Skip to main content

Carbon Nanotubes and Graphene Nanoribbons for Terahertz Applications

CNTs and GNRs for THz Applications

  • Chapter
Fundamental and Applied Nano-Electromagnetics

Abstract

We discuss the use of nano-sized carbon materials electromagnetics and electronics in the terahertz range. The fascinating behavior of carbon nanotubes and graphene nanoribbons suggests using these innovative materials for THz range applications, for instance to fabricate emitters, detectors, antennas and interconnects. In this Chapter we investigate the main phenomena to be controlled in view of the above THz applications: plasmon resonances, tunneling effect and interband transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel PH (2002) Terahertz technology. IEEE Trans Microwave Theory Technol 50:910–928

    Article  ADS  Google Scholar 

  2. Ferguson B, Zhang XC (2002) Materials for terahertz science and technology. Nat Mater 1:26–33

    Article  ADS  Google Scholar 

  3. Kiyomi S (2005) Terahertz optoelectronics. Springer, Berlin

    Google Scholar 

  4. Lee GM, Wanke MC (2007) Searching for a solid-state terahertz technology. Science 316:64–65

    Article  Google Scholar 

  5. Avrutin EA, Portnoi ME (1988) Estimate of the lifetimes of nonequilibrium carriers in a semiconductor irradiated with heavy ions. Sov Phys Semicond 22:968–970

    Google Scholar 

  6. Kruglyak VV, Portnoi ME (2005) Generation of femtosecond current pulses using the inverse magneto-optical Faraday effect. Tech Phys Lett 31:1047–1048

    Article  ADS  Google Scholar 

  7. Hartmann RR, Kono J, Portnoi ME (2014) Terahertz science and technology of carbon nanomaterials. Nanotechnology 25:322001

    Article  Google Scholar 

  8. Kibis OV, Parfitt DGW, Portnoi ME (2005) Superlattice properties of carbon nanotubes in a transverse electric field. Phys Rev B 71:035411

    Article  ADS  Google Scholar 

  9. Portnoi ME, Kibis OV, Rosenau da Costa M (2008) Terahertz applications of carbon nanotubes. Superlattice Microst 43:399–407

    Article  ADS  Google Scholar 

  10. Berres JA, Hanson GW (2011) Multiwall carbon nanotubes at RF-THz frequencies: scattering, shielding, effective conductivity, and power dissipation. IEEE Trans Antennas Propag 59:3098–3103

    Article  ADS  Google Scholar 

  11. Batrakov K, Kibis OV, Kuzhir P, Rosenau da Costa M, Portnoi ME (2010) Terahertz processes in carbon nanotubes. J Nanophoton 4:041665

    Article  Google Scholar 

  12. Burke PJ (2004) AC performance of nanoelectronics: towards a ballistic THz nanotube transistor. Solid State Electron 48:1981–1986

    Article  ADS  Google Scholar 

  13. Rana F (2008) Graphene terahertz plasmon oscillators. IEEE Trans Nanotechnol 7:91–99

    Article  ADS  Google Scholar 

  14. Kibis OV, Portnoi ME (2005) Carbon nanotubes: a new type of emitter in the terahertz range. Tech Phys Lett 31:671–672

    Article  Google Scholar 

  15. Kibis OV, Rosenau da Costa M, Portnoi ME (2007) Generation of terahertz radiation by hot electrons in carbon nanotubes. Nano Lett 7:3414–3417

    Article  ADS  Google Scholar 

  16. Portnoi ME, Rosenau da Costa M, Kibis OV, Shelykh IA (2009) Magnetically controlled terahertz absorption and emission in carbon nanotubes. Int J Mod Phys B 23:2846–2850

    Article  ADS  Google Scholar 

  17. Shuba MV, Slepyan GY, Maksimenko SA, Thomsen C, Lakhtakia A (2009) Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes. Phys Rev B 79:155403

    Article  ADS  Google Scholar 

  18. Hanson GW (2005) Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans Antenn Propag 53:3426–3435

    Article  ADS  Google Scholar 

  19. Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109

    Article  ADS  Google Scholar 

  20. Saito R, Dresselhaus G, Dresselhaus MS (2004) Physical properties of carbon nanotubes. Imperial College Press, Singapore

    MATH  Google Scholar 

  21. Miano G, Forestiere C, Maffucci A, Maksimenko SA, Slepyan GY (2011) Signal propagation in single wall carbon nanotubes of arbitrary chirality. IEEE Trans Nanotechnol 10:135–149

    Article  ADS  Google Scholar 

  22. Zheng H, Wan ZF, Luo T, Shi QW, Chen J (2007) Analytical study of electronic structure in armchair graphene nanoribbons. Phys Rev B 75:165414

    Article  ADS  Google Scholar 

  23. Maffucci A, Miano G (2013) Transmission line model of graphene nanoribbon interconnects. Nanosci Nanotechnol Lett 5:1207–1216

    Article  Google Scholar 

  24. Wakabayashi K, Sasaki K, Nakanishi T, Enoki T (2010) Electronic states of graphene nanoribbons and analytical solutions. Sci Technol Adv Mater 11:054504

    Article  Google Scholar 

  25. Maffucci A, Miano G (2013) Number of conducting channels for armchair and zig-zag graphene nanoribbon interconnects. IEEE Trans Nanotechnol 12:817–823

    Article  ADS  Google Scholar 

  26. Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954

    Article  ADS  Google Scholar 

  27. White CT, Li J, Gunlycke D, Mintmire JW (2007) Hidden one-electron interactions in carbon nanotubes revealed in graphene nanostrips. Nano Lett 7:825–830

    Article  ADS  Google Scholar 

  28. Hartmann RR, Portnoi ME (2011) Optoelectronic properties of carbon-based nanostructures: steering electrons in graphene by electromagnetic fields. LAP Lambert Acad Publ, Saarbrücken

    Google Scholar 

  29. Shuba MV, Paddubskaya AG, Plyushch AO, Kuzhir PP, Slepyan GY, Maksimenko SA, Ksenevich VK, Buka P, Seliuta D, Kasalynas I, Macutkevic J, Valusis G, Thomsen C, Lakhtakia A (2012) Experimental evidence of localized plasmon resonance in composite materials containing single-wall carbon nanotubes. Phys Rev B 85:165435

    Article  ADS  Google Scholar 

  30. Son Y-W, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803

    Article  ADS  Google Scholar 

  31. Tapasztó L, Dobrik G, Lambin P, Biró LP (2008) Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat Nanotechnol 3:397–401

    Article  Google Scholar 

  32. Magda GZ, Jin X, Hagymási I, Vancsó P, Osváth Z, Nemes-Incze P, Hwang C, Biró LP, Tapasztó L (2014) Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514:608–611

    Article  ADS  Google Scholar 

  33. Slepyan GY, Shuba MV, Maksimenko SA, Lakhtakia A (2006) Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas. Phys Rev B 73:195416

    Article  ADS  Google Scholar 

  34. Burke PJ, Li S, Yu Z (2006) Quantitative theory of nanowire and nanotube antenna performance. IEEE Trans Nanotechnol 5:314–334

    Article  ADS  Google Scholar 

  35. Llatser I, Kremers C, Chigrin DN, Jornet JM, Lemme MC, Cabellos-Aparicio A, Alarcon E (2012) Radiation characteristics of tunable graphennas in the terahertz band. Radioengineering 21:946–953

    Google Scholar 

  36. Slepyan GY, Maksimenko SA, Lakhtakia A, Yevtushenko O, Gusakov AV (1999) Electrodynamics of carbon nanotubes: dynamic conductivity, impedance boundary conditions, and surface wave propagation. Phys Rev B 60:17136–17149

    Article  ADS  Google Scholar 

  37. Slepyan GY, Shuba MV, Maksimenko SA, Thomsen C, Lakhtakia A (2010) Terahertz conductivity peak in composite materials containing carbon nanotubes: theory and interpretation of experiment. Phys Rev B 81:205423

    Article  ADS  Google Scholar 

  38. Shuba MV, Paddubskaya AG, Kuzhir PP, Maksimenko SA, Ksenevich VK, Niaura G, Seliuta D, Kasalynas I, Valusis G (2012) Soft cutting of single-wall carbon nanotubes by low temperature ultrasonicatin in a mixture of sulfuric and nitric acids. Nanotechnology 23:495714

    Article  Google Scholar 

  39. Zhang Q, Hároz EH, Jin Z, Ren L, Wang X, Arvidson RS, Lüttge A, Kono J (2013) Plasmonic nature of the terahertz conductivity peak in single-wall carbon nanotubes. Nano Lett 13:5991–5996

    Article  ADS  Google Scholar 

  40. Nemilentsau AM, Shuba MV, Slepyan GY, Kuzhir PP, Maksimenko SA, D’yachkov PN, Lakhtakia A (2010) Substitutional doping of carbon nanotubes to control their electromagnetic characteristics. Phys Rev B 82:235424

    Article  ADS  Google Scholar 

  41. Shuba MV, Paddubskaya AG, Kuzhir PP, Slepyan GY, Seliuta D, Kasalynas I, Valusis G, Lakhtakia A (2012) Effects of inclusion dimensions and p-type doping in the terahertz spectra of composite materials containing bundles of single-wall carbon nanotubes. J Nanophoton 6:061707

    Article  Google Scholar 

  42. Batrakov KG, Saroka VA, Maksimenko SA, Thomsen C (2012) Plasmon polariton slowing down in graphene structures. J Nanophoton 6:061719

    Article  Google Scholar 

  43. Naeemi A, Meindl JD (2008) Performance modeling for single- and multiwall carbon nanotubes as signal and power interconnects in gigascale systems. IEEE T Electron Dev 55:2574–2582

    Google Scholar 

  44. Maffucci A, Miano G, Villone F (2008) Performance comparison between metallic carbon nanotube and copper nano-interconnects. IEEE T Adv Pack 31:692–699

    Article  MATH  Google Scholar 

  45. Li H, Xu C, Srivastava N, Banerjee K (2009) Carbon nanomaterials for next-generation interconnects and passives: physics, status, and prospects. IEEE T Electron Dev 56:1799–1821

    Article  ADS  Google Scholar 

  46. Chiariello AG, Maffucci A, Miano GA (2013) Circuit models of carbon-based interconnects for nanopackaging. IEEE T Compon Pack Manuf 3:1926–1937

    Article  Google Scholar 

  47. Soga I, Kondo D, Yamaguchi Y, Iwai T, Mizukoshi M, Awano Y, Yube K, Fujii T (2008) Carbon nanotube bumps for LSI interconnect. Electron components technology conference, pp 1390–1394

    Google Scholar 

  48. Chen X, Akinwande D, Lee K-J, Close GF, Yasuda S, Paul BC, Fujita S, Kong J, Philip Wong H-S (2010) Fully integrated graphene and carbon nanotube interconnects for gigahertz high-speed CMOS electronics. IEEE T Electron Dev 57:3137–3143

    Article  ADS  Google Scholar 

  49. Shulaker MM, Hills G, Patil N, Wei H, Chen H-Y, Philip Wong H-S, Mitra S (2013) Carbon nanotube computer. Nature 501:526–530

    Article  ADS  Google Scholar 

  50. Brun C, Wei TC, Franck P, Chong YC, Lu C, Leong CW, Tan D, Kang TB, Coquet P, Baillargeat D (2015) Carbon nanostructures dedicated to millimeter-wave to THz interconnects. IEEE Trans Terahertz Sci Technol 5:383–390

    Article  ADS  Google Scholar 

  51. Forestiere C, Maffucci A, Maksimenko SA, Miano G, Slepyan GY (2012) Transmission line model for multiwall carbon nanotubes with intershell tunneling. IEEE Trans Nanotechnol 11:554–564

    Article  ADS  Google Scholar 

  52. Maffucci A, Miano G (2015) A general frame for modeling the electrical propagation along graphene nanoribbons, carbon nanotubes and metal nanowires. Comput Model New Technol 19:8–14

    Google Scholar 

  53. Forestiere C, Maffucci A, Miano G (2011) On the evaluation of the number of conducting channels in multiwall carbon nanotubes. IEEE Trans Nanotechnol 10:1221–1223

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Vasil Saroka for his help in the preparation of the manuscript. This research was partially supported by EU FP7 ITN NOTEDEV (Grant No. FP7-607521) and EU FP7 IRSES projects QOCaN (Grant No FP7-316432), CANTOR (Grant No FP7-612285), InterNoM (Grant No FP7-612624), and FAEMCAR (Grant No FP7-318617), and by BRFFR under Project No. F14R-026

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Maffucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maffucci, A., Maksimenko, S.A., Portnoi, M.E. (2016). Carbon Nanotubes and Graphene Nanoribbons for Terahertz Applications. In: Maffucci, A., Maksimenko, S.A. (eds) Fundamental and Applied Nano-Electromagnetics. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7478-9_6

Download citation

Publish with us

Policies and ethics