Skip to main content

Structural, Morphological and Magnetic Properties of Nickel-Carbon Nanocomposites Prepared by Solid-Phase Pyrolysis of Ni Phthalocyanine

  • Chapter
Fundamental and Applied Nano-Electromagnetics

Abstract

Nickel-carbon nanocomposites have been synthesized by the solid-phase pyrolysis of nickel-phthalocyanine at temperatures in the range 600–1100 °C and synthesis duration time up to 300 min. Nickel nanoparticles of various size have been obtained, which are embedded in carbon nanotubes (CNT), nanofibers and encapsulated in the graphite-like shell. A formation of metallic nanoparticles with diameters in the range 5–40 nm takes place at pyrolysis temperatures lower than 700 °C. The temperature of ∼700 °C is a threshold for the beginning of the CNTs growth. At these temperatures, the CNTs have diameters ∼20 nm and the aspect ratio ∼100. A rise of the pyrolysis temperature leads to the increase of the CNTs average diameters. An analysis of the formation mechanisms of the metal-carbon nanocomposites has made it possible to determine that the CNT growth is caused by catalytic properties of nickel. In the process of interaction of Ni with amorphous carbon at high temperatures, nanoparticles form around themselves the graphite-like shells. Investigations of magnetic characteristics have shown that the main mass of Ni ferromagnetic nanoparticles has a single-domain and a vortex (pseudo-single domain) nature. We have detected the presence of superparamagnetic Ni nanoparticles and carbon paramagnetic centers in the nickel-carbon nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gubin SP (ed) (2009) Magnetic nanoparticles. Wiley, Weinheim

    Google Scholar 

  2. Guimaraes AA (2009) Principles of nanomagnetism. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  3. Gubin SP, Koksharov YA, Khomutov GB, Yurkov GY (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74:489–520

    Article  ADS  Google Scholar 

  4. Huang KC (2010) Recent progress in the preparation and application of carbon nanocapsules. J Phys D Appl Phys 43:374001–374012

    Article  Google Scholar 

  5. Pankhurst QA, Thank NTK, Jones SK, Dobson J (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42:224001–224014

    Article  ADS  Google Scholar 

  6. Zhentao L, Chao H, Chang Y, Jieshan Q (2009) Synthesis and characterization of carbon-encapsulated magnetic nanoparticles via arc-plasma assisted CVD. J Nanosci Nanotechnol 9:7473–7476

    Google Scholar 

  7. Issa B, Obaidat I, Albissand B, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14:21266–21305

    Article  Google Scholar 

  8. Petrov Yu I (1982) Physics of small particles. Nauka, Moskow, 360 pp (in Russian)

    Google Scholar 

  9. Koltypin Y, Fernandez A, Rojas C, Campora J, Palma P, Prozorov R, Gedanken A (1999) Chem Mater 11:1331–1335

    Article  Google Scholar 

  10. Jiao J, Seraphin S, Wang X, Winters JC (1996) Preparation and properties of ferromagnetic carbon‐coated Fe, Co, and Ni nanoparticles. J Appl Phys 80:103–108

    Article  ADS  Google Scholar 

  11. Han S, Yun Y, Park KW, Sung YE, Hyeon T (2003) Simple solid-phase synthesis of hollow graphitic nanoparticles and their application to direct methanol fuel cell electrodes. Adv Mater 15:1922–1925

    Article  Google Scholar 

  12. Guo Т, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled nanotubes by laser vaporization. Chem Phys Lett 243:49–54

    Article  ADS  Google Scholar 

  13. Czerwosz E, Dluzewski P (2000) From fullerenes to carbon nanotubes by Ni catalysis. Diam Relat Mater 9:901–905

    Article  ADS  Google Scholar 

  14. Choi JH, Lee TY, Choi SH, Han J-H, Park C-Y, Jung T, Yu SG, Yi W, Han I-T, Kim JM (2003) Control of carbon nanotubes density through Ni nanoparticle formation using thermal and NH3 plasma treatment. Diam Relat Mater 12:794–798

    Article  ADS  Google Scholar 

  15. Furuta H, Ikuno T, Shikina N, Honda S, Hirao T, Oura K (2002) Physica B 323:299–302

    Article  ADS  Google Scholar 

  16. Glerup М, Kanzow H, Imairac R, Castignolles M, Bernier P (2003) Synthesis of multi-walled carbon nanotubes and nano-fibres using the aerosol method with metal-ions as the catalyst precursors. Chem Phys Lett 377:293–298

    Article  ADS  Google Scholar 

  17. Piedigrosso P, Konya Z, Colomer J-F, Fonseca A, Van Tendeloo G, Nagy JB (2000) Production of differently shaped multi-wall carbon nanotubes using various cobalt supported catalysts. Phys Chem Chem Phys 2:163–170

    Article  Google Scholar 

  18. Huh Y, Lee JY, Cheon J, Hong YK, Koo JY, Lee TJ, Lee CJ (2003) Controlled growth of carbon nanotubes over cobalt nanoparticles by thermal chemical vapor deposition. J Mater Chem 13:2297–2300

    Article  Google Scholar 

  19. Liu S, Zhu J (2000) Carbon nanotubes filled with long continuous cobalt nanowires. Appl Phys A 70:673–675

    ADS  Google Scholar 

  20. Terrones М, Grobert N, Zhang JP, Terrones H, Olivares J, Hsu WK, Hare JP, Cheetham AK, Kroto HW, Walton DRM (1998) Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films. Chem Phys Lett 285:299–305

    Article  ADS  Google Scholar 

  21. Liu S, Tang X, Mastai Y, Felner I, Gedanken A (2000) Preparation and characterization of iron-encapsulating carbon nanotubes and nanoparticles. J Mater Chem 10:2502–2506

    Article  Google Scholar 

  22. Sano N, Akazawa H, Kikuchi Т, Kanki T (2003) Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen. Carbon 41:2159–2162

    Article  Google Scholar 

  23. Bokhonov B, Korchagin M (2002) The formation of graphite encapsulated metal nanoparticles during mechanical activation and annealing of soot with iron and nickel. J Alloys Compd 333:308–320

    Article  Google Scholar 

  24. Grobert N, Hsu WK, Zhu YQ, Hare JP, Kroto HW, Walton DRM, Terrones M, Terrones H, Redlich P, Rühle M, Escudero R, Morales F (1999) Appl Phys Lett 75:3363–3365

    Article  ADS  Google Scholar 

  25. Grobert N, Mayne M, Terrones M, Sloan J, Dunin-Borkowski RE, Kamalakaran R, Seeger T, Terrones H, Rühle M, Walton DRM, Kroto HW, Hutchison JL (2001) Chem Commun 5:471–472

    Article  Google Scholar 

  26. Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313:91–97

    Article  ADS  Google Scholar 

  27. Tibbetts GG (1985) Lengths of carbon fibers grown from iron catalyst particles in natural gas. J Cryst Growth 73:431–438

    Article  ADS  Google Scholar 

  28. Le QT, Schouler MC, Garden J, Gadelle P (1999) Fe(NO3)3.9 H2O and Fe3(CO)12 as catalyst precursors for the elaboration of VGCF: SEM and TEM study—improvement of the process. Carbon 37:505–514

    Article  Google Scholar 

  29. Zhang Y, Zhang Q, Li Y, Wang N, Zhu J (2000) Coating of carbon nanotubes with tungsten by physical vapor deposition. Solid State Commun 115:51–55

    Article  ADS  Google Scholar 

  30. Lee CJ, Lyu SC, Kim H-W, Park JW, Jung HM, Park J (2002) Carbon nanotubes produced by tungsten-based catalyst using vapor phase deposition method. Chem Phys Lett 361:469–498

    Article  ADS  Google Scholar 

  31. Manukyan AS, Mirzakhanyan AA, Badalyan GR, Shirinyan GH, Fedorenko AG, Lianguzov NV, Yuzyuk YI, Bugaev LA, Sharoyan EG (2012) Nickel nanoparticles in carbon structures prepared by solid-phase pyrolysis of nickel-phthalocyanine. J Nanopart Res 14:982–989

    Article  Google Scholar 

  32. Manukyan AS, Mirzakhanyan AA, Khachatryan TK, Badalyan GR, Abdulvakhidov KG, Bugaev LA, Sharoyan EG (2012) Copper-carbon nanocomposites prepared by solid-phase pyrolysis of copper phthalocyanine. J Contemp Phys Armenian Acad Sci 47:292–295

    Article  ADS  Google Scholar 

  33. Manukyan AS, Mirzakhanyan AA, Khachatyran TK, Khachaturyan RD, Badalyan GR, Sharoyan EG (2013) Synthesis and characterization of carbon-coated Ni1-xCux ferromagnetic nanoparticles for self-regulating magnetic hyperthermia. Armenian J Phys 6:61–65

    Google Scholar 

  34. Wang XB, Lin YQ, Zhu DB (2001) Controlled growth of well-aligned carbon nanotubes with large diameters. Chem Phys Lett 340:419–424

    Article  ADS  Google Scholar 

  35. Wang XB, Lin YQ, Zhu DB (2002) Two- and three-dimensional alignment and patterning of carbon nanotubes. Adv Mater 14:165–167

    Article  Google Scholar 

  36. Borkcr P, Salker A (2006) Synthesis, characterization and photocatalytic studies of some metal phthalocyanines. Indian J Chem Technol 13:341–346

    Google Scholar 

  37. Song J, Sun M, Chen Q, Wang J, Zhang G, Xue Z (2004) Field emission from carbon nanotube arrays fabricated by pyrolysis of iron phthalocyanine. J Phys D Appl Phys 37:5–9

    Article  ADS  Google Scholar 

  38. Zhi L, Gorelik T, Friedlein R, Wu J, Kolb U, Salaneck WR, Mullen K (2005) Solid-state pyrolyses of metal phthalocyanines: a simple approach towards nitrogen-doped CNTs and metal/carbon nanocables. Small 1:798–801

    Article  Google Scholar 

  39. Segura RA, Ibanez W, Soto R, Hevia S, Haberle P (2006) Growth morphology and spectroscopy of multiwall carbon nanotubes synthesized by pyrolysis of iron phthalocyanine. J Nanosci Nanotechnol 6:1945–1953

    Article  Google Scholar 

  40. Zhi L, Kolb U, Müllen K (2006) Novel carbon nanostructures prepared by solid state pyrolysis if iron phthalocyanine. New Carbon Mater 21:109–113

    Google Scholar 

  41. Klinke C, Kern K (2007) Iron nanoparticle formation in a metal–organic matrix: from ripening to gluttony. Nanotechnology 18:215601–1 – 215601–7

    Google Scholar 

  42. Manukyan AS, Mirzakhanyan AA, Badalyan GR, Shirinyan GH, Sharoyan EG (2010) Preparation and characterization of nickel nanoparticles in different carbon matrices. J Contemp Phys (Armenian Acad Sci) 45:132–136

    Article  ADS  Google Scholar 

  43. Manukyan AS, Mirzakhanyan AA, Khachatryan TK, Badalyan GR, Abdulvakhidov KG, Bugaev LA, Sharoyan EG (2012) J Contemp Phys (Armenian Academy of Sciences) 47(N6):292–295

    Google Scholar 

  44. Mirzakhanyan AA, Manukyan AS, Badalyan GR, Khachatryan TK, Maslova OA, Yuzyuk YI, Bugaev LA, Sharoyan EG (2010) Raman spectra of nickel-carbon nanocomposites. Proc SPIE 7998:79981B-1 – 79981B – 4

    Google Scholar 

  45. Manukyan AS, Mirzakhanyan AA, Khachaturyan TK, Badalyan GR, Arzumanyan GM, Sharoyan EG (2012) Copper-carbon nanocomposites prepared by solid-phase pyrolysis of copper phthalocyanine. J Contemp Phys 48:43–45

    Article  Google Scholar 

  46. Gamaly EG, Ebbesen TW (1995) Mechanism of carbon nanotube formation in the arc discharge. Phys Rev B 52:2083–2089

    Article  ADS  Google Scholar 

  47. Yudasaka М, Kasuya Y, Kokai F, Takahashi K, Takizawa M, Bandow S, Iijima S (2002) Causes of different catalytic activities of metals in formation of single-wall carbon nanotubes. Appl Phys A 74:377–385

    Article  ADS  Google Scholar 

  48. Benissad F, Gadelle P, Coulon М, Bonnetain L (1988) Formation de fibres de carbone a partir du methane: I Croissance catalytique et epaississement pyrolytique. Carbon 26:61–69

    Article  Google Scholar 

  49. Benissad F, Gadelle P, Coulon М, Bonnetain L (1988) Formation de fibres de carbone a partir du methane: II: Germination du carbone et fusion des particules catalytiques. Carbon 26:425–432

    Article  Google Scholar 

  50. Koto Т, Haruta K, Kusakabe K, Morooka S (1992) Formation of vapor-grown carbon fibers on a substrate. Carbon 30:989–994

    Article  Google Scholar 

  51. Yudasaka М, Kikuchi R, Ohki Y, Yoshimura S (1997) Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition. Carbon 35:195–201

    Article  Google Scholar 

  52. Tibbetts GG, Devour MG, Rodda EJ (1987) An adsorption-diffusion isotherm and its application to the growth of carbon filaments on iron catalyst particles. Carbon 25:367–375

    Article  Google Scholar 

  53. Grobert N, Terrones М, Trasobares S, Kordatos K, Terrones H, Olivares J, Zhang JP, Redlich P, Hsu WK, Reeves CL, Wallis DJ, Zhu YQ, Hare JP, Piddick AJ, Kroto HW, Walton DRM (2000) A novel route to aligned nanotubes and nanofibres using laser-patterned catalytic substrates. Appl Phys A 70:175–183

    Article  ADS  Google Scholar 

  54. Serp P, Madronero A, Figueiredo JL (1999) Production of vapour-grown carbon fibres: influence of the catalyst precursor and operating conditions. Fuel 78:837–844

    Article  Google Scholar 

  55. Manukyan AS, Mirzakhanyan AA, Khachatyran TK, Badalyan GR, Arzumanyan GM, Sharoyan EG (2013) Investigation of carbon microspheres prepared by solid-phase pyrolysis of metal-free phthalocyanine. J Contemp Phys (Armenian Acad Sci) 48:43–45

    Article  ADS  Google Scholar 

  56. Belenkov EA (1999) Modeling of formation of a crystal structure of a carbon fiber. Crystallogr rep C/C Kristallografiia 44:749–754

    ADS  Google Scholar 

  57. Yoshida A, Kaburagi Y, Hishiyama Y (2006) Full width at half maximum intensity of the G band in the first order Raman spectrum of carbon material as a parameter for graphitization. Carbon 44:2333–2335

    Article  Google Scholar 

  58. Ferrari AC, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys Rev B 61:075414–1 – 075414–13

    Google Scholar 

  59. Nemanich RJ, Solin SA (1979) First- and second-order Raman scattering from finite-size crystals of graphite. Phys Rev B 20:392–401

    Article  ADS  Google Scholar 

  60. Manukyan A, Mirzakhanyan A, Khachaturyan R, Kaniukov E, Lobanovsky L, Sharoyan E (2015) Magnetic properties of carbon-coated Ni nanoparticles prepared by solid-phase pyrolysis of nickel-phthalocyanine. NANO: Brief Rep Rev 10:1550089-1-7

    Google Scholar 

  61. Stoner E, Wohlfarth E (1948) A mechanism of magnetic hysteresis in heterogenous alloys. Phil Trans Roy Soc A 240:599–642

    Article  ADS  MATH  Google Scholar 

  62. Smirnov S, Komogortsev S (2008) Magnetization curves of randomly oriented ferromagnetic single-domain nanoparticles with combined symmetry of magnetic anisotropy. J Magn Magn Mater 320:1123

    Article  ADS  Google Scholar 

  63. Komogortsev SV, Smirnov SI, Momot NA, Iskhakov RS (2010) Technique for determination the energy of uniaxial and cubic magnetic anisotropy in magnetic nanoparticles from experimental magnetization curve. J Sib Fed Univ Math Phys 3:515

    Google Scholar 

  64. Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, New York

    Google Scholar 

  65. De Julian Fernandez C (2005) Influence of the temperature dependence of anisotropy on the magnetic behavior of nanoparticles. Phys Rev B 72:054438

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the SCS MES RA, within the frames of joint Armenian–Belarusian research project № 13RB-050, as well as by the Belarusian Republican Foundation for Fundamental Research under Grants No. Ф14Арм-020 and No. Ф15CO-016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egor Kaniukov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Manukyan, A. et al. (2016). Structural, Morphological and Magnetic Properties of Nickel-Carbon Nanocomposites Prepared by Solid-Phase Pyrolysis of Ni Phthalocyanine. In: Maffucci, A., Maksimenko, S.A. (eds) Fundamental and Applied Nano-Electromagnetics. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7478-9_15

Download citation

Publish with us

Policies and ethics