Skip to main content

Quantum Dot Lattice as Nano-Antenna for Collective Spontaneous Emission

  • Chapter

Abstract

We present a theory for the collective spontaneous emission of timed Dicke states in a periodic 2D-array of quantum dots (QDs) coupled by dipole-dipole (d-d) interactions. The master equation is first reformulated with respect to the timed Dicke basis. As a result, we obtain simple analytical relations for the spontaneous decay rate, collective Lamb shift and radiative pattern. The collective spontaneous emission in QD-array manifests itself in strong directivity, whereby the radiative pattern consists of a set of strong radiative lobes. The direction of the first lobe is dictated by the pumping direction, while the other lobes correspond to diffractive rays due to the periodicity. The influence of d-d interactions on the radiation decay of timed Dicke states in QD arrays is identical to the influence of an environment to single-particle excited states similar to the action of a structured photonic reservoir. For a rectangular 2D-array, the equivalent structured photonic reservoir has a form of a hollow rectangular waveguide with perfectly conductive walls. For lattice periods comparable to the radiation wavelength the decay rate shows sharp peaks due to Van-Hove singularities in the photonic density of states (PDOS) similar to the Purcell effect in photonic crystals. The optical nanoantenna under study allows tuning of the radiation pattern by varying the timing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Scully MO, Zubairy MS (1997) Quantum optics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  2. Dicke RH (1954) Coherence in spontaneous radiation processes. Phys Rev 93:99

    Article  ADS  MATH  Google Scholar 

  3. Slepyan GY, Yerchak Y, Maksimenko SA, Hoffmann A (2009) Wave propagation of Rabi oscillations in one-dimensional quantum dot chain. Phys Lett A 373:1374–1378

    Article  ADS  MATH  Google Scholar 

  4. Slepyan GY, Yerchak Y, Hoffmann A, Bass FG (2010) Strong electron-photon coupling in a one-dimensional quantum dot chain: Rabi waves and Rabi wave packets. Phys Rev B 81:085115

    Article  ADS  Google Scholar 

  5. Slepyan GY, Yerchak Y, Maksimenko SA, Hoffmann A, Bass FG (2012) Mixed states in Rabi waves and quantum nanoantennas. Phys Rev B 85:245134

    Article  ADS  Google Scholar 

  6. Förster T (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern quantum chemistry. Istanbul lectures Part 3: action of light and organic crystals. Academic, New York, pp 93–137

    Google Scholar 

  7. Parascandolo G, Savona V (2005) Long-range radiative interaction between semiconductor quantum dots. Phys Rev B 71:045335

    Article  ADS  Google Scholar 

  8. Ficek Z, Tanas R (2002) Entangled states and collective nonclassical effects in two-atom systems. Phys Rep 372:369–443

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Hughes S (2005) Modified spontaneous emission and qubit entanglement from dipole-coupled quantum dots in a photonic crystal nanocavity. Phys Rev Lett 94:227402

    Article  ADS  Google Scholar 

  10. Scully MO, Fru ES, Ooi CHR, Wodkiewicz K (2006) Directed spontaneous emission from an extended ensemble of N atoms: timing is everything. Phys Rev Lett 96:010501

    Article  ADS  Google Scholar 

  11. Svidzinsky AA, Chang J-T, Scully MO (2010) Cooperative spontaneous emission of N atoms: many-body eigenstates, the effect of virtual Lamb shift processes, and analogy with radiation of N classical oscillators. Phys Rev A81:053821

    Article  ADS  Google Scholar 

  12. Svidzinsky AA, Chang J-T, Scully MO (2008) Dynamical evolution of correlated spontaneous emission of a single photon from a uniformly excited cloud of N atoms. Phys Rev Lett 100:160504

    Article  ADS  Google Scholar 

  13. Das S, Agarwal GS, Scully MO (2008) Quantum interferences in cooperative Dicke emission from spatial variation of the laser phase. Phys Rev Lett 101:153601

    Article  ADS  Google Scholar 

  14. Scully MO (2009) Collective Lamb shift in single photon Dicke superradiance. Phys Rev Lett 102:143601

    Article  ADS  Google Scholar 

  15. Yu T, Eberly JH (2004) Finite-time disentanglement via spontaneous emission. Phys Rev Lett 93:140404

    Article  ADS  Google Scholar 

  16. Slepyan GY, Boag A (2013) Quantum nonreciprocity of nanoscale antenna arrays in timed Dicke states. Phys Rev Lett 111:023602

    Article  ADS  Google Scholar 

  17. Röhlsberger R, Schlage K, Sahoo B, Couet S, Rüffer R (2010) Collective Lamb shift in single-photon superradiance. Science 328:1248–1251

    Article  ADS  Google Scholar 

  18. Meir Z, Schwartz O, Shahmoon E, Oron D, Ozeri R (2014) Cooperative Lamb shift in a mesoscopic atomic array. Phys Rev Lett 113:193002

    Article  ADS  Google Scholar 

  19. Kavokin A, Baumberg JJ, Malpuech G, Laussy FP (2007) Microcavities. Oxford University Press, Oxford

    Book  Google Scholar 

  20. Yablonovich E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059–2061

    Article  ADS  Google Scholar 

  21. Miroshnichenko Y, Poulsen UV, Molmer K (2013) Directional emission of single photons from small atomic samples. Phys Rev A 87:023821

    Article  ADS  Google Scholar 

  22. Porras D, Cirac JI (2008) Collective generation of quantum states of light by entangled atoms. Phys Rev A 78:053816

    Article  ADS  Google Scholar 

  23. Zoubi H, Ritsch H (2011) Lifetime and emission characteristics of collective electronic excitations in two-dimensional optical lattices. Phys Rev A 83:063831

    Article  ADS  Google Scholar 

  24. Biagioni P, Huang Y-S, Hecht B (2012) Nanoantennas for visible and infrared radiation. Rep Prog Phys 75:024402

    Article  ADS  Google Scholar 

  25. Novotny L, van Hulst N (2011) Antennas for light. Nat Photonics 5:83–90

    Article  ADS  Google Scholar 

  26. Engheta N (2007) Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317:1698–1702

    Article  ADS  Google Scholar 

  27. Greffet J-J, Laroshe M, Marquier F (2010) Impedance of a nanoantenna and a single quantum emitter. Phys Rev Lett 105:117701

    Article  ADS  Google Scholar 

  28. Mokhlespour S, Haverkort JEM, Slepyan GY, Maksimenko SA, Hoffmann A (2012) Collective spontaneous emission in coupled quantum dots: physical mechanism of quantum nanoantenna. Phys Rev B 86:245322

    Article  ADS  Google Scholar 

  29. Balanis K (1997) Antenna theory. Wiley, New York

    Google Scholar 

  30. Volakis JL (2007) Antenna engineering handbook. McGraw Hill, New York

    Google Scholar 

  31. Agarwal GS (1974) Quantum statistical theories of spontaneous emission and their relation to other approaches. In: Höhler G (ed) Springer tracts in modern physics, vol 70. Springer, Berlin

    Google Scholar 

  32. Agarwal GS (2013) Quantum optics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  33. Andreani LC (1994) Confined electrons and photons. In: Burstein E, Weisbuch C (eds) NATO advanced study institute, Series B: physics, vol 340. Plenum Press, New York

    Google Scholar 

  34. Borri P, Langbein W, Schneider S, Woggon U, Sellin RL, Ouyang D, Bimberg D (2001) Ultralong dephasing time in InGaAs quantum dots. Phys Rev Lett 87:157401

    Article  ADS  Google Scholar 

  35. Miyazaki J, Kinoshita S (2012) Site-selective spectroscopic study on the dynamics of exciton hopping in an array of inhomogeneously broadened quantum dots. Phys Rev B 86:035303

    Article  ADS  Google Scholar 

  36. Ding CR, Wang HZ, Xu B (2005) High-temperature electron–hole liquid and dynamics of Fermi excitons in a In0.65Al0.35As/Al0.4Ga0.6As quantum dot array. Phys Rev B 71:085304

    Google Scholar 

  37. Fox M (2012) Quantum optics: an introduction, Oxford master series. Oxford University Press, Oxford

    MATH  Google Scholar 

  38. Van Bladel J (2007) Electromagnetic fields. Wiley, Chichester

    Book  Google Scholar 

  39. Ilyinsky AS, Slepyan AY, Slepyan GY (1993) Propagating, scattering and dissipation of electromagnetic waves. Peregrinus, London

    Book  MATH  Google Scholar 

  40. Purcell EM (1946) Spontaneous emission probabilities at radio frequencies. Phys Rev 69:681

    Article  Google Scholar 

  41. Gullans M, Tiecke TG, Chang DE, Feist J, Thompson JD, Cirac JI, Zoller P, Lukin MD (2012) Nanoplasmonic lattices for ultracold atoms. Phys Rev Lett 109:235309

    Article  ADS  Google Scholar 

  42. Beveratos A, Brouri R, Gacoin T, Poizat J-P, Grangier P (2001) Nonclassical radiation from diamond nanocrystals. Phys Rev A 64:061802R

    Article  ADS  Google Scholar 

  43. Ivchenko EL, Fu Y, Willander M (2000) Exciton polaritons in quantum-dot photonic crystals. Phys Solid State 42:1756–1765

    Article  ADS  Google Scholar 

  44. Voronov MM, Ivchenko EL (2003) Resonance reflection of light from two-dimensional superlattice structures. Phys Solid State 45:176–182

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project has been supported by the COBRA research institute at Eindhoven University of Technology. S.A.M and G.Y.S. acknowledge a support from the EU FP7 grant FP7-612285 CANTOR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Maksimenko .

Editor information

Editors and Affiliations

Appendices

Appendices

4.1.1 Appendix A: Scalar Green Function for Electromagnetic Field in Square 2D-Lattice

Let us obtain the presentation for scalar Green function (4.14), which is convenient for numerical calculations. We start with the presentation

$$ \frac{e^{i{k}_0r}}{4\pi r}=\frac{1}{{\left(2\pi \right)}^3}{\displaystyle \underset{-\infty }{\overset{\infty }{\int }}{\displaystyle \underset{-\infty }{\overset{\infty }{\int }}{\displaystyle \underset{-\infty }{\overset{\infty }{\int }}\frac{e^{i\left({k}_xx+{k}_yy+{k}_zz\right)}}{k_x^2+{k}_y^2+{k}_z^2-{k}_0^2}d{k}_x}}}d{k}_yd{k}_z. $$
(4.21)

Using the integral relation

$$ {\displaystyle {\int}_{-\infty}^{\infty}\frac{e^{i\xi \left(z-{z}^{\prime}\right)}}{\xi^2-{\kappa}^2}d\xi }=\frac{i\pi }{\kappa }{e}^{i\kappa \left|z-{z}^{\prime}\right|}, $$

and integrating over k z , we transform (4.21) to

$$ \frac{e^{i{k}_0r}}{4\pi r}=\frac{i\pi }{{\left(2\pi \right)}^3}{\displaystyle \underset{-\infty }{\overset{\infty }{\int }}{\displaystyle \underset{-\infty }{\overset{\infty }{\int }}\frac{e^{i\left({k}_xx+{k}_yy\right)}}{\kappa }{e}^{i\kappa \left|z\right|}}}d{k}_xd{k}_y $$
(4.22)

with \( \kappa =\sqrt{k_0^2-{k}_x^2-{k}_y^2} \). Based on Eq. (4.14) and using (4.22), we obtain the periodic Green’s function

$$ \begin{aligned} G\left(x,y,z;{\omega}_0\right)&=\frac{i\pi }{{\left(2\pi \right)}^3}{\displaystyle \underset{-\infty }{\overset{\infty }{\int }}{\displaystyle \underset{-\infty }{\overset{\infty }{\int }}\frac{e^{i\kappa \left|z\right|}}{\kappa }d{k}_xd{k}_y}}\\ &\quad \times {\displaystyle \sum_{p,q=-\infty}^{\infty } \exp \left[i{k}_x\left(x-pa\right)+i{k}_y\left(y-qa\right)+iqa{k}_0 \cos {\theta}_{\mathrm{inc}}\right]}\end{aligned} $$

Using the well-know Poisson’s summation formula

$$ {\displaystyle {\sum}_{m=-\infty}^{\infty } \exp (imx)}=2\pi {\displaystyle {\sum}_{m=-\infty}^{\infty}\delta \left(x-2\pi m\right)}, $$
(4.23)

and integrating over k x,y , we finally obtain the scalar Green’s function in the form (4.15).

4.1.2 Appendix B: Spontaneous Emission Rate of QD-Lattice in the Limit of Infinitely Large Period

When the lattice period is infinitely large, the spontaneous emission rate of the QD lattice can be obtained from Eq. (4.17), as

$$ \underset{a\to \infty }{ \lim }{\tilde{\Gamma}}_{\mathbf{K}}=\underset{a\to \infty }{ \lim}\frac{\mu^2}{\hslash {\varepsilon}_0{a}^2}{\displaystyle \sum_m\left[{k}_0^2-{\left(\frac{2\pi m}{a}\right)}^2\right]{\displaystyle \sum_n\frac{1}{k_{mn}}}}, $$
(4.24)

where \( m,n{=}0,\pm 1,\pm 2,\cdots \), with the restriction \( {\left(2\pi m/a\right)}^2{+}{\left[\left(2\pi n/a\right){+}{k}_0 \cos {\theta}_{\mathrm{inc}}\right]}^2\linebreak \le {k}_0 \). By use of the mathematical identity,

$$ \underset{l\to \infty }{ \lim}\frac{2\pi }{l}{\displaystyle \sum_{p=-\infty}^{\infty }f\left(\frac{2\pi p}{l}\right)}\to {\displaystyle {\int}_{-\infty}^{\infty }f\left(\xi \right)}d\xi, $$
(4.25)

the inner sum in Eq. (4.24) transformed to the integral

$$ {\displaystyle \underset{-\sqrt{k_0^2-{\left(2\pi m/a\right)}^2}}{\overset{\sqrt{k_0^2-{\left(2\pi m/a\right)}^2}}{\int }}\frac{d\xi }{\sqrt{k_0^2-{\left(2\pi m/a\right)}^2-{\xi}^2}}}=\pi, $$
(4.26)

where \( \left|{k}_0\right|>2\pi \left|m\right|/a. \) Then Eq. (4.24) will be simplified to

$$ \underset{a\to \infty }{ \lim }{\tilde{\Gamma}}_{\mathbf{K}}=\frac{\mu^2}{4\pi \hslash {\varepsilon}_0}\underset{a\to \infty }{ \lim}\left(\frac{2\pi }{a}\right){\displaystyle \sum_m\left[{k}_0^2-{\left(\frac{2\pi m}{a}\right)}^2\right]}. $$
(4.27)

Again, by employing Eq. (4.25), the sum over m can also be exchanged to integration which gives rise to

$$ \underset{a\to \infty }{ \lim }{\tilde{\Gamma}}_{\mathbf{K}}=\frac{\mu^2}{4\pi \hslash {\varepsilon}_0}{\displaystyle {\int}_{-{k}_0}^{k_0}\left({k}_0^2-{\zeta}^2\right)d\zeta }=\frac{\mu^2{k}_0^3}{3\pi \hslash {\varepsilon}_0}={\Gamma}_0, $$
(4.28)

which is equal to the spontaneous emission rate of a single QD in free space.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mokhlespour, S., Haverkort, J.E.M., Slepyan, G.Y., Maksimenko, S.A., Hoffmann, A. (2016). Quantum Dot Lattice as Nano-Antenna for Collective Spontaneous Emission. In: Maffucci, A., Maksimenko, S.A. (eds) Fundamental and Applied Nano-Electromagnetics. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7478-9_4

Download citation

Publish with us

Policies and ethics