Skip to main content

Abstract

Subjecting a nanohelix to an electric field normal to its axis (a transverse electric field) gives rise to superlattice behavior with tunable electronic properties. We theoretically investigate such a system also with an applied longitudinal electric field along the nanotube axis and find Bloch oscillations and negative differential conductance. Furthermore, we study dipole transitions across the transverse-electric-field-induced energy gap, which can be tuned to the eulogized terahertz frequency range by experimentally attainable external fields, and predict a photogalvanic effect by shining circularly polarized light onto our helical quantum wire. Finally, an exact treatment of the bound state spectra of electrons confined to a helix in a transverse electric field is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forterre Y, Dumais J (2011) Generating helices in nature. Science 333:1715

    Article  ADS  Google Scholar 

  2. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737

    Article  ADS  Google Scholar 

  3. Motojima S, Kawaguchi M, Nozaki1 K, Iwanaga H (1990) Growth of regularly coiled carbon filaments by Ni catalyzed pyrolysis of acetylene, and their morphology and extension characteristics. Appl Phys Lett 56:321

    Google Scholar 

  4. Amelinckx S, Zhang XB, Bernaerts D, Zhang XF, Ivanov V, Nagy JB (1994) A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 265:635

    Article  ADS  Google Scholar 

  5. Zhang XB, Zhang XF, Bernaerts D, Van Tendeloo G, Amelinckx S, Van Landuyt J, Ivanov V, Nagy JB, Lambin Ph, Lucas AA (1994) The texture of catalytically grown coil-shaped carbon nanotubules. Europhys Lett 27:141

    Article  ADS  Google Scholar 

  6. Prinz VY, Seleznev VA, Gutakovsky AK, Chehovskiy AV, Preobrazhenskii VV, Putyato MA, Gavrilova TA (2000) Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays. Physica E 6:828

    Article  ADS  Google Scholar 

  7. Kong XY, Wang ZL (2003) Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett 3:1625

    Article  ADS  Google Scholar 

  8. Zhang G, Jiang X, Wang E (2003) Tubular graphite cones. Science 300:472

    Article  ADS  Google Scholar 

  9. Zhang G, Jiang X, Wang E (2004) Self-assembly of carbon nanohelices: characteristics and field electron emission properties. Appl Phys Lett 84:2646

    Article  ADS  Google Scholar 

  10. Yang ZX, Wu YJ, Zhu F, Zhang YF (2005) Helical nanocables with SiC core and SiO 2 shell. Physica E 25:395

    Article  ADS  Google Scholar 

  11. Gao PX, Ding Y, Mai W, Hughes WL, Lao C, Wang ZL (2005) Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309:1700

    Article  ADS  Google Scholar 

  12. For a review of helical nanomaterial synthesis, please see Ren Z, Gao P-X (2014) A review of helical nanostructures: growth theories, synthesis strategies and properties. Nanoscale 6:9366

    Google Scholar 

  13. Vorobyova JS, Vorob’ev AB, Prinz VY, Toropov AI, Maude DK (2015) Magnetotransport in two-dimensional electron gas in helical nanomembranes. Nano Lett 15:1673

    Article  ADS  Google Scholar 

  14. Xu F, Lu W, Zhu Y (2011) Controlled 3D buckling of silicon nanowires for stretchable electronics. ACS Nano 5:672

    Article  Google Scholar 

  15. Hwang S, Kwon H, Chhajed S, Byon JW, Baik JM, Im J, Oh SH, Jang HW, Yoon SJ, Kim JK (2013) A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose. Analyst 138:443

    Article  ADS  Google Scholar 

  16. Gao PX, Mai W, Wang ZL (2006) Superelasticity and nanofracture mechanics of ZnO nanohelices. Nano Lett 6:2536

    Article  ADS  Google Scholar 

  17. Malyshev AV (2007) DNA double helices for single molecule electronics. Phys Rev Lett 98:096801

    Article  ADS  Google Scholar 

  18. Klotsa D, Romer RA, Turner MS (2005) Electronic transport in DNA. Biophys J 89:2187

    Article  Google Scholar 

  19. Zhang L, Wang X (2014) Atomistic insights into the nanohelix of hydrogenated graphene: formation, characterization and application. Phys Chem Chem Phys 16:2981

    Article  Google Scholar 

  20. Downing CA, Stone DA, Portnoi ME (2011) Zero-energy states in graphene quantum dots and rings. Phys Rev B 84:155437

    Article  ADS  Google Scholar 

  21. Stone DA, Downing CA, Portnoi ME (2012) Searching for confined modes in graphene channels: the variable phase method. Phys Rev B 86:075464

    Article  ADS  Google Scholar 

  22. Downing CA, Pearce AR, Churchill RJ, Portnoi ME (2015) Optimal traps in graphene. Phys Rev B 92:165401

    Article  ADS  Google Scholar 

  23. Downing CA, Stone DA, Portnoi ME (2014) One-dimensional coulomb problem in dirac materials. Phys Rev A 90:052116

    Article  ADS  Google Scholar 

  24. Kibis OV, Parfitt DGW, Portnoi ME (2005) Superlattice properties of carbon nanotubes in a transverse electric field. Phys Rev B 71:035411

    Article  ADS  Google Scholar 

  25. Bloch F (1929) Über die quantenmechanik der elektronen in kristallgittern. Z Phys 52:555

    Article  ADS  MATH  Google Scholar 

  26. Waschke C, Roskos HG, Schwedler R, Leo K, Kurz H, Kohler K (1993) Coherent submillimeter-wave emission from Bloch oscillations in a semiconductor superlattice. Phys Rev Lett 70:3319

    Article  ADS  Google Scholar 

  27. Feldmann J, Leo K, Shah J, Miller DAB, Cunnigham JE, Meier T, von Plessen G, Schulze A, Thomas P, Schmitt-Rink S (1992) Optical investigation of Bloch oscillations in a semiconductor superlattice. Phys Rev B 46:7252

    Google Scholar 

  28. Dahan MB, Peik E, Reichel J, Castin Y, Salomon C (1996) Bloch oscillations of atoms in an optical potential. Phys Rev Lett 76:4508

    Article  ADS  Google Scholar 

  29. Ferrari G, Poli N, Sorrentino F, Tino GM (2006) Long-lived Bloch oscillations with bosonic sr atoms and application to gravity measurement at the micrometer scale. Phys Rev Lett 97:060402

    Article  ADS  Google Scholar 

  30. Pertsch T, Dannberg P, Elflein W, Brauer A, Lederer F (1999) Optical Bloch oscillations in temperature tuned waveguide arrays. Phys Rev Lett 83:4752

    Article  ADS  Google Scholar 

  31. Morandotti R, Peschel U, Aitchison JS, Eisenberg HS, Silberberg Y (1999) Experimental observation of linear and nonlinear optical Bloch oscillations. Phys Rev Lett 83:4756

    Article  ADS  Google Scholar 

  32. Sapienza R, Costantino P, Wiersma D, Ghulinyan M, Oton CJ, Pavesi L (2003) Optical analogue of electronic Bloch oscillations. Phys Rev Lett 91:263902

    Article  ADS  Google Scholar 

  33. Trompeter H, Krolikowski W, Neshev DN, Desyatnikov AS, Sukhorukov AA, Kivshar YS, Pertsch T, Peschel U, Lederer F (2006) Bloch oscillations and zener tunneling in two-dimensional photonic lattices. Phys Rev Lett 96:053903

    Article  ADS  Google Scholar 

  34. Esaki L (1974) Long journey into tunneling. Rev Mod Phys 46:237

    Article  ADS  Google Scholar 

  35. Kazarinov RF, Suris RA (1971) Possibility of amplication of electromagnetic waves in a semiconductor with a superlattice. Fizika i Tekhnika Poluprovodnikov 5:797

    Google Scholar 

  36. Kibis OV (1992) Electron-electron interaction in a spiral quantum wire. Phys Lett A 166:393; (1992) Fiz Tverd Tela 34:3511 [(1992) Sov Phys Solid State 34:1880]

    Google Scholar 

  37. Kibis OV, Malevannyy SV, Huggett L, Parfitt DGW, Portnoi ME (2005) Superlattice properties of helical nanostructures in a transverse electric field. Electromagnetics 25:425

    Article  Google Scholar 

  38. Kibis OV, Portnoi ME (2007) Semiconductor nanohelix in electric field: a superlattice of the new type. Tech Phys Lett 33:878

    Article  ADS  Google Scholar 

  39. Kibis OV, Portnoi ME (2008) Superlattice properties of semiconductor nanohelices in a transverse electric field. Physica E 40:1899

    Article  ADS  Google Scholar 

  40. Kibis OV (2011) Dissipationless electron transport in photon-dressed nanostructures. Phys Rev Lett 107:106802

    Article  ADS  Google Scholar 

  41. Hartmann RR, Kono J, Portnoi ME (2014) Terahertz science and technology of carbon nanomaterials. Nanotechnology 25:322001

    Article  Google Scholar 

  42. Kibis OV, Rosenau da Costa M, Portnoi ME (2008) Carbon nanotubes as a basis for novel terahertz devices. Physica E 40:1766

    Google Scholar 

  43. Portnoi ME, Kibis OV, Rosenau da Costa M (2008) Terahertz applications of carbon nanotubes. Superlattices Microstruct 43:399

    Google Scholar 

  44. Kibis OV, Portnoi ME (2005) Carbon nanotubes: a new type of emitter in the terahertz range. Tech Phys Lett 31:671

    Article  Google Scholar 

  45. Portnoi ME, Kibis OV, Rosenau da Costa M (2006) Terahertz emitters and detectors based on carbon nanotubes. Proc SPIE 6328:632805

    Google Scholar 

  46. Kibis OV, Rosenau da Costa M, Portnoi ME (2007) Generation of terahertz radiation by hot electrons in carbon nanotubes. Nano Lett 7:3414

    Google Scholar 

  47. Rosenau da Costa M, Kibis OV, Portnoi ME (2009) Carbon nanotubes as a basis for terahertz emitters and detectors. Microelectronics J 40:776

    Google Scholar 

  48. Batrakov KG, Kibis OV, Kuzhir PP, Rosenau da Costa M, Portnoi ME (2010) Terahertz processes in carbon nanotubes. J Nanophoton 4:041665

    Google Scholar 

  49. Portnoi ME, Rosenau da Costa M, Kibis OV, Shelykh IA (2009) Magnetically controlled terahertz absorption and emission in carbon nanotubes. Int J Mod Phys B 23:2846

    Google Scholar 

  50. Magarill LI, Entin MV (2003) Optical and photoelectric properties of helical quantum wires. JETP Lett 78:213

    Article  ADS  Google Scholar 

  51. Pershin YV, Piermarocchi C (2005) Photovoltaic effect in bent quantum wires in the ballistic transport regime. Phys Rev B 72:195340

    Article  ADS  Google Scholar 

  52. Entin MV, Magarill LI (2009) Photovoltage in curved one-dimensional systems. Phys Rev B 79:075434

    Article  ADS  Google Scholar 

  53. Entin MV, Magarill LI (2010) Stationary drag photocurrent caused by strong effective running wave in quantum wires: quantization of current. Phys Rev B 81:073305

    Article  ADS  Google Scholar 

  54. Fischer AM, Campo VL Jr, Portnoi ME, Roemer RA (2009) Exciton storage in a nanoscale Aharonov-Bohm ring with electric field tuning. Phys Rev Lett 102:096405

    Google Scholar 

  55. Alexeev AM, Portnoi ME (2012) Electric dipole moment oscillations in Aharonov-Bohm quantum rings. Phys Rev B 85:245419

    Article  ADS  Google Scholar 

  56. Alexeev AM, Shelykh IA, Portnoi ME (2013) Aharonov-Bohm quantum rings in high-Q microcavities. Phys Rev B 88:085429

    Article  ADS  Google Scholar 

  57. Drude P (1892) Gottinger nachrichten; (1959) The theory of optics. Dover, New York

    Google Scholar 

  58. Tinoco I Jr, Woody RW (1964) Optical rotation of oriented helices. IV. A free electron on a helix. J Chem Phys 40:160

    Google Scholar 

  59. Moore D, Tinoco I Jr (1980) The circular dichroism of large helices. A free particle on a helix. J Chem Phys 72:3396

    Google Scholar 

  60. Maki JJ, Persoons A (1996) One-electron second-order optical activity of a helix. J Chem Phys 104:9340

    Article  ADS  Google Scholar 

  61. Wagniere GH, Rikken GLJA (2009) Chirality and magnetism: free electron on an infinite helix, NCD, MCD, and magnetochiral dichroism. Chem Phys Lett 481:166

    Article  ADS  Google Scholar 

  62. Abramowitz M, Stegun I (1972) Handbook of mathematical functions. Dover, New York

    MATH  Google Scholar 

  63. Aldrovandi R (2001) Special matrices of mathematical physics: stochastic, circulant, and bell matrices. World Scientific, Singapore

    Book  MATH  Google Scholar 

  64. King RB (1996) Beyond the quartic equation. Birkhäuser, Boston

    MATH  Google Scholar 

  65. Barticevic Z, Fuster G, Pacheco M (2002) Effect of an electric field on the Bohm-Aharonov oscillations in the electronic spectrum of a quantum ring. Phys Rev B 65:193307

    Article  ADS  Google Scholar 

  66. Bruno-Alfonso A, Latgé A (2005) Aharonov-Bohm oscillations in a quantum ring: eccentricity and electric-field effects. Phys Rev B 71:125312

    Article  ADS  Google Scholar 

  67. Esaki L, Tsu R (1970) Superlattice and negative differential conductivity in semiconductors. IBM J Res Dev 14:61

    Article  Google Scholar 

  68. Zener C (1934) A theory of the electrical breakdown of solid dielectrics. Proc R Soc Lond Ser A 145:523

    Article  ADS  MATH  Google Scholar 

  69. Gunn J (1963) Microwave oscillations of current in III–V semiconductors. Solid State Commun 1:88

    Article  ADS  Google Scholar 

  70. Ridley BK, Watkins TB (1961) The possibility of negative resistance effects in semiconductors. Proc Phys Soc 78:293

    Article  ADS  Google Scholar 

  71. Esaki L (1958) New phenomenon in narrow germanium p–n junctions. Phys Rev 109:603

    Article  ADS  Google Scholar 

  72. Esaki L, Miyahara Y (1960) A new device using the tunneling process in narrow p–n junctions. Solid-State Electron 1:13

    Article  ADS  Google Scholar 

  73. Esaki L, Chang LL (1974) New transport phenomenon in a semiconductor “superlattice”. Phys Rev Lett 33:495

    Article  ADS  Google Scholar 

  74. Buttiker M, Thomas H (1977) Current instability and domain propagation due to Bragg scattering. Phys Rev Lett 38:78

    Article  ADS  Google Scholar 

  75. Xu S, Yan Z, Jang K-I, Huang W, Fu H, Kim J, Wei Z, Flavin M, McCracken J, Wang R, Badea A, Liu Y, Xiao D, Zhou G, Lee J, Chung HU, Cheng H, Ren W, Banks A, Li X, Paik U, Nuzzo RG, Huang Y, Zhang Y, Rogers JA (2015) Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347:154

    Article  ADS  Google Scholar 

  76. Wehling TO, Black-Schaffer AM, Balatsky AV (2014) Dirac materials. Adv Phys 63:1

    Article  ADS  Google Scholar 

  77. Downing CA (2013) On a solution of the Schrödinger equation with a hyperbolic double-well potential. J Math Phys 54:072101

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Downing CA (2013) A class of exactly solvable models for the Schrödinger equation. Open Phys 11:977

    Article  ADS  Google Scholar 

  79. Loudon R (1959) One-dimensional hydrogen atom. Am J Phys 27:649

    Article  ADS  Google Scholar 

  80. Giuliani G, Vignale G (2005) Quantum theory of the electron liquid. Cambridge University Press, Cambridge

    Book  Google Scholar 

  81. Exner P, Fraas M (2007) Curvature-induced bound states in quantum waveguides in two and three dimensions. Phys Lett A 369:393

    Article  ADS  MATH  Google Scholar 

  82. Zampetaki AV, Stockhofe J, Krönke S, Schmelcher P (2013) Classical scattering of charged particles confined on an inhomogeneous helix. Phys Rev E 88:043202

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank O. V. Kibis and E. Hendry for fruitful discussions and A. M. Alexeev for a critical reading of the manuscript. This work was supported by the EPSRC (CAD), the EU FP7 ITN NOTEDEV (Grant No. FP7-607521) and FP7 IRSES projects InterNoM (Grant No. FP7-612624), CANTOR (Grant No. FP7-612285), and QOCaN (Grant No. FP7-316432). CAD appreciates the hospitality of TAP Portugal Flight TP5 from Lisbon to Natal where some of this work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Downing .

Editor information

Editors and Affiliations

Appendices

Appendix 1

Here we consider a particle constrained to a nanohelix of \(\mathcal{N}\) turns in a transverse field, defined by the potential

$$\displaystyle{ V = 2u\cos (z/{\mathchar'26\mkern-12mu d} ),\quad 0 \leq z/{\mathchar'26\mkern-12mu d}\leq 2\pi \mathcal{N} }$$
(2.27)

and \(V = \infty \) otherwise. With normalization constant c n , the eigenfunctions are

$$\displaystyle{ \psi _{n} = \frac{c_{n}} {\sqrt{{\mathchar'26\mkern-12mu d}} } S(4\lambda,4u,z/2{\mathchar'26\mkern-12mu d} ),\quad 0 \leq z/{\mathchar'26\mkern-12mu d}\leq 2\pi \mathcal{N} }$$
(2.28)

and ψ n  = 0 otherwise. The eigenenergies are given by solutions to the transcendental equation

$$\displaystyle{ S(4\lambda,4u,\pi \mathcal{N}) = 0, }$$
(2.29)

which recovers the infinite square well result \(\lambda = (n/2\mathcal{N})^{2}\), where n is an integer, in the limit u → 0. We plot in Fig. 2.6 the energy spectra of the low-lying states: it is noticeable how in progressing from the infinite square well limit towards the harmonic oscillator limit the neighboring pairs of states coalesce.

Fig. 2.6
figure 6figure 6

Plot of bound state energies for a helix of (a) \(\mathcal{N} = 2\) (b) \(\mathcal{N} = 3\) turns as a function of transverse electric field for the four lowest states: the ground state (solid red line) along with the first excited (dotted blue line), second excited (dashed green) and third excited state (dot-dashed orange line)

Subjecting this system to an external double well potential [77, 78], instead of using the hard-wall boundary condition, is an interesting open question.

Appendix 2

We consider an electron-hole pair bound together by the Coulomb interaction V, with the two particles situated on the nanohelix at positions (x e, h , y e, h , z e, h ). In relative coordinates \(z = z_{e} - z_{h}\) and with the center-of-mass variable \(Z = (M_{e}^{{\ast}}z_{e} + M_{h}^{{\ast}}z_{h})/(M_{e}^{{\ast}} + M_{h}^{{\ast}})\), where the geometrically renormalized masses are \(M_{e,h}^{{\ast}} = M_{e,h}(1 + R^{2}/{\mathchar'26\mkern-12mu d} ^{2})\), the two-body problem is separable and one finds the total energy of the exciton is

$$\displaystyle{ \varepsilon = \frac{\hslash ^{2}K_{z}^{2}} {2M_{T}} +\varepsilon _{B}, }$$
(2.30)

where the total renormalized mass is \(M_{T} = M_{e}^{{\ast}} + M_{h}^{{\ast}}\). The first term in Eq. (2.30) is the kinetic energy of the translational motion (with wavevector K z ) in the center-of-mass frame and the second term is the binding energy, which is the eigenvalue of the following Schrödinger equation for relative motion

$$\displaystyle{ -\frac{\hslash ^{2}} {2\mu } \frac{d^{2}} {dz^{2}}\phi -\frac{e^{2}} {4\pi \epsilon _{0}} \frac{1} {\sqrt{z^{2 } + 4R^{2 } \sin ^{2 } (z/2{\mathchar'26\mkern-12mu d} )}}\phi =\varepsilon _{B}\phi, }$$
(2.31)

where the reduced renormalized mass is \(1/\mu = 1/M_{e}^{{\ast}} + 1/M_{h}^{{\ast}}\). The interaction in Eq. (2.31) can be represented as a shifted Coulomb potential

$$\displaystyle{ V = \frac{-e^{2}} {4\pi \epsilon _{0}} \frac{1} {\gamma {\mathchar'26\mkern-12mu d}+ \vert z\vert }, }$$
(2.32)

where \(\gamma =\gamma (R/{\mathchar'26\mkern-12mu d} )\) is a fitting parameter, which has the advantage that it both avoids the unphysical divergence at zero separation and yields an analytic solution. With this approximation, the exciton on a helix problem maps onto the Loudon model [79], with eigenvalues determined via

$$\displaystyle{ W_{\frac{\mu /M_{e}} {\kappa a_{B}},1/2}\left (2\gamma \kappa {\mathchar'26\mkern-12mu d} \right ) = 0,\quad \text{(odd states)} }$$
(2.33a)
$$\displaystyle{ \left (\gamma \kappa {\mathchar'26\mkern-12mu d}-\frac{\mu /M_{e}} {\kappa a_{B}} \right )W_{\frac{\mu /M_{e}} {\kappa a_{B}},1/2}\left (2\gamma \kappa {\mathchar'26\mkern-12mu d} \right ) = W_{\frac{\mu /M_{e}} {\kappa a_{B}} +1,1/2}\left (2\gamma \kappa {\mathchar'26\mkern-12mu d} \right ),\quad \text{(even states)} }$$
(2.33b)

where \(\kappa = \left (-2\mu \varepsilon _{B}/\hslash ^{2}\right )^{1/2}\), the Bohr radius \(a_{B} = \frac{4\pi \epsilon _{0}} {M_{e}e^{2}} = 0.529\,\r{A}\) and \(W_{\alpha,\beta }(\xi )\) are Whittaker functions of the second kind.

The initial length scales of the problem \(R,{\mathchar'26\mkern-12mu d}\) are much larger than the Bohr radius a B , leading to a characteristic energy scale much smaller than the Rydberg energy, \(\text{Ry} = 13.6\,\text{eV}\). The energies in the main part of the paper are measured in \(\varepsilon _{0} = \frac{\text{Ry}} {(1+R^{2 } /{\mathchar'26\mkern-12mu d} ^{2 } )}\left (\frac{a_{B}} {{\mathchar'26\mkern-12mu d} } \right )^{2}\), so for excitonic effects to be safely neglected we require the binding energies to be significantly higher.

As an illustrative example we put \(R = {\mathchar'26\mkern-12mu d}\) and M e  = M h (such that μ = M e and γ = 0. 203) and choose \({\mathchar'26\mkern-12mu d}= 100a_{B}\). The resulting energy levels are shown in Fig. 2.7, alongside the true and approximated Coulomb interactions. One notices the binding energies are at the scale \(\varepsilon _{B} \sim \text{Ry}/10\), much larger than \(\varepsilon _{0} \sim \text{Ry}/10^{4}\), such that the excitons are not of primary importance due to their high stability. The dominance of the binding energy means that even when screening is included, for example though the relative dielectric constant of the host material, the equality \(\varepsilon _{B} >\varepsilon _{0}\) will hold.

Fig. 2.7
figure 7figure 7

Energy levels of bound electron-hole states (solid green lines) in a Coulomb interaction (solid blue line) approximated by a shifted potential (red dotted line). Here \(R = {\mathchar'26\mkern-12mu d}= 100a_{B}\) and γ = 0. 203

It should also be noted a two-body analysis of two electrons on a helix [36] shows pairing can occur when \(d \ll R\). A proper description of interactions in the framework of Luttinger liquid theory [80] is certainly required to gain more insight into the many body problem.

Appendix 3

Despite remarkable advances in the synthesis of nanohelices, there is still some degree of inhomogeneity in the radius of helices. We consider the effect of a changing helix radius [81, 82] along the helix axis, in the variable-radius coordinates

$$\displaystyle{ \mathbf{r} = \left (R(z)\cos (z/{\mathchar'26\mkern-12mu d} ),R(z)\sin (z/{\mathchar'26\mkern-12mu d} ),z\right ). }$$
(2.34)

Remarkably, the equation of motion equation becomes a free Schrödinger equation in the new dependent variable

$$\displaystyle{ \xi (z) =\int ^{z}h(z')\mathrm{d}z',\quad h(z) = \left (1 + R(z)^{2}/{\mathchar'26\mkern-12mu d} ^{2} + R'(z)^{2}\right )^{1/2} }$$
(2.35)

where R′(z) represents a derivative with respect to z, such that the solutions are simply

$$\displaystyle{ \psi _{n} = \frac{c_{n}} {\sqrt{{\mathchar'26\mkern-12mu d}} } \sin \left (k\xi \right ),\quad \varepsilon _{n} = \frac{\hslash ^{2}} {2M}\left ( \frac{n\pi } {\xi _{\mathcal{N}}}\right )^{2} }$$
(2.36)

where \(k = \left (2M\varepsilon /\hslash ^{2}\right )^{1/2}\) and \(\xi _{\mathcal{N}} =\xi (2\pi \mathcal{N}{\mathchar'26\mkern-12mu d} )\). The homogeneous helix R(z) = R easily recovers the solution

$$\displaystyle{ \varepsilon _{n}^{\text{homo}} = \frac{\hslash ^{2}} {8M^{{\ast}}{\mathchar'26\mkern-12mu d} ^{2}}\left ( \frac{n} {\mathcal{N}}\right )^{2} }$$
(2.37)

as found in the literature [58]. Considering a bump inhomogeneity described by \(R(z) = R\left (1 +\gamma \exp (-z^{2}/{\mathchar'26\mkern-12mu d} ^{2})\right )\), one finds the relative energy eigenstates do not deviate dramatically from the inhomogeneous case. For example, \(\varepsilon ^{\text{bump}}/\varepsilon ^{\text{homo}} \approx 0.95\) for a helix of parameters \(R/{\mathchar'26\mkern-12mu d}= 1\) and \(\mathcal{N} = 1\) turns, with bump parameter γ = 0. 3.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Downing, C.A., Robinson, M.G., Portnoi, M.E. (2016). Electromagnetic Properties of Nanohelices. In: Maffucci, A., Maksimenko, S.A. (eds) Fundamental and Applied Nano-Electromagnetics. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7478-9_2

Download citation

Publish with us

Policies and ethics