Skip to main content

Combining Bio- and Chemo-catalysis for the Sustainable Production of Chemicals

  • Chapter
  • First Online:
Sustainable Production of Bulk Chemicals

Abstract

The combination of bio- and chemo-catalysis to form a single synthetic route is a powerful methodology for the improvement of chemical synthesis. The extreme methods of biocatalysis (whole cell and isolated enzyme) fulfill very different roles. Biocatalysis by isolated enzymes enables highly efficient chemical transformations of extremely high selectivity and low contamination; however, conditions and substrates are limited to a narrow range. Whole cell biocatalysis enables the conversion of crude substrates, such as those derived from biomass; however, the products tend to be impure and delivered in dilute aqueous solution. Chemocatalysis is a well-established technique, and the addition of chemical catalysis and chemocatalytic methods to biocatalysis enables synthetic chemists to avoid the shortcomings of a biocatalytic step. For example, in enzymatic catalysis the addition of a chemical catalyst can allow the conversion of a racemic alcohol to an enantiopure, instead of racemic, product. In whole cell biocatalysis chemical reagents can assist the separation, transformation, and further isolation of the functionality of interest. The cooperation of bio- and chemo-catalysts enables sustainable production of chemicals that would be impossible using biocatalysis alone, while achieving selectivities and using substrates not currently possible with chemocatalysis alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hollmann F, Arends IW, Holtmann D (2011) Enzymatic reductions for the chemist. Green Chem 13(9):2285–2314

    Article  CAS  Google Scholar 

  2. Xia B, Cheng G, Lin X, Wu Q (2014) Dynamic double kinetic resolution of amines and alcohols under the cocatalysis of Raney Nickel/Candida antarctica Lipase B: from concept to application. Eur J Org Chem 2014(14):2917–2923

    Article  CAS  Google Scholar 

  3. Zeikus J, Jain M, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51(5):545–552

    Article  CAS  Google Scholar 

  4. Groeger H, Hummel W (2014) Combining the ‘two worlds’ of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media. Curr Opin Chem Biol 19:171–179

    Article  CAS  Google Scholar 

  5. Cheng G, Wu Q, Shang Z, Liang X, Lin X (2014) Stereoselective transformations of alpha-Trifluoromethylated Ketoximes to Optically Active Amines by Enzyme-Nanometal Cocatalysis: Synthesis of (S)-Inhibitor of Phenylethanolamine N-Methyltransferase. Chemcatchem 6(7):2129–2133

    Article  CAS  Google Scholar 

  6. van As BAC, van Buijtenen J, Mes T, Palmans ARA, Meijer EW (2007) Iterative tandem catalysis of secondary diols and diesters to chiral polyesters. Chem-a Eur J 13(29):8325–8332

    Article  Google Scholar 

  7. Agrawal S, Martinez-Castro E, Marcos R, Martin-Matute B (2014) Readily available ruthenium complex for efficient dynamic kinetic resolution of aromatic alpha-hydroxy ketones. Org Lett 16(8):2256–2259

    Article  CAS  PubMed  Google Scholar 

  8. Marr AC, Pollock CL, Saunders GC (2007) Base-free dynamic kinetic resolution of secondary alcohols using “Piano-stool” complexes of N-heterocyclic carbenes. Organometallics 26(14):3283–3285

    Article  CAS  Google Scholar 

  9. Liu SF, Rebros M, Stephens G, Marr AC (2009) Adding value to renewables: a one pot process combining microbial cells and hydrogen transfer catalysis to utilise waste glycerol from biodiesel production. Chem Commun 17:2308–2310

    Article  Google Scholar 

  10. Martin-Matute B, Backvall JE (2007) Dynamic kinetic resolution catalyzed by enzymes and metals. Curr Opin Chem Biol 11(2):226–232

    Article  CAS  PubMed  Google Scholar 

  11. de Gonzalo G, Ottolina G, Carrea G, Fraaije MW (2005) Cp*Rh(bpy)(H2O) (2+) as a coenzyme substitute in enzymatic oxidations catalyzed by Baeyer-Villiger monooxygenases. Chem Commun 29:3724–3726

    Article  Google Scholar 

  12. Pamies O, Backvall JE (2003) Combination of enzymes and metal catalysts. A powerful approach in asymmetric catalysis. Chem Rev 103(8):3247–3261

    Article  CAS  PubMed  Google Scholar 

  13. Fernandez-Salas JA, Manzini S, Nolan SP (2014) A Cationic ruthenium complex for the dynamic kinetic resolution of secondary alcohols. Chem-a Eur J 20(41):13132–13135

    Article  CAS  Google Scholar 

  14. Haak RM, Berthiol F, Jerphagnon T, Gayet AJA, Tarabiono C, Postema CP, Ritleng V, Pfeffer M, Janssen DB, Minnaard AJ, Feringa BL, de Vries JG (2008) Dynamic kinetic resolution of racemic beta-haloalcohols: direct access to enantioenriched epoxides. J Am Chem Soc 130(41):13508–13509

    Article  CAS  PubMed  Google Scholar 

  15. Nieguth R, ten Dam J, Petrenz A, Ramanathan A, Hanefeld U, Ansorge-Schumacher MB (2014) Combined heterogeneous bio- and chemo-catalysis for dynamic kinetic resolution of (rac)-benzoin. Rsc Adv 4(85):45495–45503

    Article  CAS  Google Scholar 

  16. Hollmann F, Arends I, Buehler K (2010) Biocatalytic redox reactions for organic synthesis: nonconventional regeneration methods. Chemcatchem 2(7):762–782

    Article  CAS  Google Scholar 

  17. Willemsen JS, Megens RP, Roelfes G, van Hest JCM, Rutjes FPJT (2014) A one-pot oxidation/enantioselective oxa-michael cascade. Eur J Org Chem 2014(14):2892–2898

    Article  CAS  Google Scholar 

  18. Canivet J, Suss-Fink G, Stepnicka P (2007) Water-soluble phenanthroline complexes of rhodium, iridium and ruthenium for the regeneration of NADH in the enzymatic reduction of ketones. Eur J Inorg Chem 30:4736–4742

    Article  Google Scholar 

  19. Fanton J, Camps F, Castillo JA, Guerard-Helaine C, Lemaire M, Charmantray F, Hecquet L (2012) Enzymatic and organocatalyzed asymmetric aldolization reactions for the synthesis of thiosugar scaffolds. Eur J Org Chem 1:203–210

    Article  Google Scholar 

  20. Cuetos A, Bisogno FR, Lavandera I, Gotor V (2013) Coupling biocatalysis and click chemistry: one-pot two-step convergent synthesis of enantioenriched 1,2,3-triazole-derived diols. Chem Commun 49(26):2625–2627

    Article  CAS  Google Scholar 

  21. de Oliveira CD, de Andrade KT, Omori AT (2013) One-pot chemoenzymatic synthesis of chiral disubstituted 1,2,3-triazoles in aqueous media. J Mol Catal B Enzym 91:93–97

    Article  Google Scholar 

  22. Marr AC, Marr PC (2011) Entrapping homogeneous catalysts by sol-gel methods: the bottom-up synthesis of catalysts that recycle and cascade. Dalton Trans 40(1):20–26

    Article  CAS  PubMed  Google Scholar 

  23. Burda E, Hummel W, Groger H (2008) Modular chemoenzymatic one-pot syntheses in aqueous media: combination of a palladium-catalyzed cross-coupling with an asymmetric biotransformation. Angew Chem Int Ed 47(49):9551–9554

    Article  CAS  Google Scholar 

  24. Tenbrink K, Sessler M, Schatz J, Groeger H (2011) Combination of olefin metathesis and enzymatic ester hydrolysis in aqueous media in a one-pot synthesis. Adv Synth Catal 353(13):2363–2367

    Article  CAS  Google Scholar 

  25. Caiazzo A, Garcia PML, Wever R, van Hest JCM, Rowan AE, Reek JNH (2009) Synergy between chemo- and bio-catalysts in multi-step transformations. Org Biomol Chem 7(14):2926–2932

    Article  CAS  PubMed  Google Scholar 

  26. Heidlindemann M, Rulli G, Berkessel A, Hummel W, Groeger H (2014) Combination of asymmetric organo- and biocatalytic reactions in organic media using immobilized catalysts in different compartments. Acs Catal 4(4):1099–1103

    Article  CAS  Google Scholar 

  27. Rulli G, Heidlindemann M, Berkessel A, Hummel W, Groeger H (2013) Towards catalyst compartimentation in combined chemo- and biocatalytic processes: Immobilization of alcohol dehydrogenases for the diastereoselective reduction of a beta-hydroxy ketone obtained from an organocatalytic aldol reaction. J Biotechnol 168(3):271–276

    Article  CAS  PubMed  Google Scholar 

  28. Maki-Arvela P, Sahin S, Kumar N, Mikkola JP, Eranen K, Salmi T, Murzin DY (2009) One-pot utilization of heterogeneous and enzymatic catalysis: synthesis of R-1-phenylethyl acetate from acetophenone. Catal Today 140(1–2):70–73

    Article  Google Scholar 

  29. Anderson K, Fernández SC, Hardacre C, Marr PC (2004) Preparation of nanoparticulate metal catalysts in porous supports using an ionic liquid route; hydrogenation and C-C coupling. Inorg Chem Commun 7(1):73–76

    Article  CAS  Google Scholar 

  30. Schrittwieser JH, Coccia F, Kara S, Grischek B, Kroutil W, d’Alessandro N, Hollmann F (2013) One-pot combination of enzyme and Pd nanoparticle catalysis for the synthesis of enantiomerically pure 1,2-amino alcohols. Green Chem 15(12):3318–3331

    Article  CAS  Google Scholar 

  31. Sertchook H, Avnir D, Blum J, Joo F, Katho A, Schumann H, Weimann R, Wernik S (1996) Sol-gel entrapped lipophilic and hydrophilic ruthenium-, rhodium-, and iridium-phosphine complexes as recyclable isomerization catalysts. J Mol Catal A Chem 108(3):153–160

    Article  CAS  Google Scholar 

  32. Marr AC, Liu S (2011) Combining bio-and chemo-catalysis: from enzymes to cells, from petroleum to biomass. Trends Biotechnol 29(5):199–204

    Article  CAS  PubMed  Google Scholar 

  33. Van Doorslaer C, Wahlen J, Mertens P, Binnemans K, De Vos D (2010) Immobilization of molecular catalysts in supported ionic liquid phases. Dalton Trans 39(36):8377–8390

    Article  PubMed  Google Scholar 

  34. Nashawi IS, Malallah A, Al-Bisharah M (2010) Forecasting World Crude Oil Production Using Multicyclic Hubbert Model. Energy Fuels 24:1788–1800

    Article  CAS  Google Scholar 

  35. Shanks BH (2007) Unleashing biocatalysis/chemical catalysis synergies for efficient biomass conversion. ACS Chem Biol 2(8):533–535

    Article  CAS  PubMed  Google Scholar 

  36. Kieboom T (2007) Integration of biocatalysis with chemocatalysis: cascade catalysis and multi‐step conversions in concert. Catal Renewables Feedstock Energy Prod 273–297.

    Google Scholar 

  37. Schoevaart R, Kieboom T (2002) Combined catalytic conversion involving an enzyme, a homogeneous and a heterogeneous catalyst: one-pot preparation of 4-deoxy-D-glucose derivatives from D-galactose. Tetrahedron Lett 43(18):3399–3400

    Article  CAS  Google Scholar 

  38. Schwartz TJ, Goodman SM, Osmundsen CM, Taarning E, Mozuch MD, Gaskell J, Cullen D, Kersten PJ, Dumesic JA (2013) Integration of chemical and biological catalysis: production of furylglycolic acid from glucose via cortalcerone. Acs Catal 3(12):2689–2693

    Article  CAS  Google Scholar 

  39. Huang H, Denard CA, Alamillo R, Crisci AJ, Miao Y, Dumesic JA, Scott SL, Zhao H (2014) Tandem catalytic conversion of glucose to 5-hydroxymethylfurfural with an immobilized enzyme and a solid acid. Acs Catal 4(7):2165–2168

    Article  CAS  Google Scholar 

  40. Wei W, Zhao Y, Peng S, Zhang H, Bian Y, Li H, Li H (2014) Yolk-shell nanoarchitectures with a ru-containing core and a radially oriented mesoporous silica shell: facile synthesis and application for one-pot biomass conversion by combining with enzyme. Acs Appl Mater Interfaces 6(23):20851–20859

    Article  CAS  PubMed  Google Scholar 

  41. Emptage M, Haynie SL, Laffend LA, Pucci JP, Whited G (2003) Process for the biological production of 1, 3-propanediol with high titer. Google Patents.

    Google Scholar 

  42. Pahlavanzadeh H, Khayati G, Vasheghani-Farahani E, Ghaemi N (2009) Extractive capacity of oleyl alcohol on 2, 3-butanediol production in fermentation process with use of Klebsiella pneumoniae PTCC 1290. Iran J Chem Chem Eng Int Engl Ed 28(3):103–109.

    Google Scholar 

  43. Ijmker HM, Gramblicka M, Kersten SRA, van der Ham AGJ, Schuur B (2014) Acetic acid extraction from aqueous solutions using fatty acids. Sep Purif Technol 125:256–263

    Article  CAS  Google Scholar 

  44. (a) Matsumoto M, Mochiduki K, Kondo K (2004) Toxicity of ionic liquids and organic solvents to lactic acid-producing bacteria. J Biosci Bioeng 98(5):344–347; (b) Sheldon RA, Lau RM, Sorgedrager MJ, van Rantwijk F, Seddon KR (2002) Biocatalysis in ionic liquids. Green Chem 4(2):147–151.

    Google Scholar 

  45. Earle MJ, Seddon KR (2000) Ionic liquids. green solvents for the future. Pure Appl Chem 72(7):1391–1398

    Article  CAS  Google Scholar 

  46. Seddon KR (1997) Ionic liquids for clean technology. J Chem Technol Biotechnol 68(4):351–356

    Article  CAS  Google Scholar 

  47. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150

    Article  CAS  PubMed  Google Scholar 

  48. Marques CFC, Mourao T, Neves C, Lima AS, Boal-Palheiros I, Coutinho JAP, Freire MG (2013) Aqueous biphasic systems composed of ionic liquids and sodium carbonate as enhanced routes for the extraction of tetracycline. Biotechnol Prog 29(3):645–654

    Article  CAS  PubMed  Google Scholar 

  49. Shen LJ, Zhang XH, Liu MZ, Wang ZL (2014) Transferring of red Monascus pigments from nonionic surfactant to hydrophobic ionic liquid by novel microemulsion extraction. Sep Purif Technol 138:34–40

    Article  CAS  Google Scholar 

  50. Liu QF, Yu J, Li WL, Hu XS, Xia HS, Liu HZ, Yang P (2006) Partitioning behavior of penicillin G in aqueous two phase system formed by ionic liquids and phosphate. Sep Sci Technol 41(12):2849–2858

    Article  CAS  Google Scholar 

  51. Ventura SPM, Santos-Ebinuma VC, Pereira JFB, Teixeira MFS, Pessoa A, Coutinho JAP (2013) Isolation of natural red colorants from fermented broth using ionic liquid-based aqueous two-phase systems. J Ind Microbiol Biotechnol 40(5):507–516

    Article  CAS  PubMed  Google Scholar 

  52. Passos H, Ferreira AR, Claudio AFM, Coutinho JAP, Freire MG (2012) Characterization of aqueous biphasic systems composed of ionic liquids and a citrate-based biodegradable salt. Biochem Eng J 67:68–76

    Article  CAS  Google Scholar 

  53. Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry. Wiley, New York

    Google Scholar 

  54. Tonova K, Svinyarov I, Bogdanov MG (2014) Hydrophobic 3-alkyl-1-methylimidazolium saccharinates as extractants for L-lactic acid recovery. Sep Purif Technol 125:239–246

    Article  CAS  Google Scholar 

  55. Matsumoto M, Mochiduki K, Fukunishi K, Kondo K (2004) Extraction of organic acids using imidazolium-based ionic liquids and their toxicity to Lactobacillus rhamnosus. Sep Purif Technol 40(1):97–101

    Article  CAS  Google Scholar 

  56. Oliveira FS, Araujo JMM, Ferreira R, Rebelo LPN, Marrucho IM (2012) Extraction of L-lactic, L-malic, and succinic acids using phosphonium-based ionic liquids. Sep Purif Technol 85:137–146

    Article  CAS  Google Scholar 

  57. Martak J, Schlosser S (2008) Liquid-liquid equilibria of butyric acid for solvents containing a phosphonium ionic liquid. Chem Pap 62(1):42–50

    Article  CAS  Google Scholar 

  58. Neves C, Granjo JFO, Freire MG, Robertson A, Oliveira NMC, Coutinho JAP (2011) Separation of ethanol-water mixtures by liquid-liquid extraction using phosphonium-based ionic liquids. Green Chem 13(6):1517–1526

    Article  CAS  Google Scholar 

  59. Garcia-Chavez LY, Shazad M, Schuur B, de Haan AB (2012) (Liquid plus liquid) equilibrium data for the separation of 2,3-butanediol from aqueous streams using tetraoctyl ammonium 2-methyl-1-naphthoate. J Chem Thermodyn 55:85–91

    Article  CAS  Google Scholar 

  60. Stoffers M, Gorak A (2013) Continuous multi-stage extraction of n-butanol from aqueous solutions with 1-hexyl-3-methylimidazolium tetracyanoborate. Sep Purif Technol 120:415–422

    Article  CAS  Google Scholar 

  61. Pitner W, Schulte M, Górak A, Santangelo F, Wentink A Patent: use of ionic liquids with tetracyanoborate anions as a solvent for extraction of alcohols from aqueous solutions. US2011/0071324 A 1.

    Google Scholar 

  62. Domańska U, Królikowski M (2012) Extraction of butan-1-ol from water with ionic liquids at T = 308.15 K. J Chem Thermodyn 53:108–113

    Article  Google Scholar 

  63. Chapeaux A, Simoni LD, Ronan TS, Stadtherr MA, Brennecke JF (2008) Extraction of alcohols from water with 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Green Chem 10(12):1301–1306

    Article  CAS  Google Scholar 

  64. Ha SH, Mai NL, Koo Y-M (2010) Butanol recovery from aqueous solution into ionic liquids by liquid-liquid extraction. Process Biochem 45(12):1899–1903

    Article  CAS  Google Scholar 

  65. Simoni LD, Chapeaux A, Brennecke JF, Stadtherr MA (2010) Extraction of biofuels and biofeedstocks from aqueous solutions using ionic liquids. Comput Chem Eng 34(9):1406–1412

    Article  CAS  Google Scholar 

  66. Rabari D, Banerjee T (2014) Experimental and theoretical studies on the effectiveness of phosphonium-based ionic liquids for butanol removal at T = 298.15 K and p = 1 atm. Ind Eng Chem Res 53(49):18935–18942

    Article  CAS  Google Scholar 

  67. Cascon HR, Choudhari SK, Nisola GM, Vivas EL, Lee DJ, Chung WJ (2011) Partitioning of butanol and other fermentation broth components in phosphonium and ammonium-based ionic liquids and their toxicity to solventogenic clostridia. Sep Purif Technol 78(2):164–174

    Article  CAS  Google Scholar 

  68. Rabari D, Banerjee T (2013) Biobutanol and n-propanol recovery using a low density phosphonium based ionic liquid at T = 298.15 K and p = 1 atm. Fluid Phase Equilib 355:26–33

    Article  CAS  Google Scholar 

  69. Garcia-Chavez LY, Garsia CM, Schuur B, de Haan AB (2012) Biobutanol recovery using nonfluorinated task-specific ionic liquids. Ind Eng Chem Res 51(24):8293–8301

    Article  CAS  Google Scholar 

  70. Shahriari S, Tome LC, Araujo JMM, Rebelo LPN, Coutinho JAP, Marrucho IM, Freire MG (2013) Aqueous biphasic systems: a benign route using cholinium-based ionic liquids. Rsc Adv 3(6):1835–1843

    Article  CAS  Google Scholar 

  71. Freire MG, Neves CMSS, Marrucho IM, Lopes JNC, Rebelo LPN, Coutinho JAP (2010) High-performance extraction of alkaloids using aqueous two-phase systems with ionic liquids. Green Chem 12(10):1715–1718

    Article  CAS  Google Scholar 

  72. Fan J-P, Cao J, Zhang X-H, Huang J-Z, Kong T, Tong S, Tian Z-Y, Zhu J-H, Ouyang X-K (2012) Extraction of puerarin using ionic liquid based aqueous two-phase systems. Sep Sci Technol 47(12):1740–1747

    Article  CAS  Google Scholar 

  73. Pei Y, Wang J, Wu K, Xuan X, Lu X (2009) Ionic liquid-based aqueous two-phase extraction of selected proteins. Sep Purif Technol 64(3):288–295

    Article  CAS  Google Scholar 

  74. Louros CLS, Claudio AFM, Neves CMSS, Freire MG, Marrucho IM, Pauly J, Coutinho JAP (2010) Extraction of biomolecules using phosphonium-based ionic liquids+ K3PO4 aqueous biphasic systems. Int J Mol Sci 11(4):1777–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Song ZY, Sun YQ, Wei BC, Xiu ZL (2013) Two-step salting-out extraction of 1,3-propanediol and lactic acid from the fermentation broth of Klebsiella pneumoniae on biodiesel-derived crude glycerol. Eng Life Sci 13(5):487–495

    Article  CAS  Google Scholar 

  76. Wu HS, Wang YJ (2012) Salting-out effect on recovery of 1,3-propanediol from fermentation broth. Ind Eng Chem Res 51(33):10930–10935

    Article  CAS  Google Scholar 

  77. Muller A, Lutze P, Gorak A (2013) Experimental and theoretical investigation of multistage extraction of 1,3-propanediol using the extraction system phosphate/1-butyl-3-methylimidazolium trifluoromethanesulfonate/water. Biotechnol Prog 29(4):933–942

    Article  PubMed  Google Scholar 

  78. Hartl J, Marr R (1993) Extraction processes for bioproduct separation. Sep Sci Technol 28(1–3):805–819

    Article  CAS  Google Scholar 

  79. Malinowski JJ (2000) Reactive extraction for downstream separation of 1,3-propanediol. Biotechnol Prog 16(1):76–79

    Article  CAS  PubMed  Google Scholar 

  80. Matsumoto M, Nagai K, Kondo K (2015) Reactive extraction of 1, 3-propanediol with aldehydes in the presence of a hydrophobic acidic ionic liquid as a catalyst. Solvent Extr Res Dev Jpn 22(2):209–213

    Article  CAS  Google Scholar 

  81. Li Y, Zhu J, Wu Y, Liu J (2013) Reactive extraction of 2,3-butanediol from fermentation broth. Korean J Chem Eng 30(1):154–159

    Article  CAS  Google Scholar 

  82. Hao J, Xu F, Liu HJ, Liu DH (2006) Downstream processing of 1,3-propanediol fermentation broth. J Chem Technol Biotechnol 81(1):102–108

    Article  CAS  Google Scholar 

  83. Tang C, Peng J, Li X, Zhai Z, Jiang N, Bai W, Gao H, Liao Y (2014) Strontium pyrophosphate modified by phosphoric acid for the dehydration of lactic acid to acrylic acid. Rsc Adv 4(55):28875–28882

    Article  CAS  Google Scholar 

  84. Liu S, Rebros M, Stephens G, Marr AC (2009) Adding value to renewables: a one pot process combining microbial cells and hydrogen transfer catalysis to utilise waste glycerol from biodiesel production. Chem Commun 17:2308–2310

    Article  Google Scholar 

  85. Zhai Z, Li X, Tang C, Peng J, Jiang N, Bai W, Gao H, Liao Y (2014) Decarbonylation of lactic acid to acetaldehyde over aluminum sulfate catalyst. Ind Eng Chem Res 53(25):10318–10327

    Article  CAS  Google Scholar 

  86. Tang C, Peng J, Li X, Zhai Z, Bai W, Jiang N, Gao H, Liao Y (2015) Efficient and selective conversion of lactic acid into acetaldehyde using a mesoporous aluminum phosphate catalyst. Green Chem 17(2):1159–1166

    Article  CAS  Google Scholar 

  87. Tang C, Peng J, Fan G, Li X, Pu X, Bai W (2014) Catalytic dehydration of lactic acid to acrylic acid over dibarium pyrophosphate. Catal Commun 43:231–234

    Article  CAS  Google Scholar 

  88. Peng J, Li X, Tang C, Bai W (2014) Barium sulphate catalyzed dehydration of lactic acid to acrylic acid. Green Chem 16(1):108–111

    Article  CAS  Google Scholar 

  89. Wadley DC, Tam MS, Kokitkar PB, Jackson JE, Miller DJ (1997) Lactic acid conversion to 2,3-pentanedione and acrylic acid over silica-supported sodium nitrate: reaction optimization and identification of sodium lactate as the active catalyst. J Catal 165(2):162–171

    Article  CAS  Google Scholar 

  90. Tam MS, Jackson JE, Miller DJ (1999) Effects of ammonium lactate on 2,3-pentanedione formation from lactic acid. Ind Eng Chem Res 38(10):3873–3877

    Article  CAS  Google Scholar 

  91. Hartmann M, Kaplan D (1998) Biopolymers from renewable resources. Kaplan, DL, Ed 367.

    Google Scholar 

  92. Spinu M (1993) L-Dpolylactide copolymers with controlled morphology. Google Patents.

    Google Scholar 

  93. Chanfreau S, Mena M, Porras-Dominguez JR, Ramirez-Gilly M, Gimeno M, Roquero P, Tecante A, Barzana E (2010) Enzymatic synthesis of poly-l-lactide and poly-l-lactide-co-glycolide in an ionic liquid. Bioprocess Biosyst Eng 33(5):629–638

    Article  CAS  PubMed  Google Scholar 

  94. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84

    Article  CAS  Google Scholar 

  95. Sorribes I, Junge K, Beller M (2014) Direct catalytic n-alkylation of amines with carboxylic acids. J Am Chem Soc 136(40):14314–14319

    Article  CAS  PubMed  Google Scholar 

  96. Houlding TK, Tchabanenko K, Rahman MT, Rebrov EV (2013) Direct amide formation using radiofrequency heating. Org Biomol Chem 11(25):4171–4177

    Article  CAS  PubMed  Google Scholar 

  97. Wang MT, Pan CP, Gai WP, Lv XX, Zhai MG, Wang W, Peng ZY, Chen SH (2014) Synthesis, characterization, and crystal structure of several novel acidic ionic liquids: 1-ethyl-2-alkyl-benzimidazolium tetra-fluoroborate. Appl Mech Mater 457:139–143

    Article  Google Scholar 

  98. Galanov SI, Sidorova OI, Gavrilenko MA (2014) The process of acetonitrile synthesis over γ-Al 2 O 3 promoted by phosphoric acid catalysts. Procedia Chem 10:108–113

    Article  CAS  Google Scholar 

  99. Makshina EV, Dusselier M, Janssens W, Degreve J, Jacobs PA, Sels BF (2014) Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene. Chem Soc Rev 43(22):7917–7953

    Article  CAS  PubMed  Google Scholar 

  100. Duan H, Yamada Y, Sato S (2015) Efficient production of 1, 3-butadiene in the catalytic dehydration of 2, 3-butanediol. Appl Catal A 491:163–169

    Article  CAS  Google Scholar 

  101. Emerson RR, Flickinger MC, Tsao GT (1982) Kinetics of dehydration of aqueous 2,3-butanediol to methyl ethyl ketone. Ind Eng Chem Prod Res Dev 21(3):473–477

    Article  CAS  Google Scholar 

  102. Wang Y-M, Lorenzini F, Saunders GC, Rebros M, Marr AC (2015) Combining bio- and chemo-catalysis for the conversion of bio-renewable alcohols: hydrogen transfer initiated dehydration (HTID) of 1,3-propanediol. Green Chemistry submitted.

    Google Scholar 

  103. Schmitt DC, Taylor AP, Flick AC, Kyne RE Jr (2015) Synthesis of pyrazoles from 1, 3-diols via hydrogen transfer catalysis. Org Lett 17(6):1405–1408

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew C. Marr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liu, X., Lorenzini, F., Marr, A.C. (2016). Combining Bio- and Chemo-catalysis for the Sustainable Production of Chemicals. In: Xian, M. (eds) Sustainable Production of Bulk Chemicals. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7475-8_5

Download citation

Publish with us

Policies and ethics