Skip to main content

Linear Ablation of Composites

  • Chapter
  • First Online:
  • 1285 Accesses

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 224))

Abstract

For composites under gradient heating up to very high temperatures 1500–2000 \({}^\circ \)C, linear (surface) ablation must be considered in addition to volumetric ablation. The definitions and classification of linear ablation processes were given in Sect. 1.2. The purpose of the present chapter is to establish relationships for the calculation of the linear rate D for different types of surface ablation: combustion, sublimation, melting and thermomechanical erosion of composites. Since effective elasticity and heat conductivity moduli connect characteristics of a composite with properties of its separate phases (see Chaps. 6 and 7), the present chapter gives relationships between erosion rates of composites and these of matrices and fibres. The effects of different types of matrixes and fibres and different pressure heads on the rate of linear ablation of composites are calculated. To find the most efficient material under ablation we consider different criteria of efficiency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baer E (ed) (1966) Engineering design for plastics. Reinhold Publishing Corporation, Chapmen & Hall LTD, London

    Google Scholar 

  2. Bird RB, Stewart WE, Lightfoot EN (2007) Transport phenomena. Wiley

    Google Scholar 

  3. Dimitrienko ID (1998) Effect of finite deformations of combustible porous media on dynamical processes of internal heat-mass transfer. Int J Eng Sci 36(11):1215–1233

    Article  MATH  Google Scholar 

  4. Dimitrienko YuI (1995) Mathematical modeling of ceramic composite processing based on combustion. J Math Comput Model 21(8):69–83

    Article  MATH  Google Scholar 

  5. Dimitrienko YuI (1995) Thermal stresses and heat-mass-transfer in ablating composite materials. J Heat Mass Transf 38(1):139–146

    Article  MATH  Google Scholar 

  6. Dimitrienko YuI (1995) Ultra-light thermal-protective materials. In: Proceedings of international conference on composite engineering (ICCE/2), New Orleans, USA, pp 189–190

    Google Scholar 

  7. Dimitrienko YuI (1996) Mathematical modeling of ablating materials. In: Proceedings of the second ECCOMAS conference on numerical methods in engineering, Paris, France

    Google Scholar 

  8. Dimitrienko YuI (1998) Thermomechanics of composites under high temperatures. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  9. Dimitrienko YuI (1997) Experimental and theoretical investigation of thermomechanical ablation processes of multiphase materials under high enthalpy heat flux effects. In: Proceedings of 4th world conference on experimental heat transfer, fluid mechanics and thermodynamics, Brussels, vol 1, pp 401–408

    Google Scholar 

  10. Dimitrienko YuI (1997) Modeling of erosion combustion of energetic materials in high-enthalpy flows. Combust Flame 111:161–174

    Article  Google Scholar 

  11. Dimitrienko YuI (1998) Mechanics of porous media with phase transformations and periodical structure. 1. Method of asymptotic averaging. 2. Solutions of local and global problems. Eur J Mech (A: Solids) 17(2):305–337

    Google Scholar 

  12. Dimitrienko YuI (1999) Modeling of carbon-carbon composite manufacturing processes. Compos Part A: Appl Sci Manuf 30A:221–230

    Article  Google Scholar 

  13. Dimitrienko YuI (2002) Tensor analysis and nonlinear tensor functions. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  14. Dimitrienko YuI (2011) Nonlinear continuum mechanics and large inelastic deformations. Springer, Berlin

    Book  MATH  Google Scholar 

  15. Dimitrienko YuI, Dimitrienko ID (2000) Effect of thermomechanical erosion on heterogeneous combustion of composite materials in high-speed flow. Combust Flame 122:211–226

    Article  Google Scholar 

  16. Dimitrienko YuI, Dimitrienko ID (2013) Simulation of local transfer in periodic porous media. Eur J Mech B/Fluids 37:174–179

    Google Scholar 

  17. Dimitrienko YuI, Efremov GA, Chernyavsky SA, Medvedev YuV (1995) Theory and synthesis of advanced thermal-protective composite materials. Appl Compos Mater 2:367–384

    Article  Google Scholar 

  18. Dimitrienko YuI, Efremov GA, Chernyavsky SA (1997) Optimum design of erosion-stable heat-shield composite materials. Appl Compos Mater 4:35–52

    Google Scholar 

  19. Gladwell GML, Barber JR, Olesiak Z (1983) Thermal problems with radiation boundary conditions. Q J Mech Appl Math 36(3):387–401

    Article  MathSciNet  MATH  Google Scholar 

  20. Greenwood TF, Lee YC, Bender RL, Carter RE (1984) Space shuttle base heating. J Spacecr Rockets 21(4):339–345

    Article  Google Scholar 

  21. Griffis CA, Nemes JA, Stonesifer FR, Chang CI (1986) Degradation in strength of laminated composites subjected to intense heating and mechanical loading. J Compos Mater 20:216–235

    Article  Google Scholar 

  22. Herman MA, Richter W, Sitter H (2004) Epitaxy: physical principles and technical implementation. Springer

    Google Scholar 

  23. Laub B (1980) Thermochemical ablation of tantalum carbide loaded carbon-carbons. AIAA Paper, No1476

    Google Scholar 

  24. Nigmatulin RI (1987) Dynamics of multiphase media, Part I, II. Elsevier Science, New York

    Google Scholar 

  25. Palaninathan RA, Bindu S (2005) Modeling of mechanical ablation in thermal protection systems. J Spacecr Rockets 42(6):971–979

    Article  Google Scholar 

  26. Park C, Lundell JH, Green MJ, Winovich W, Covington MA (1984) Ablation of carbonaceous materials in a hydrogen-helium arcjet flow. AIAA J 22(10):1491–1498

    Article  Google Scholar 

  27. Paydayesh A, Kokabi M, Bahramian AR (2013) High temperature ablation of highly filled polymer-layered silicate nanocomposites. J Appl Polym Sci, Wiley Online Library 127(4):2776–2785

    Google Scholar 

  28. Rosato DV, Schwartz RT (eds) (1968) Environmental effects on polymeric materials. Wiley-Interscience, New York

    Google Scholar 

  29. Shlensky OF, Shashkov AV, Aksenov LN (1991) Thermal decomposition of materials. Elsevier Science, Amsterdam

    Google Scholar 

  30. Ziering MB (1975) Thermochemical ablation of ceramic heat shields. AIAA J 13:610–616

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Dimitrienko .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dimitrienko, Y.I. (2016). Linear Ablation of Composites. In: Thermomechanics of Composite Structures under High Temperatures. Solid Mechanics and Its Applications, vol 224. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7494-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7494-9_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7492-5

  • Online ISBN: 978-94-017-7494-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics