Skip to main content

High-Temperature Environment and Composite Materials

  • Chapter
  • First Online:

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 224))

Abstract

The problem of simulating the thermomechanical behavior of composites under high temperatures is complex because it straddles many fields: thermal physics, thermal chemistry, solid mechanics, etc. Since concepts such as thermodecomposition and ablation are new to mechanicians calculating microstresses in composites, we define the principal ideas of physico-chemical transformations in this chapter. A schematic classification of the most wide-spread types of high-temperature effects on composite structures is given, and their principal types (aerodynamical heating, gas-dynamical heating, heating in energetic devices, action of a fire and technological heating) are considered in detail. Furthermore, a classification of ablation processes in composites is suggested, and main types of volumetric ablation (pyrolytic thermodecomposition (TD) and thermo-oxidative decomposition (TOD)) and surface ablation (evaporation, chemical reactions with the surroundings (mainly, combustion), melting and thermomechanical erosion) are defined. In addition, the principal phenomena caused by high-temperature effects in composite materials and composite structures are enumerated, and a physical model of ablative composite is suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ablative Materials (1964) Handbook, U.S. Polymeric Inc. Santa Ana. CA

    Google Scholar 

  2. Ahmed S (2014) Physics and engineering of radiation detection. Elsevier

    Google Scholar 

  3. Arai N, Tani T, Sato K (1984) Transient ablation of blunt bodies at angles attack. J Spacecr Rockets 21(3):241–245

    Article  Google Scholar 

  4. Baer E (ed) (1966) Engineering design for plastics. Reinhold Publishing Corporation, Chapmen & Hall LTD, London

    Google Scholar 

  5. Bahramian AR (2013) Pyrolysis and flammability properties of novolac/graphite nanocomposites. Fire Saf J 61:265–273

    Article  Google Scholar 

  6. Bahramian AR, Kokabi M, Famili MHN, Beheshty MH (2006) Ablation and thermal degradation behaviour of a composite based on resol type phenolic resin: process modeling and experimental. Polymer 47(10):3661–3673

    Article  Google Scholar 

  7. Bahramian AR, Kokabi M, Famili MHN, Beheshty MH (2008) High temperature ablation of kaolinite layered silicate/phenolic resin/asbestos cloth nanocomposite. J Hazard Mater 150(1):136–145

    Article  Google Scholar 

  8. Bahramian AR, Kokabi M, Soorbaghi FP (2013) Carbon fiber reinforced \(\beta \)-SiAlON for ultra high temperature ablative heat shields. Int J Appl Ceram Technol 10(2):203–214

    Article  Google Scholar 

  9. Bai Y, Vall’e T, Keller T (2008) Modeling of thermal responses for FRP composites under elevated and high temperatures. Compos Sci Technol 68(1):47–56

    Article  Google Scholar 

  10. Balasubramanian K, Tirumalai M (2013) Structural nanocomposites. In: High temperature polymer nanocomposites. Springer

    Google Scholar 

  11. Bisby LA, Green MF, Kodur VKR (2005) Response to fire of concrete structures that incorporate FRP. Prog Struct Mater Eng 7(3):136–149

    Article  Google Scholar 

  12. Broutman LJ, Krock RH (eds) (1974) Composite materials. In: Mechanics of composite materials. Academic Press, New York

    Google Scholar 

  13. Chen JK, Sun CT, Chang CI (1985) Failure analysis of graphite/epoxy composite subjected to combined thermal and mechanical loading. J Compos Mater 19:408–423

    Article  Google Scholar 

  14. Chen JK, Perea A, Allahdadi FA (1995) Laser effects on the dynamic response of laminated composites. Compos Eng 5:1135–1147

    Article  Google Scholar 

  15. Chin J (1966) Thermoanalysis of fibers and fiber-forming polymers. Interscience Publishers, New York

    Google Scholar 

  16. Chou T-W, Ko FK (eds) (1989) Textile structural composites. Elsevier Science

    Google Scholar 

  17. Chronopoulos D, Ichchou M, Troclet B, Bareille O (2013) Thermal effects on the sound transmission through aerospace composite structures. Aerosp Sci Technol 30(1):192–199

    Article  Google Scholar 

  18. Dana ML, Vasile C (2010) Predicting, measuring and tailoring thermal properties of morphological and structural modified polymeric composite materials, cdn.intechopen.com

    Google Scholar 

  19. Dimitrienko YuI (1995) Mathematical modeling of ceramic composite processing based on combustion. J Math Comput Model 21(8):69–83

    Article  MATH  Google Scholar 

  20. Dimitrienko YuI (1995) Thermal stresses and heat-mass-transfer in ablating composite materials. J Heat Mass Transf 38(1):139–146

    Article  MATH  Google Scholar 

  21. Dimitrienko YuI (1995) Ultra-light thermal-protective materials. In: Proceedings of international conference on composite engineering (ICCE/2). New Orleans, pp 189–190

    Google Scholar 

  22. Dimitrienko YuI (1996) Mathematical modeling of ablating materials. In: Proceedings of the Second ECCOMAS Conference on Numerical Methods in Engineering. Paris

    Google Scholar 

  23. Dimitrienko YuI (1998) Thermomechanics of composites under high temperatures. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  24. Dimitrienko YuI (1997) Experimental and theoretical investigation of thermomechanical ablation processes of multiphase materials under high enthalpy heat flux effects. In: Proceedings of 4th world conference on experimental heat transfer, fluid mechanics and thermodynamics, vol 1. Brussels, pp 401–408

    Google Scholar 

  25. Dimitrienko YuI (1997) Modeling of erosion combustion of energetic materials in high-enthalpy flows. Combust Flame 111:161–174

    Article  Google Scholar 

  26. Dimitrienko YuI (1997) Effect of finite deformations on internal heat-mass-transfer in elastomer ablating materials. Int J Heat Mass Transf 40(3):699–709

    Article  MATH  Google Scholar 

  27. Dimitrienko YuI (1997) Internal heat-mass-transfer and stresses in thin-walled structures of ablating materials. Int J Heat Mass Transf 40(7):1701–1711

    Article  MATH  Google Scholar 

  28. Dimitrienko YuI (1997) Thermal stresses in ablative composite thin-walled structures under intensive heat flows. Int J Eng Sci 35(1):15–31

    Article  MATH  Google Scholar 

  29. Dimitrienko YuI (1997) Heat-mass-transport and thermal stresses in porous charring materials. Transp Porous Media 27(2):143–170

    Article  Google Scholar 

  30. Dimitrienko YuI (1997) Thermomechanical behavior of composite materials and structures under high temperatures. 1. Materials, 2. Structures. Compos Part A Appl Sci Manufact 28A:453–471

    Google Scholar 

  31. Dimitrienko YuI (1997) Modeling of mechanical properties of composite materials under high temperatures. Part 1. Matrix and fibres. Part 2. Properties of unidirectional composites. Int J Appl Compos Mater 4:219–261

    Google Scholar 

  32. Dimitrienko YuI (1998) Modeling of mechanical properties of composite materials under high temperatures. Part 3. Textile composites. Int J Appl Compos Mater 5(4):257–272

    Google Scholar 

  33. Dimitrienko YuI (1998) Mechanics of porous media with phase transformations and periodical structure. 1. Method of asymptotic averaging. 2. Solutions of local and global problems. Eur J Mech (A: Solids) 17(2):305–337

    Google Scholar 

  34. Dimitrienko YuI (1999) A structural thermomechanical model of textile composite materials at high temperatures. Compos Sci Technol 59:1041–1053

    Article  Google Scholar 

  35. Dimitrienko YuI (1999) Modeling of carbon-carbon composite manufacturing processes. Compos Part A Appl Sci Manufact 30A:221–230

    Article  Google Scholar 

  36. Dimitrienko YuI (1999) Dynamic transport phenomena in porous polymer materials under impulse thermal effects. Transp Porous Media 35(3):299–326

    Article  Google Scholar 

  37. Dimitrienko YuI (2000) Thermomechanical behavior of composites under local intense heating by irradiation. Compos Part A Appl Sci Manufact 31A:591–598

    Article  Google Scholar 

  38. Dimitrienko YuI (2011) Nonlinear continuum mechanics and large inelastic deformations. Springer, Berlin

    Book  MATH  Google Scholar 

  39. Dimitrienko YuI, Dimitrienko ID (2000) Effect of thermomechanical erosion on heterogeneous combustion of composite materials in high-speed flow. Combust Flame 122:211–226

    Article  Google Scholar 

  40. Dimitrienko YuI, Efremov GA, Chernyavsky SA (1997) Optimum design of erosion-stable heat-shield composite materials. Appl Compos Mater 4:35–52

    Google Scholar 

  41. Dimitrienko YuI, Efremov GA, Epifanovsky IS (1994) Reusable re-entry vehicles with reclaimable ablating thermal protection. In: Preprints of 19th international symposium on space technology and science. Japan, pp 94–b26

    Google Scholar 

  42. Dimitrienko YuI, Efremov GA, Chernyavsky SA, Medvedev YuV (1995) Theory and synthesis of advanced thermal-protective composite materials. Appl Compos Mater 2:367–384

    Article  Google Scholar 

  43. Dimitrienko YuI, Minin VV, Syzdykov EK (2011) Modeling of thermomechanical processes in composite shells in local radiation heating. Compos Mech Comput Appl 2(2):147–169

    Google Scholar 

  44. Drukker E, Green AK, Marom G (2003) Mechanical and chemical consequences of through thickness thermal gradients in polyimide matrix composite materials. Compos Part A Appl Sci Manufact 34(2):125–133

    Article  Google Scholar 

  45. Esfahani JA (2002) Oxygen-sensitive thermal degradation of PMMA: a numerical study. Combust Sci Technol 174(10):183–198. Taylor & Francis

    Google Scholar 

  46. Favaloro M (1992) Ablative materials. In: Encyclopedia of chemical technology, vol 1, 4th edn. Wiley

    Google Scholar 

  47. Gardiner CP, Mathys Z, Mouritz AP (2004) Post-fire structural properties of burnt GRP plates. Mar Struct 17(1):53–73

    Article  Google Scholar 

  48. Gladwell GML, Barber JR, Olesiak Z (1983) Thermal problems with radiation boundary conditions. Quart J Mech Appl Math 36(3):387–401

    Article  MathSciNet  MATH  Google Scholar 

  49. Gladwell GML, Barber JR (1983) Thermoelastic contact problems with radiation boundary conditions. Quart J Mech Appl Math 36(3):403–417

    Article  MathSciNet  MATH  Google Scholar 

  50. Gori F, Corasaniti S, Worek WM, Minkowycz WJ (2012) Theoretical prediction of thermal conductivity for thermal protection systems. Appl Therm Eng 49:124–130

    Article  Google Scholar 

  51. Gori F, De Stefanis M, Worek WM, Minkowycz WJ (2008) Transient thermal analysis of Vega launcher structures. Appl Therm Eng 28(17–18):2159–2166

    Article  Google Scholar 

  52. Gradoni G, Micheli D, Primiani VM, Moglie F, Marchett M (2013) Determination of the electrical conductivity of carbon/carbon at high microwave frequencies. Carbon 54:76–85

    Article  Google Scholar 

  53. Greenwood TF, Lee YC, Bender RL, Carter RE (1984) Space shuttle base heating. J Spacecr Rockets 21(4):339–345

    Article  Google Scholar 

  54. Griffis CA, Nemes JA, Stonesifer FR, Chang CI (1986) Degradation in strength of laminated composites subjected to intense heating and mechanical loading. J Compos Mater 20:216–235

    Article  Google Scholar 

  55. Hankey WL (1988) Re-entry aerodynamics. In: AIAA textbook

    Google Scholar 

  56. Hetnarski RB, Eslami MR (2009) Thermal stresses - advanced theory and applications. Springer, Berlin

    MATH  Google Scholar 

  57. Hewitt GF, Shires GL, Bott TR (1994) Process heat transfer. McGraw-Hill

    Google Scholar 

  58. Iqbal N, Sagar S, Khan MB, Rafique HM (2014) Elastomeric ablative nanocomposites used in hyperthermal environments. Polym Eng Sci 54(2): 255–263. Wiley Online Library

    Google Scholar 

  59. Jen MHR, Tseng YC, Lin WH (2006) Thermo-mechanical fatigue of centrally notched and unnotched AS-4/PEEK APC-2 composite laminates. Int J Fatigue 28(8):901–909

    Article  Google Scholar 

  60. Kalfon E, Harel H, Marom G, Drukker E, Green AK, Kresse I (2005) Delamination of laminated composites under the combined effect of nonuniform heating and absorbed moisture. Polym Compos 26(6):770–777. Wiley Online Library

    Google Scholar 

  61. Keller T, Tracy C, Zhou A (2006) Structural response of liquid-cooled GFRP slabs subjected to fire. Part I: material and post-fire modeling. Compos Part A Appl Sci Manufact 37(9):1286–1295

    Article  Google Scholar 

  62. Kim SJ, Han SY, Shin ES (2013) Micromechanics-based evaluation of the poroelastic effect and stress concentration in thermochemically-decomposed composites. J Mech Sci Technol 27(10):3139–3147

    Article  Google Scholar 

  63. Kim KM, Shin S, Lee DH, Cho HH (2011) Influence of material properties on temperature and thermal stress of thermal barrier coating near a normal cooling hole. Int J Heat Mass Transf 54(25–26):5192–5199

    Article  Google Scholar 

  64. Laub B (1980) Thermochemical ablation of tantalum carbide loaded carbon-carbons. AIAA Pap 1476

    Google Scholar 

  65. Lachaud J, Aspa Y, Vignoles GL (2008) Analytical modeling of the steady state ablation of a 3D C/C composite. Int J Heat Mass Transf 51(9–10):2614–2627

    Article  MATH  Google Scholar 

  66. Luo C, DesJardin PE (2007) Thermo-mechanical damage modeling of a glass-phenolic composite material. Compos Sci Technol 67(7–8):1475–1488

    Article  Google Scholar 

  67. Luo C, Lua J, DesJardin PE (2012) Thermo-mechanical damage modeling of polymer matrix sandwich composites in fire. Compos Part A Appl Sci Manufact 43(5):814–821

    Article  Google Scholar 

  68. Luo C, Xie W, DesJardin PE (2011) Fluid-structure simulations of composite material response for fire environments. Fire Technol 47:887–912

    Article  Google Scholar 

  69. Madorsky SL (1964) Thermal degradation of organic polymers. Interscience Publishers, New York

    Google Scholar 

  70. McGurn MT, DesJardin PE, Dodd AB (2012) Numerical simulation of expansion and charring of carbon-epoxy laminates in fire environments. Int J Heat Mass Transf 55(1–3):272–281

    Article  MATH  Google Scholar 

  71. McManus HN, Springer GS (1992) High temperature thermomechanical behavior of carbon-phenolic and carbon-carbon composites: I. Analysis, II. Results. J Compos Mater 26:206–255

    Google Scholar 

  72. Meetham GW, Van de Voorde MH (2000) Materials for high temperature engineering applications. Springer, Berlin

    Book  Google Scholar 

  73. Morland LW (1985) Generation of thermoelastic stress waves by impulse electromagnetic radiation. AIAA J 6:5123–5126

    Google Scholar 

  74. Mouritz AP, Feih S, Kandare E, Mathys Z, Gibson AG, Des Jardin PE, Case SW, Lattimer BY (2009) Review of fire structural modeling of polymer composites. Compos Part A Appl Sci Manufact 40(12):1800–1814

    Google Scholar 

  75. Mouritz AP, Gibson A (2006) Fire properties of polymer composite materials. Springer, Berlin

    Google Scholar 

  76. Nigmatulin RI (1987) Dynamics of multiphase media, Part I. Elsevier Science, New York

    Google Scholar 

  77. Naderi A, Mazinani S, Ahmadi SJ, Sohrabian M, Arasteh R (2014) Modified thermo-physical properties of phenolic resin/carbon fiber composite with nano zirconium dioxide. J Therm Anal Calorim 117(1):393–401

    Article  Google Scholar 

  78. Nigro E, Cefarelli G, Bilotta A, Manfredi G, Cosenza E (2014) Guidelines for flexural resistance of FRP reinforced concrete slabs and beams in fire. Compos Part B Eng 58:103–112

    Article  Google Scholar 

  79. Pagano NJ (ed) (1989) Interlaminar response of composite materials. Elsevier Science

    Google Scholar 

  80. Palaninathan RA, Bindu S (2005) Modeling of mechanical ablation in thermal protection systems. J Spacecr Rockets 42(6):971–979

    Article  Google Scholar 

  81. Park C, Lundell JH, Green MJ, Winovich W, Covington MA (1984) Ablation of carbonaceous materials in a hydrogen-helium arcjet flow. AIAA J 22(10):1491–1498

    Article  Google Scholar 

  82. Paydayesh A, Kokabi M, Bahramian AR (2013) High temperature ablation of highly filled polymer-layered silicate nanocomposites. J Appl Polym Sci 127(4):2776–2785. Wiley Online Library

    Google Scholar 

  83. Regan FJ, Anandakrishnan SM (1993) Dynamics of atmospheric re-entry. In: AIAA textbook

    Google Scholar 

  84. Riccio A, Damiano M, Zarrelli M, Giordano M, Scaramuzzino F (2014) Simulating the response of composite plates to fire. Appl Compos Mater 21(3):511–524

    Article  Google Scholar 

  85. Rosato DV, Schwartz RT (eds) (1968) Environmental effects on polymeric materials. Wiley, New York

    Google Scholar 

  86. Rosen BW (1964) Tensile failure of fibrous composites. AIAA J 2:1985–1994

    Article  Google Scholar 

  87. Scala SM, Gilbert LM (1965) Sublimation of graphite at hypersonic speeds. AIAA J 3(9):1635–1644

    Article  Google Scholar 

  88. Shakeri MS, Aghajani H (2013) Modeling of stress relaxation process, case study: Shape setting heat treatment of a Ni rich-NiTi alloy. J Alloy Compd 574:119–123

    Article  Google Scholar 

  89. Shi S, Liang J, Yi F, Fang G (2013) Modeling of one-dimensional thermal response of silica-phenolic composites with volume ablation. J Compos Mater. jcm.sagepub.com

    Google Scholar 

  90. Shi S, Liang J, He R (2014) Thermal decomposition behavior of silica-phenolic composite exposed to one-sided radiant heating. Polym Compos. Wiley Online Library

    Google Scholar 

  91. Shlensky OF, Shashkov AV, Aksenov LN (1991) Thermal decomposition of materials. Elsevier Science, Amsterdam

    Google Scholar 

  92. Sinmazcelik T (2006) Natural weathering effects on the mechanical and surface properties of polyphenylene sulphide (PPS) composites. Mater Des 27(4):270–277

    Article  Google Scholar 

  93. Thornton EA (1992) Thermal Structures and Materials for High-Speed Flight. Prog Astronaut Aeronaut

    Google Scholar 

  94. Tittmann BR, Yen CE (2008) Acoustic emission technique for monitoring the pyrolysis of composites for process control. Ultrasonics 48(6–7):621–630

    Article  Google Scholar 

  95. Welty JR, Wicks ChE, Wilson RE, Rorrer GL (2007) Fundamentals of momentum, heat and mass transfer (5th edition). Wiley

    Google Scholar 

  96. Yu B, Kodur V (2014) Effect of temperature on strength and stiffness properties of near-surface mounted FRP reinforcement. Compos Part B Eng 58:510–517

    Article  Google Scholar 

  97. Yu B, Till V, Thomas K (2007) Modeling of thermo-physical properties for FRP composites under elevated and high temperature. Compos Sci Technol 67(15–16):3098–3109

    Article  Google Scholar 

  98. Ziegler H (1977) An introduction to thermodynamics. North-Holland, Amsterdam

    MATH  Google Scholar 

  99. Ziering MB (1975) Thermochemical ablation of ceramic heat shields. AIAA J 13:610–616

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Dimitrienko .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dimitrienko, Y.I. (2016). High-Temperature Environment and Composite Materials. In: Thermomechanics of Composite Structures under High Temperatures. Solid Mechanics and Its Applications, vol 224. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7494-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7494-9_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7492-5

  • Online ISBN: 978-94-017-7494-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics