefGoogle Scholar
  67. Pfennig DW, Pfennig KS (2012) Development and evolution of character displacement. Ann N Y Acad Sci 1256:89–107CrossRefGoogle Scholar
  68. Pinzón JH, Lajeunesse TC (2010) Data from: species delimitation of common reef corals in the genus Pocillopora using nucleotide sequence phylogenies, population genetics, and symbiosis ecology. doi: 10.5061/dryad.7908
  69. Pinzón JH, LaJeunesse TC (2011) Species delimitation of common reef corals in the genus Pocillopora using nucleotide sequence phylogenies, population genetics and symbiosis ecology. Mol Ecol 20:311–325CrossRefGoogle Scholar
  70. Pinzón JH, Reyes-Bonilla H, Baums I, LaJeunesse T (2012) Contrasting clonal structure of a single population of Pocillopora (Scleractinia) at two nearby sites in the Gulf of California. Coral Reefs 31:765–777CrossRefGoogle Scholar
  71. Pinzón JH, Sampayo EM, Cox EF, Chauka LJ, Chen CA, Voolstra CR, LaJeunesse TC (2013a) Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). J Biogeogr 40:1595–1608CrossRefGoogle Scholar
  72. Pinzón JH, Sampayo EM, Cox EF, Chauka LJ, Chen CA, Voolstra CR, LaJeunesse TC (2013b) Data from: Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). Dryad digital repository. doi: 10.5061/dryad.jd512
  73. Reyes-Bonilla H (2002) Checklist of valid names and synonyms of stony corals (Anthozoa: Scleractinia) from the eastern Pacific. J Nat Hist 36:1–13CrossRefGoogle Scholar
  74. Reyes-Bonilla H (2003) Coral reefs of the Pacific coast of Mexico. In: Cortés J (ed) Latin American coral reefs. Elsevier Science, pp 331–349Google Scholar
  75. Reyes-Bonilla H, Barraza JE (2003) Corals and associated marine communities from El Salvador. In: Cortés J (ed) Latin American coral reefs. Elsevier Science, Amsterdam, pp 351–360Google Scholar
  76. Richmond RH (1981) Energetic considerations in the dispersal of Pocillopora damicornis (Linnaeus) planulae. In: Proceedings of 4th International Coral Reef Symposium, vol 1, Manila, pp 153–156Google Scholar
  77. Richmond RH (1987a) Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar Biol 93:527–533CrossRefGoogle Scholar
  78. Richmond RH (1987b) Energetic relationships and biogeographical differences among fecundity, growth and reproduction in the reef coral Pocillopora damicornis. Bull Mar Sci 41:594–604Google Scholar
  79. Richmond RH, Jokiel PL (1984) Lunar periodicity in larva release in the reef coral Pocillopora damicornis at Enewetak and Hawaii. Bull Mar Sci 34:280–287Google Scholar
  80. Riegl BM, Purkis SJ eds (2012) Coral reefs of the Gulf: adaptation to climate extremes. Coral reefs of the world 3, Springer p 379Google Scholar
  81. Robinson BW, Pfennig DW (2013) Inducible competitors and adaptive diversification. Curr Zool 59:537–552CrossRefGoogle Scholar
  82. Rodriguez-Lanetty M, Wood-Charlson E, Hollingsworth L, Krupp D, Weis V (2006) Temporal and spatial infection dynamics indicate recognition events in the early hours of a dinoflagellate/coral symbiosis. Mar Biol 149:713–719CrossRefGoogle Scholar
  83. Rueffler C, Van Dooren TJM, Leimar O, Abrams PA (2006) Disruptive selection and then what? Trends Ecol Evol 21:238–245CrossRefGoogle Scholar
  84. Sampayo EM, Franceschinis L, Hoegh-Guldberg O, Dove S (2007) Niche partitioning of closely related symbiotic dinoflagellates. Mol Ecol 16:3721–3733CrossRefGoogle Scholar
  85. Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci USA 105:10,444–10,449Google Scholar
  86. Schmidt-Roach S, Lundgren P, Miller KJ, Gerlach G, Noreen AME, Andreakis N (2012) Assessing hidden species diversity in the coral Pocillopora damicornis from eastern Australia. Coral Reefs 1–12Google Scholar
  87. Schmidt-Roach S, Miller KJ, Lundgren P, Andreakis N (2014) With eyes wide open: a revision of species within and closely related to the Pocillopora damicornis species complex (Scleractinia; Pocilloporidae) using morphology and genetics. Zool J Linn Soc 170:1–33CrossRefGoogle Scholar
  88. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792CrossRefGoogle Scholar
  89. Souter P (2010) Hidden genetic diversity in a key model species of coral. Mar Biol. doi: 10.1007/s00227-009-1370-3 Google Scholar
  90. Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian hosts—Symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol Syst 8:23–43CrossRefGoogle Scholar
  91. Stefani F, Benzoni F, Pichon M, Cancelliere C, Galli P (2008) A multidisciplinary approach to the definition of species boundaries in branching species of the coral genus Psammocora (Cnidaria, Scleractinia). Zool Scr 37:71–91Google Scholar
  92. Stefani F, Benzoni F, Yang SY, Pichon M, Galli P, Chen C (2011) Comparison of morphological and genetic analyses reveals cryptic divergence and morphological plasticity in Stylophora (Cnidaria, Scleractinia). Coral Reefs 30:1033–1049CrossRefGoogle Scholar
  93. Stoddart JA (1983) Asexual production of planulae in the coral Pocillopora damicornis. Mar Biol 76:279–284CrossRefGoogle Scholar
  94. Sutton D, Hoegh-Guldberg O (1990) Host-zooxanthella interactions in four temperate marine invertebrate symbioses: assessment of effect of host extracts on symbionts. Biol Bull (Woods Hole) 178:175–186CrossRefGoogle Scholar
  95. Swanson R, Hoegh-Guldberg O (1998) Amino acid synthesis in the symbiotic sea anemone Aiptasia pulchella. Mar Biol 131:83–93CrossRefGoogle Scholar
  96. Thornhill DJ, Lewis AM, Wham DC, LaJeunesse TC (2014) Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 68:352–367CrossRefGoogle Scholar
  97. Torda G, Schmidt-Roach S, Peplow L, Lundgren P, van Oppen MJH (2013) A rapid genetic assay for the identification of the most common Pocillopora damicornis genetic lineages on the Great Barrier Reef. PLoS ONE. doi: 10.1371/journal.pone.0058447 Google Scholar
  98. Toth LT, Aronson RB, Vollmer SV, Hobbs JW, Urrego DH, Cheng H, Enochs IC, Combosch DJ, van Woesik R, Macintyre IG (2012) ENSO drove 2500-year collapse of eastern Pacific coral reefs. Science 337:81–84CrossRefGoogle Scholar
  99. Traylor-Knowles N, Granger BR, Lubinski TJ, Parikh JR, Garamszegi S, Xia Y, Marto JA, Kaufman L, Finnerty JR (2011) Production of a reference transcriptome and transcriptomic database (PocilloporaBase) for the cauliflower coral Pocillopora damicornis. BMC Genomics 12:585CrossRefGoogle Scholar
  100. Trench RK (1979) The cell biology of plant-animal symbiosis. Annu Rev Plant Physiol 30:485–531CrossRefGoogle Scholar
  101. Veron JEN (1995) Corals in space and time. The biogeography and evolution of the Scleractinia. Comstock/Cornell, Ithaca and London, p 321Google Scholar
  102. Veron JE (2000) Corals of the world, 3 vols. Australian Institute of Marine Science, Townsville, pp 429, 463, 490Google Scholar
  103. Veron JE (2002) New species described in corals of the world. Australian Institute of Marine Science, Townsville, AustraliaGoogle Scholar
  104. Veron JEN, Marsh LM (1988) Hermatypic corals of Western Australia: records and annotated species list. Rec West Aust Mus 29:1–136Google Scholar
  105. Veron JE, Pichon M (1976) Scleractinia of eastern Australia. Part I. Families Thamnasteriidae, Astrocoeniidae, Pocilloporidae. Australian Institute of Marine Science, Monograph Series, vol 1, p 86Google Scholar
  106. Vidal-Dupiol J, Zoccola D, Tambutté E, Grunau C, Cosseau C, Smith KM, Freitag M, Dheilly NM, Allemand D, Tambutte S (2013) Genes related to ion-transport and energy production are upregulated in response to CO2-driven pH decrease in corals: New insights from transcriptome analysis. PLoS ONE 8:e58652. doi: 10.1371/journal.pone.0058652
  107. Yeoh S-R, Dai C-F (2010) The production of sexual and asexual larvae within single broods of the scleractinian coral, Pocillopora damicornis. Mar Biol 157:351–359CrossRefGoogle Scholar
  108. Zapata FA, Vargas-Ángel B (2003) Corals and coral reefs of the Pacific coast of Colombia. In: Cortés J (ed) Latin American coral reefs. Elsevier Science, Amsterdam, pp 419–448CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations