Skip to main content

Finite-Element Method for Modeling of Thermomechanical Phenomena in Composite Shells Under High Temperatures

  • Chapter
  • First Online:
Thermomechanics of Composite Structures under High Temperatures

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 224))

  • 1286 Accesses

Abstract

In this chapter a variational statement of the composite shell mechanics problem is formulated. To calculate an ablation of composite structures of complicated shapes, wherein there occurs a nonuniform stress-strain state, the finite-element method (with triangular six-nodal finite elements) is applied. The developed method allows us to simulate heat-mass-transfer and thermostresses in composite structures and gives computed results for composite plates and cylindrical and axisymmetric shells under different types of the high-temperature action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almeida FS, Awruch AM (2009) Design optimization of composite laminated structures using genetic algorithms and finite element analysis. Compos Struct 88(3):443–454

    Article  Google Scholar 

  2. Alnefaie K (2009) Finite element modeling of composite plates with internal delamination. Compos Struct 90(1):21–27

    Article  Google Scholar 

  3. Bhar A, Phoenix SS, Satsangi SK (2010) Finite element analysis of laminated composite stiffened plates using FSDT and HSDT: a comparative perspective. Compos Struct 92(2):312–321

    Article  Google Scholar 

  4. Bhattacharya P, Suhail H, Sinha PK (2002) Finite element analysis and distributed control of laminated composite shells using LQR/IMSC approach. Aerosp Sci Technol 6:273–281

    Article  MATH  Google Scholar 

  5. Carrera E (2002) Theories and finite elements for multilayered, anisotropic, composite plates and shells. J Arch Comput Meth Eng 9(2):87–140

    Article  MathSciNet  MATH  Google Scholar 

  6. Castellazzi G, Krysl P, Bartoli I (2013) A displacement-based finite element formulation for the analysis of laminated composite plates. Compos Struct 95:518–527

    Article  Google Scholar 

  7. Chaudhuri RA (2008) A nonlinear zigzag theory for finite element analysis of highly shear-deformable laminated anisotropic shells. Compos Struct 85(4):350–359

    Article  Google Scholar 

  8. Correiaa IFP, Barbosa JI, Soares CMM, Soares CAM (2000) A finite element semi-analytical model for laminated axisymmetric shells: statics, dynamics and buckling. Comput Struct 76(1–3):299–317

    Article  Google Scholar 

  9. Dimitrienko YuI, Efremov GA, Chernyavsky SA (1997) Optimum design of erosion-stable heat-shield composite materials. Appl Compos Mater 4:35–52

    Google Scholar 

  10. Dimitrienko YuI, Minin VV, Syzdykov EK (2011) Modeling of thermomechanical processes in composite shells in local radiation heating. Compos: Mech, Comput, Appl 2(2):147–169

    Google Scholar 

  11. Dimitrienko YuI, Sokolov AP (2010) Elastic properties of composite materials. Mathematical models and computer simulations, vol 2(1). Springer, pp 116–130

    Google Scholar 

  12. Fagiano C, Abdalla MM, Gurdal Z (2010) Interlaminar stress recovery of multilayer composite shell structures for three-dimensional finite elements. Finite Elem Anal Des 46(12):1122–1130

    Article  Google Scholar 

  13. Ferreira AJM, Sa JMAC, Marques AT (2003) Nonlinear finite element analysis of rubber composite shells. Strength Mater 35(3):225–235

    Article  Google Scholar 

  14. Guo X, Lee YY, Mei C (2006) Non-linear random response of laminated composite shallow shells using finite element modal method. Int J Numer Meth Eng 67(10):1467–1489

    Article  MATH  Google Scholar 

  15. Haj-Ali R, Choi J, Wei B-S, Popil R, Schaepe M (2009) Refined nonlinear finite element models for corrugated fiberboards. Compos Struct 87(4):321–333

    Article  Google Scholar 

  16. Hossain SJ, Sinha PK, Sheikh AH (2004) A finite element formulation for the analysis of laminated composite shells. Comput Struct 82(20–21):1623–1638

    Article  Google Scholar 

  17. Khalili SMR, Soroush M, Davar A, Rahmani O (2011) Finite element modeling of low-velocity impact on laminated composite plates and cylindrical shells. Compos Struct 93(5):1363–1375

    Article  Google Scholar 

  18. Kundu CK, Maiti DK, Sinha PK (2007) Nonlinear finite element analysis of laminated composite doubly curved shells in hygrothermal environment. J Reinf Plast Compos 26(14):1461–1478

    Article  Google Scholar 

  19. Latifa SK, Sinha PK (2005) Improved finite element analysis of multilayered, doubly curved composite shells. J Reinf Plast Compos 24(4):385–404

    Article  Google Scholar 

  20. Linde P, Schulz A, Rust W (2006) Influence of modeling and solution methods on the FE-simulation of the post-buckling behavior of stiffened aircraft fuselage panels. Compos Struct 73(2):229–236

    Article  Google Scholar 

  21. Liu PF, Zheng JY (2010) Recent developments on damage modeling and finite element analysis for composite laminates: a review. Mater Des 31(8):3825–3834

    Article  Google Scholar 

  22. Naidu NVS, Sinha PK (2005) Nonlinear finite element analysis of laminated composite shells in hygrothermal environments. Compos Struct 69(4):387–395

    Article  Google Scholar 

  23. Nagashima T, Suemasu H (2010) X-FEM analyses of a thin-walled composite shell structure with a delamination. Comput Struct 88(9–10):549–557

    Article  Google Scholar 

  24. Niezgoda T, Derewonko A (2009) Multiscale composite FEM modeling. Procedia Eng 1(1):209–212

    Article  Google Scholar 

  25. Rahman T, Jansen EL (2010) Finite element based coupled mode initial post-buckling analysis of a composite cylindrical shell. Thin-Walled Struct 48(1):25–32

    Article  Google Scholar 

  26. Sabik A, Kreja I (2013) Large thermo-elastic displacement and stability FEM analysis of multilayered plates and shells. Thin-Walled Struct 71:119–133

    Article  Google Scholar 

  27. Sabri F, Lakis AA (2010) Finite element method applied to supersonic flutter of circular cylindrical shells. AIAA J 48(1):73–81

    Article  Google Scholar 

  28. Sadowski AJ, Rotter JM (2013) Solid or shell finite elements to model thick cylindrical tubes and shells under global bending. Int J Mech Sci 74:143–153

    Article  Google Scholar 

  29. Santos H, Soares CMM, Soares CAM, Reddy JN (2006) A finite element model for the analysis of 3D axisymmetric laminated shells with piezoelectric sensors and actuators. Compos Struct 75(1–4):170–178

    Article  Google Scholar 

  30. Santos H, Soares CMM, Soares CAM, Reddy JN (2008) A finite element model for the analysis of 3D axisymmetric laminated shells with piezoelectric sensors and actuators: bending and free vibrations. Comput Struct 86(9):940–947

    Article  Google Scholar 

  31. Schuster J, Heider D, Sharp K, Glowania M (2009) Measuring and modeling the thermal conductivities of three-dimensionally woven fabric composites. Mech Compos Mater 45(2):165–174

    Article  Google Scholar 

  32. Sheng HY, Ye JQ (2003) A three-dimensional state space finite element solution for laminated composite cylindrical shells. Comput Methods Appl Mech Eng 192(22–24):2441–2459

    Article  MATH  Google Scholar 

  33. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill, New York

    MATH  Google Scholar 

  34. Wagner W, Balzani C (2008) Simulation of delamination in stringer stiffened fiber-reinforced composite shells. Comput Struct 86(9):930–939

    Article  Google Scholar 

  35. Wang BL, Mai YW (2005) Transient one-dimensional heat conduction problems solved by finite element. Int J Mech Sci 47(2):303–317

    Article  MATH  Google Scholar 

  36. Yeghnem R, Meftah SA, Benyoucef S, Tounsi A, Adda Bedia EA (2013) A finite-element model for the lateral stiffness and vibration characteristics of RC shear walls strengthened with composite sheets: creep and the shrinkage effect. Mech Compos Mater 49(2):181–192

    Article  Google Scholar 

  37. Zallo A, Gaudenzi P (2003) Finite element models for laminated shells with actuation capability. Comput Struct 81(8–11):1059–1069

    Article  Google Scholar 

  38. Zhang YX, Yang CH (2009) Recent developments in finite element analysis for laminated composite plates. Compos Struct 88(1):147–157

    Article  MathSciNet  Google Scholar 

  39. Zhang YX, Yang CH (2006) A family of simple and robust finite elements for linear and geometrically nonlinear analysis of laminated composite plates. Compos Struct 75(1–4):545–552

    Article  Google Scholar 

  40. Zhang YX, Zhang HS (2010) Multiscale finite element modeling of failure process of composite laminates. Compos Struct 92(9):2159–2165

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Dimitrienko .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dimitrienko, Y.I. (2016). Finite-Element Method for Modeling of Thermomechanical Phenomena in Composite Shells Under High Temperatures. In: Thermomechanics of Composite Structures under High Temperatures. Solid Mechanics and Its Applications, vol 224. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7494-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7494-9_13

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7492-5

  • Online ISBN: 978-94-017-7494-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics