Skip to main content

Electron Transfer Reactions at the Qo Site of the Cytochrome bc 1 Complex: The Good, the Bad, and the Ugly

  • Chapter
  • First Online:
Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 41))

Summary

The cytochrome bc 1 complex of eukaryotic mitochondrial and prokaryotic energy transducing membranes functions as a protonmotive quinol:cytochrome c oxidoreductase. The enzyme utilizes a highly characteristic ‘Q-cycle’ reaction mechanism in which oxidation of substrate quinol leads to a bifurcated electron transfer pathway. This mechanism generates a highly-reducing, reactive radical semiquinone (SQo) intermediate at the site of quinol oxidation (Qo) within cytochrome b which must be tightly managed to prevent energetically wasteful electron transfer side reactions or reduction of dioxygen to biologically harmful superoxide. In this chapter we discuss mechanistic strategies harnessed by the bc 1 complex to minimize unproductive electron transfer from SQo with particular reference to superoxide generation. Recent work suggests that the bc 1 complex achieves this by kinetically trapping the SQo anion within a hydrophobic region of the Qo pocket as a destabilized, low-occupancy intermediate, conserving redox energy to reduce the native electron acceptor (ferriheme b L) while minimizing the probability of unwanted (and potentially damaging) electron transfer bypass reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[2Fe-2S]:

The iron-sulfur cluster of the ‘Rieske’ iron-sulfur protein

Cyt:

Cytochrome

ENDOR:

Electron nuclear double resonance spectroscopy

EPR:

Electron paramagnetic resonance spectroscopy

ESEEM:

Electron spin echo envelope modulation spectroscopy

HHDBT:

5-n-heptyl- 6-hydroxy-4,7-dioxobenzothiazole

ISP:

The ‘Rieske’ iron-sulfur protein

PEWY:

The Pro271-Glu-Trp-Tyr274 sequence within the Qo site of cytochrome b (yeast numbering)

QH2 :

Quinol or hydroquinone

Qi :

Quinone reductase site of the cytochrome bc 1 complex

Qo :

Quinol oxidase site of the cytochrome bc 1 complex

SQ:

Semiquinone

SQo :

Semiquinone associated with the quinol oxidase site of the cytochrome bc 1 complex

References

  • Baniulis D, Yamashita E, Zhang H, Hasan SS, Cramer WA (2008) Structure-function of the cytochrome b 6 f complex. Photochem Photobiol 84:1349–1358

    Article  CAS  PubMed  Google Scholar 

  • Bartoschek S, Johansson M, Geierstanger BH, Okun JG, Lancaster CRD, Humpfer E, Yu L, …, Brandt U (2001) Three molecules of ubiquinone bind specifically to mitochondrial cytochrome bc 1 complex. J Biol Chem 276:35231–35234

    Google Scholar 

  • Berry EA, Huang L-S (2003) Observations concerning the quinol oxidation site of the cytochrome bc 1 complex. FEBS Lett 555:13–20

    Article  CAS  PubMed  Google Scholar 

  • Berry EA, Huang L-S (2011) Conformationally linked interaction in the cytochrome bc 1 complex between inhibitors of the Qo site and the Rieske iron–sulfur protein. Biochim Biophys Acta 1807:1349–1363

    Article  CAS  PubMed  Google Scholar 

  • Berry EA, Huang LS, Zhang Z, Kim SH (1999) Structure of the avian mitochondrial cytochrome bc 1 complex. J Bioenerg Biomembr 31:177–190

    Article  CAS  PubMed  Google Scholar 

  • Berry EA, Guergova-Kuras M, Huang LS, Crofts AR (2000) Structure and function of cytochrome bc complexes. Annu Rev Biochem 69:1005–1075

    Article  CAS  PubMed  Google Scholar 

  • Bertini I, Turano P (1995) Nuclear Magnetic Resonance of Paramagnetic Molecules. Kluwer, Dordrecht, pp 29–54

    Book  Google Scholar 

  • Bertrand P, Gayda JP (1979) Theoretical interpretation of the variations of some physical parameters within the [2Fe-2S] ferredoxin group. Biochim Biophys Acta 579:107–121

    Article  CAS  PubMed  Google Scholar 

  • Bertrand P, Guigliarelli B, Gayda JP, Beardwood P, Gibson JF (1985) A ligand-field model to describe a new class of 2Fe-2S clusters in proteins and their synthetic analogues. Biochim Biophys Acta 831:261–266

    Article  CAS  Google Scholar 

  • Bleier L, Dröse S (2013) Superoxide generation by complex III: from mechanistic rationales to functional consequences. Biochim Biophys Acta 1827:1320–1331

    Article  CAS  PubMed  Google Scholar 

  • Borek A, Sarewicz M, Osyczka A (2008) Movement of the iron-sulfur head domain of cytochrome bc 1 transiently opens the catalytic Qo site for reaction with oxygen. Biochemistry 47:12365–12370

    Article  CAS  PubMed  Google Scholar 

  • Brandt U (1999) Control of ubiquinol oxidation at center P (Qo) of the cytochrome bc1 complex. J Bioenerg Biomembr 31:243–250

    Article  CAS  PubMed  Google Scholar 

  • Brandt U, Okun JG (1997) Role of deprotonation events in ubihydroquinone: cytochrome c oxidoreductase from bovine heart and yeast mitochondria. Biochemistry 36:11234–11240

    Article  CAS  PubMed  Google Scholar 

  • Brandt U, von Jagow G (1991) Analysis of inhibitor binding to the mitochondrial cytochrome c reductase by fluorescence quench titration. Evidence for a ‘catalytic switch’ at the Qo center. Eur J Biochem 195:163–170

    Article  CAS  PubMed  Google Scholar 

  • Cape JL, Bowman MK, Kramer DM (2006) Understanding the cytochrome bc complexes by what they don’t do. The Q-cycle at 30. Trends Plant Sci 11:46–55

    Article  CAS  PubMed  Google Scholar 

  • Cape JL, Bowman MK, Kramer DM (2007) A semiquinone intermediate generated at the Qo site of the cytochrome bc 1 complex: importance for the Q-cycle and superoxide production. Proc Natl Acad Sci USA 104:7887–7892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cape JL, Aidasani D, Kramer DM, Bowman MK (2009) Substrate redox potential controls superoxide production kinetics in the cytochrome bc 1 complex. Biochemistry 48:10716–10723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    CAS  PubMed  Google Scholar 

  • Cooley JW (2010) A structural model for across membrane coupling between the Qo and Qi active sites of cytochrome bc 1. Biochim Biophys Acta 1797:1842–1848

    Article  CAS  PubMed  Google Scholar 

  • Cooley JW, Ohnishi T, Daldal F (2005) Binding dynamics at the quinone reduction (Qi) site influence the equilibrium interactions of the iron sulfur protein and hydroquinone oxidation (Qo) site of the cytochrome bc 1 complex. Biochemistry 44:10520–10532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Covian R, Trumpower BL (2008a) The dimeric structure of the cytochrome bc 1 complex prevents center P inhibition by reverse reactions at center N. Biochim Biophys Acta 1777:1044–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Covian R, Trumpower BL (2008b) Regulatory interactions in the dimeric cytochrome bc 1 complex: the advantages of being a twin. Biochim Biophys Acta 1777:1079–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer WA, Hasan SS, Yamashita E (2011) The Q cycle of cytochrome bc complexes: a structure perspective. Biochim Biophys Acta 1807:788–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crofts AR (2004) The cytochrome bc 1 complex: function in the context of structure. Annu Rev Physiol 66:689–733

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR (2005) The Q-cycle – a personal perspective. Photosynth Res 80:223–243

    Article  Google Scholar 

  • Crofts AR, Meinhardt SW, Jones KR (1983) The role of the quinone pool in the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides. A modified Q-cycle mechanism. Biochim Biophys Acta 723:202–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crofts AR, Barquera B, Gennis RB, Kuras R, Guergova-Kuras M, Berry EA (1999) Mechanism of ubiquinol oxidation by the bc 1 complex: different domains of the quinol binding pocket and their role in the mechanism and binding of inhibitors. Biochemistry 38:15807–15826

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR, Shinkarev VP, Kolling DRJ, Hong S (2003) The modified Q-cycle explains the apparent mismatch between the kinetics of reduction of cytochromes c 1 and b H in the bc 1 complex. J Biol Chem 278:36191–36201

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR, Lhee S, Crofts SB, Cheng J, Rose S (2006) Proton pumping in the bc 1 complex: a new gating mechanism that prevents short circuits. Biochim Biophys Acta 1757:1019–1034

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR, Holland JT, Victoria D, Kolling DRJ, Dikanov SA, Gilbreth R, Lhee S, …, Kuras MG (2008) The Q-cycle reviewed: how well does a monomeric mechanism of the bc 1 complex account for the function of a dimeric complex? Biochim Biophys Acta 1777:1001–1019

    Google Scholar 

  • Crofts AR, Hong S, Wilson C, Burton R, Victoria D, Harrison C, Schulten K (2013) The mechanism of ubihydroquinone oxidation at the Qo-site of the cytochrome bc 1 complex. Biochim Biophys Acta 1827:1362–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Vries S, Albracht SP, Berden JA, Slater EC (1981) A new species of bound ubisemiquinone anion in QH2: cytochrome c oxidoreductase. J Biol Chem 256:11996–11998

    PubMed  Google Scholar 

  • Dröse S, Brandt U (2008) The mechanism of mitochondrial superoxide production by the cytochrome bc 1 complex. J Biol Chem 283:21649–21654

    Article  PubMed  Google Scholar 

  • Esser L, Quinn B, Li Y-F, Zhang M, Elberry M, Yu L, Yu CA, Xia D (2004) Crystallographic studies of quinol oxidation site inhibitors: a modified classification of inhibitors for the cytochrome bc 1 complex. J Mol Biol 341:281–302

    Article  CAS  PubMed  Google Scholar 

  • Esser L, Elberry M, Zhou F, Yu C-A, Yu L, Xia D (2008) Inhibitor-complexed structures of the cytochrome bc 1 from the photosynthetic bacterium Rhodobacter sphaeroides. J Biol Chem 283:2846–2857

    Article  CAS  PubMed  Google Scholar 

  • Fisher N, Castleden CK, Bourges I, Brasseur G, Dujardin G, Meunier B (2004) Human disease-related mutations in cytochrome b studied in yeast. J Biol Chem 279:12951–12958

    Article  CAS  PubMed  Google Scholar 

  • Fisher N, Abd-Majid R, Antoine T, Al-Helal M, Warman AJ, Johnson DJ, Lawrenson AS, …, Biagini GA (2012) Cytochrome b mutation Y268S conferring atovaquone resistance phenotype in malaria parasite results in reduced parasite bc 1 catalytic turnover and protein expression. J Biol Chem 287:9731–9741

    Google Scholar 

  • Forquer I, Cape JL, Bowman MK, Kramer DM (2005) Sequential two-electron oxidation of ubiquinol by the cytochrome bc 1 complex. In: Photosynthesis: Fundamental Aspects to Global Perspectives. Pacific Northwest National Laboratory, Richland, pp 430–432

    Google Scholar 

  • Forquer I, Covian R, Bowman MK, Trumpower BL, Kramer DM (2006) Similar transition states mediate the Q-cycle and superoxide production by the cytochrome bc 1 complex. J Biol Chem 281:38459–38465

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Wen X, Yu C, Esser L, Tsao S, Quinn B, Zhang L, …, Xia D (2002) The crystal structure of mitochondrial cytochrome bc 1 in complex with famoxadone: the role of aromatic-aromatic interaction in inhibition. Biochemistry 41:11692–11702

    Google Scholar 

  • Guergova-Kuras M, Kuras R, Ugulava N, Hadad I, Crofts AR (2000) Specific mutagenesis of the Rieske iron − sulfur protein in Rhodobacter sphaeroides shows that both the thermodynamic gradient and the pK of the oxidized form determine the rate of quinol oxidation by the bc 1 complex. Biochemistry 39:7436–7444

    Article  CAS  PubMed  Google Scholar 

  • Gunner MR, Madeo J, Zhu Z (2008) Modification of quinone electrochemistry by the proteins in the biological electron transfer chains: examples from photosynthetic reaction centers. J Bioenerg Biomembr 40:509–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurbiel RJ, Doan PE, Gassner GT, Macke TJ, Case DA, Ohnishi T, Fee JA, …, Hoffman BM (1996) Active site structure of Rieske-type proteins: electron nuclear double resonance studies of isotopically labeled phthalate dioxygenase from Pseudomonas cepacia and Rieske protein from Rhodobacter capsulatus and molecular modeling studies of a Rieske center. Biochemistry 35:7834–7845

    Google Scholar 

  • Hastings SF, Heathcote P, Ingledew WJ, Rigby SE (2000) ENDOR spectroscopic studies of stable semiquinone radicals bound to the Escherichia coli cytochrome bo 3 quinol oxidase. Eur J Biochem 267:5638–5645

    Article  CAS  PubMed  Google Scholar 

  • Hunte C, Koepke J, Lange C, Rossmanith T, Michel H (2000) Structure at 2.3 Å resolution of the cytochrome bc 1 complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure 8:669–684

    Article  CAS  PubMed  Google Scholar 

  • Hunte C, Palsdottir H, Trumpower BL (2003) Protonmotive pathways and mechanisms in the cytochrome bc 1 complex. FEBS Lett 545:39–46

    Article  CAS  PubMed  Google Scholar 

  • Ingledew WJ, Ohnishi T, Salerno JC (1995) Studies on a stabilisation of ubisemiquinone by Escherichia coli quinol oxidase, cytochrome bo. Eur J Biochem 227:903–908

    Article  CAS  PubMed  Google Scholar 

  • Jünemann S, Heathcote P, Rich PR (1998) On the mechanism of quinol oxidation in the bc 1 complex. J Biol Chem 273:21603–21607

    Article  PubMed  Google Scholar 

  • Kao WC, Hunte C (2014) The molecular evolution of the Qo motif. Genome Biol Evol 6:1894–1910

    Article  PubMed  PubMed Central  Google Scholar 

  • Kleinschroth T, Anderka O, Ritter M, Stocker A, Link TA, Ludwig B, Hellwig P (2008) Characterization of mutations in crucial residues around the Qo binding site of the cytochrome bc complex from Paracoccus denitrificans. FEBS J 275:4773–4785

    Article  CAS  PubMed  Google Scholar 

  • Kramer DM, Cape JL, Forquer IP, Bowman MK (2005) Kinetic steering of quinol oxidation by ‘proton stripping’at the cytochrome bc 1 complex Qo site. In: Photosynthesis: Fundamental Aspects to Global Perspectives. Pacific Northwest National Laboratory, Richland, pp 424–427

    Google Scholar 

  • Lanciano P, Khalfaoui-Hassani B, Selamoglu N, Ghelli A, Rugolo M, Daldal F (2013) Molecular mechanisms of superoxide production by complex III: a bacterial versus human mitochondrial comparative case study. Biochim Biophys Acta 1827:1332–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Link TA (1997) The role of the ‘Rieske’ iron sulfur protein in the hydroquinone oxidation (QP) site of the cytochrome bc 1 complex. The ‘proton-gated affinity change’ mechanism. FEBS Lett 412:257–264

    Article  CAS  PubMed  Google Scholar 

  • Meunier B, Fisher N, Ransac S, Mazat JP, Brasseur G (2013) Respiratory complex III dysfunction in humans and the use of yeast as a model organism to study mitochondrial myopathy and associated diseases. Biochim Biophys Acta 1827:1346–1361

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P (1975) Protonmotive Q-cycle – general formulation. FEBS Lett 59:137–139

    Article  CAS  PubMed  Google Scholar 

  • Muller F, Crofts AR, Kramer DM (2002) Multiple Q-cycle bypass reactions at the Qo site of the cytochrome bc 1 complex. Biochemistry 41:7866–7874

    Article  CAS  PubMed  Google Scholar 

  • Muller FL, Roberts AG, Bowman MK, Kramer DM (2003) Architecture of the Qo site of the cytochrome bc 1 complex probed by superoxide production. Biochemistry 42:6493–6499

    Article  CAS  PubMed  Google Scholar 

  • Osyczka A, Moser CC, Daldal F, Dutton PL (2004) Reversible redox energy coupling in electron transfer chains. Nature 427:607–612

    Article  CAS  PubMed  Google Scholar 

  • Osyczka A, Moser CC, Dutton PL (2005) Fixing the Q cycle. Trends Biochem Sci 30:176–182

    Article  CAS  PubMed  Google Scholar 

  • Osyczka A, Zhang H, Mathé C, Rich PR, Moser CC, Dutton PL (2006) Role of the PEWY glutamate in hydroquinone-quinone oxidation-reduction catalysis in the Qo site of cytochrome bc 1. Biochemistry 45:10492–10503

    Article  CAS  PubMed  Google Scholar 

  • Palsdottir H, Lojero CG, Trumpower BL, Hunte C (2003) Structure of the yeast cytochrome bc 1 complex with a hydroxyquinone anion Qo site inhibitor bound. J Biol Chem 278:31303–31311

    Article  CAS  PubMed  Google Scholar 

  • Pauling L (1948) Nature of forces between large molecules of biological interest. Nature 161:707–709

    Article  CAS  PubMed  Google Scholar 

  • Quinlan CL, Gerencser AA, Treberg JR, Brand MD (2011) The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. J Biol Chem 286:31361–31372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rich PR (2004) The quinone chemistry of bc complexes. Biochim Biophys Acta 1658:165–171

    Article  CAS  PubMed  Google Scholar 

  • Rottenberg H, Covian R, Trumpower BL (2009) Membrane potential greatly enhances superoxide generation by the cytochrome bc 1 complex reconstituted into phospholipid vesicles. J Biol Chem 284:19203–19210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutherford AW, Osyczka A, Rappaport F (2012) Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O2. FEBS Lett 586:603–616

    Article  CAS  PubMed  Google Scholar 

  • Sarewicz M, Borek A, Cieluch E, Swierczek M, Osyczka A (2010) Discrimination between two possible reaction sequences that create potential risk of generation of deleterious radicals by cytochrome bc 1. Biochim Biophys Acta 1797:1820–1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarewicz M, Dutka M, Pintscher S, Osyczka A (2013) Triplet state of the semiquinone-Rieske cluster as an intermediate of electronic bifurcation catalysed by cytochrome bc 1. Biochemistry 52:6388–6395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz BE, Chan SI (2001) Structures and proton-pumping strategies of mitochondrial respiratory enzymes. Annu Rev Biophys Biomol Struct 30:23–65

    Article  CAS  PubMed  Google Scholar 

  • Seddiki N, Meunier B, Lemesle-Meunier D, Brasseur G (2008) Is cytochrome b glutamic acid 272 a quinol binding residue in the bc 1 complex of Saccharomyces cerevisiae? Biochemistry 47:2357–2368

    Article  CAS  PubMed  Google Scholar 

  • Shinkarev VP, Vassiliev IR, Golbeck JH (2000) A kinetic assessment of the sequence of electron transfer from FX to FA and further to FB in photosystem I: the value of the equilibrium constant between FX and FA. Biophys J 78:363–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shubin AA, Dikanov SA (2006) Variations of g-tensor principal values in reduced [2Fe-2S] cluster of iron-sulfur proteins. Appl Magn Reson 30:399–416

    Article  CAS  Google Scholar 

  • Snyder CH, Gutierrez-Cirlos EB, Trumpower BL (2000) Evidence for a concerted mechanism of ubiquinol oxidation by the cytochrome bc 1 complex. J Biol Chem 275:13535–13541

    Article  CAS  PubMed  Google Scholar 

  • Solmaz SRN, Hunte C (2008) Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer. J Biol Chem 283:17542–17549

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Trumpower BL (2003) Superoxide anion generation by the cytochrome bc 1 complex. Arch Biochem Biophys 419:198–206

    Article  CAS  PubMed  Google Scholar 

  • Swierczek M, Cieluch E, Sarewicz M, Borek A, Moser CC, Dutton PL, Osyczka A (2010) An electronic bus bar lies in the core of cytochrome bc 1. Science 329:451–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trumpower BL (1990) The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc 1 complex. J Biol Chem 265:11409–11412

    CAS  PubMed  Google Scholar 

  • Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408–414

    Article  CAS  PubMed  Google Scholar 

  • Valkova-Valchanova M, Darrouzet E, Moomaw CR, Slaughter CA, Daldal F (2000) Proteolytic cleavage of the Fe-S subunit hinge region of Rhodobacter capsulatus bc 1 complex: effects of inhibitors and mutations. Biochemistry 39:15484–15492

    Article  CAS  PubMed  Google Scholar 

  • Vennam PR, Fisher N, Krzyaniak MD, Kramer DM, Bowman MK (2013) A caged, destabilized, free radical intermediate in the Q-Cycle. Chembiochem 14:1745–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Victoria D, Burton R, Crofts AR (2013) Role of the -PEWY-glutamate in catalysis at the Qo-site of the Cyt bc 1 complex. Biochim Biophys Acta 1827:365–386

    Article  CAS  PubMed  Google Scholar 

  • Wenz T, Hellwig P, MacMillan F, Meunier B, Hunte C (2006) Probing the role of E272 in quinol oxidation of mitochondrial complex III. Biochemistry 45:9042–9052

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Ma H-W, Yu L, Yu C-A (2008) On the mechanism of quinol oxidation at the QP site in the cytochrome bc 1 complex: studied using mutants lacking cytochrome b L or b H. J Biol Chem 283:28767–28776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi SM, Narasimhulu KV, Samoilova RI, Gennis RB, Dikanov SA (2010) characterization of the semiquinone radical stabilized by the cytochrome aa 3-600 menaquinol oxidase of Bacillus subtilis. J Biol Chem 285:18241–18251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Yu L, Yu CA (1998a) Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. J Biol Chem 273:33972–33976

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Huang L, Shulmeister VM, Chi YI, Kim KK, Hung LW, Crofts AR, …, Kim SH (1998b) Electron transfer by domain movement in cytochrome bc 1. Nature 392:677–684

    Google Scholar 

  • Zhang H, Osyczka A, Dutton PL, Moser CC (2007) Exposing the complex III Qo semiquinone radical. Biochim Biophys Acta 1767:883–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Chobot SE, Osyczka A, Wraight CA, Dutton PL, Moser CC (2008) Quinone and non-quinone redox couples in Complex III. J Bioenerg Biomembr 40:493–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Egawa T, Yen SR, Yu L, Yu CA (2007) Simultaneous reduction of iron-sulfur protein and cytochrome b L during ubiquinol oxidation in cytochrome bc 1 complex. Proc Natl Acad Sci USA 104:4864–4869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial support from the National Institute of General Medical Sciences of the National Institutes of Health (R01GM061904 to MKB) and the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy (DE-FG02-11ER16220 to DMK) is gratefully acknowledged. Foundational support for the Plant Research Lab provided by Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy Grant DE-FG02-91ER20021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Kramer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fisher, N., Bowman, M.K., Kramer, D.M. (2016). Electron Transfer Reactions at the Qo Site of the Cytochrome bc 1 Complex: The Good, the Bad, and the Ugly. In: Cramer, W., Kallas, T. (eds) Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling. Advances in Photosynthesis and Respiration, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7481-9_21

Download citation

Publish with us

Policies and ethics