Skip to main content

Genetic Instability and Cancer

  • Chapter
  • First Online:
Principles of Cancer Genetics
  • 2466 Accesses

Abstract

When a cell prepares to divide, its genome is first duplicated and then distributed in total to each daughter cell. Every aspect of this fundamental biological process is tightly controlled, ensuring that the information encoded in the genomic DNA is not lost and does not significantly change as it is transmitted from each generation of cells to the next. A full complement of chromosomes is inherited in structurally intact form. The process of DNA replication is similarly characterized by an extraordinarily high degree of fidelity. During the proliferation of normal stem cells, genetic changes arise very rarely. The information content of the genome in the cells that compose normal tissues is therefore highly stable over the lifetime of the individual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Ahmed M, Rahman N (2006) ATM and breast cancer susceptibility. Oncogene 25:5906–5911

    Article  CAS  PubMed  Google Scholar 

  • Andressoo JO, Hoeijmakers JH, Mitchell JR (2006) Nucleotide excision repair disorders and the balance between cancer and aging. Cell Cycle 5:2886–2888

    Article  CAS  PubMed  Google Scholar 

  • Cahill DP, Kinzler KW, Vogelstein B, Lengauer C (1999) Genetic instability and darwinian selection in tumours. Trends Cell Biol 9:M57–M60

    Article  CAS  PubMed  Google Scholar 

  • Cleaver JE (2005) Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat Rev Cancer 5:564–573

    Article  CAS  PubMed  Google Scholar 

  • de Laat WL, Jaspers NG, Hoeijmakers JH (1999) Molecular mechanism of nucleotide excision repair. Genes Dev 13:768–785

    Article  PubMed  Google Scholar 

  • Duesberg P (2005) Does aneuploidy or mutation start cancer? Science 307:41

    Article  CAS  PubMed  Google Scholar 

  • Ellis NA (1996) Mutation-causing mutations. Nature 381:110–111

    Article  CAS  PubMed  Google Scholar 

  • Ellis NA, German J (1996) Molecular genetics of Bloom’s syndrome. Hum Mol Genet 5:1457–1463

    CAS  PubMed  Google Scholar 

  • Fearon ER (1997) Human cancer syndromes: clues to the origin and nature of cancer. Science 278:1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Gatti RA (2001) The inherited basis of human radiosensitivity. Acta Oncol 40:702–711

    Article  CAS  PubMed  Google Scholar 

  • Gurtan AM, D’Andrea AD (2006) Dedicated to the core: understanding the Fanconi anemia complex. DNA Repair 5:1119–1125

    Article  CAS  PubMed  Google Scholar 

  • Joenje H, Patel KJ (2001) The emerging genetic and molecular basis of Fanconi anaemia. Nat Rev Genet 2:446–457

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB, Lim DS (2000) The many substrates and functions of ATM. Nat Rev Mol Cell Biol 1:179–186

    Article  CAS  PubMed  Google Scholar 

  • Kipling D, Davis T, Ostler EL, Faragher RG (2004) What can progeroid syndromes tell us about human aging? Science 305:1426–1431

    Article  CAS  PubMed  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–669

    Article  CAS  PubMed  Google Scholar 

  • Margolis RL (2005) Tetraploidy and tumor development. Cancer Cell 8:353–354

    Article  CAS  PubMed  Google Scholar 

  • Michor F, Iwasa Y, Vogelstein B, Lengauer C, Nowak MA (2005) Can chromosomal instability initiate tumorigenesis? Semin Cancer Biol 15:43–49

    Article  CAS  PubMed  Google Scholar 

  • Modrich P (1994) Mismatch repair, genetic stability, and cancer. Science 266:1959–1960

    Article  CAS  PubMed  Google Scholar 

  • Mohaghegh P, Hickson ID (2001) DNA helicase deficiencies associated with cancer predisposition and premature ageing disorders. Hum Mol Genet 10:741–746

    Article  CAS  PubMed  Google Scholar 

  • Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability – an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11:220–228

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan H, Lengauer C (2004) Aneuploidy and cancer. Nature 432:338–341

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan H, Nowak MA, Vogelstein B, Lengauer C (2003) The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer 3:695–701

    Article  CAS  PubMed  Google Scholar 

  • Shiloh Y (2006) The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci 31:402–410

    Article  CAS  PubMed  Google Scholar 

  • Siegel JJ, Amon A (2012) New insights into the troubles of aneuploidy. Annu Rev Cell Dev Biol 28:189–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomlinson I, Bodmer W (1999) Selection, the mutation rate and cancer: ensuring that the tail does not wag the dog. Nat Med 5:11–12

    Article  CAS  PubMed  Google Scholar 

  • Vijg J, Suh Y (2013) Genome instability and aging. Annu Rev Physiol 75:645–668

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bunz, F. (2016). Genetic Instability and Cancer. In: Principles of Cancer Genetics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7484-0_4

Download citation

Publish with us

Policies and ethics