Skip to main content

Microbial Production of Value-Added Chemicals from Pyrolysis Oil and Syngas

  • Chapter
  • First Online:
Sustainable Production of Bulk Chemicals

Abstract

Despite the inevitable depletion of fossil resources and the looming threat of climate change, crude oil and natural gas are still the number one sources for energy supply and raw material for chemical industry. Till date, 95 % of primary building blocks in chemical industry originate from fossil resources. To address the resulting challenges and the shortcomings, a biobased economy has to be established, and sustainable and eco-friendly alternatives have to be found immediately. The production of fine chemicals and building blocks by microbial fermentation from lignocellulosic biomass can be such an alternative; however, to become a suitable source for fermentation processes, biomass has to be pretreated. In this chapter the conversion of biomass to pyrolysis oil by fast pyrolysis and the further gasification to syngas by the bioliq® process is introduced as a possible cost-saving and energy neutral pretreatment. Furthermore, the suitability of biomass-derived pyrolysis oil and syngas as sources for the microbial production of value-added chemicals are discussed, and potential and existing processes and products are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Enríquez J (1998) Genomics and the world´s economy. Science 281:925–926

    Article  PubMed  Google Scholar 

  2. EU (2005) Conference report—new perspectives on the knowledge-based bio-economy. http://ec.europa.eu/research/conferences/2005/kbb/pdf/kbbe_conferencereport.pdf

  3. EU (2007) En route to the knowledge-based bio-economy (KBBE). http://www.bio-economy.net/reports/files/koln_paper.pdf

  4. OECD (2009) The bioeconomy to 2030. http://www.keepeek.com/Digital-Asset-Management/oecd/economics/the-bioeconomy-to-2030_9789264056886-en#page1

  5. BMBF (2010) Nationale Forschungsstrategie BioÖkonomie 2030. http://www.bmbf.de/pub/biooekonimie.pdf

  6. US (2012) National bioeconomy blueprint. http://www.whitehouse.gov/sites/default/files/microsites/ostp/national_bioeconomy_blueprint_april_2012.pdf

  7. Leible L, Kälber S, Kappler G (2008) Energiebereitstellung aus Stroh und Waldrestholz. BWK 5:56–63

    Google Scholar 

  8. Wright MM, Brown RC, Boateng AA (2008) Distributed processing of biomass to bio-oil for subsequent production of Fischer-Tropsch liquids. Biofuels Bioprod Biorefin 2:229–238

    Article  CAS  Google Scholar 

  9. Raffelt K, Henrich E, Koegel A, Stahl R, Steinhardt J, Weirich F (2006) The BTL2 process of biomass utilization entrained-flow gasification of pyrolyzed biomass slurries. Appl Biochem Biotechnol 129:153–164

    Article  PubMed  Google Scholar 

  10. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ing Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  11. Hofbauer H, Kaltschmitt M, Nussbaumer T (2009a) Thermo-chemische Umwandlungsprozesse. In: Kaltschmitt M, Hartmann H, Hofbauer H (eds) Energie aus Biomasse. Grundlagen, Techniken und Verfahren. 2. neu bearbeitete und erweiterte Auflage. Heidelberg and others: Springer 375–407

    Google Scholar 

  12. Elliot MA, Linden HR (1966) Gas, manufactured. In: Standen A (ed) Kirk-Othmer encyclopedia of chemical technology, 2nd completely revised edition, vol 10. Wiley, New York, pp 353–442

    Google Scholar 

  13. Hofbauer H, Vogel A, Kaltschmitt M (2009b) Vergasungstechnik. In: M. Kaltschmitt, Hartmann H, Hofbauer H (eds) Energie aus Biomasse. Grundlagen, Techniken und Verfahren. 2. neu bearbeitete und erweiterte Auflage. Heidelberg and others: Springer. 600–628

    Google Scholar 

  14. Dahmen N, Dinjus E (2010) The Bioliq Process. Concept, technology and state of development. MTZ 71:864–868

    Google Scholar 

  15. Dahmen N, Dinjus E, Kolb T, Arnold U, Leibold H, Stahl R (2012) State of the art of the Bioliq® process for synthetic biofuels production. Envrion Prog Sustain Energy 31:176–181

    Article  CAS  Google Scholar 

  16. Kornmayer C (2009) Verfahrenstechnische Untersuchungen zur Schnellpyrolyse von Lignocellulose im Doppelschnecken-Mischreaktor. Dissertation. Karlsruhe Institute of Technology

    Google Scholar 

  17. Tröger N, Richter D, Stahl R (2013) Effect of feedstock composition on product yields and energy recovery rates of fast pyrolysis products from different straw types. J Anal Appl Pyrolysis 100:158–165

    Article  CAS  Google Scholar 

  18. Dahmen N, Dinjus E, Henrich E (2008) The Karlsruhe Proccess Bioliq®. Synthetic fuels from the biomass. In: Wengenmayr R, Bührke T (eds) Renewable energy. Wiley-VCH, Weinheim, pp 61–65

    Google Scholar 

  19. Phillips S, Aden A, Jechura J, Dayton D, Eggeman T (2007) Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass. Technical Report NREL/TP-510-41168. National Renewable Energy Laboratory, Golden, CO

    Google Scholar 

  20. Griffin DW, Schultz MA (2012) Fuel and chemical products from biomass syngas: a comparison of gas fermentation to thermochemical conversion routes. Envrion Prog Sustain Energy 31:219–224

    Article  CAS  Google Scholar 

  21. Vega JL, Klasson KT, Kimmel DE, Clausen EC, Gaddy JL (1990) Sulfur gas tolerance and toxicity of CO-utilizing and methanogenic bacteria. Appl Biochem Biotechnol 24–25:329–340

    Article  Google Scholar 

  22. Jarboe LR, Wen Z, Choi D, Brown RC (2011) Hybrid thermochemical processing: fermentation of pyrolysis-derived bio-oil. Appl Microbiol Biotechnol 91:1519–1523

    Article  CAS  PubMed  Google Scholar 

  23. Oasmaa A, Czernik S (1999) Fuel oil quality of biomass pyrolysis oils—state of the art for the end users. Energy Fuels 13:914–921

    Article  CAS  Google Scholar 

  24. Meier D, Oasmaa A, Peacocke GVC (1997) Properties of fast pyrolysis liquids: status of test methods. In: Boocock DGB (ed) Bridgwater AV. Springer, Netherlands, pp 391–408

    Google Scholar 

  25. Elliott DC (1994) Water, alkali and char in flash pyrolysis oils. Biomass Bioenergy 7:179–185

    Article  CAS  Google Scholar 

  26. Czernik S, Johnson DK, Black S (1994) Stability of wood fast pyrolysis oil. Biomass Bioenergy 7:187–192

    Article  CAS  Google Scholar 

  27. Xu DB, Madrid CP, Röhr M, Kubicek CP (1989) The influence of type and concentration of the carbon source on production of citric acid by Aspergillus niger. Appl Microbiol Biotechnol 30:553–558

    CAS  Google Scholar 

  28. Pons MN, Rajab A, Engasser J-M (1986) Influence of acetate on growth kinetics and production control of Saccharomyces cerevisiae on glucose and ethanol. Appl Microbiol Biotechnol 24:193–198

    Article  CAS  Google Scholar 

  29. Ullah A, Orij R, Brul S, Smits GJ (2012) Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae. Appl Environ Microbiol 78:8377–8387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Venter T, Kock JL, Botes PJ, Smit MS, Hugo A, Joseph M (2004) Acetate enhances citric acid production by Yarrowia lipolytica when grown on sunflower oil. Syst Appl Microbiol 27:135–138

    Article  CAS  PubMed  Google Scholar 

  31. Doi Y, Kunioka M, Nakamura Y, Soga K (1987) Biosynthesis of copolyesters in Alcaligenes eutrophus H16 from carbon-13 labeled acetate and propionate. Macromolecules 20:2988–2991

    Article  CAS  Google Scholar 

  32. Barbosa MJ, Rocha JM, Tramper J, Wijffels RH (2001) Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol 85:25–33

    Article  CAS  PubMed  Google Scholar 

  33. Smith M, Mah R (1980) Acetate as sole carbon and energy source for growth of Methanosarcina strain 227. Appl Environ Microbiol 39:993–999

    CAS  PubMed  PubMed Central  Google Scholar 

  34. da Silva RM, de Oliveira Machado G, Deiner J, Junior CC (2010) Permeability measurements of Brazilian eucalyptus. Mater Res 13:281–286

    Article  Google Scholar 

  35. Jeon YJ, Xun Z, Rogers PL (2010) Comparative evaluations of cellulosic raw materials for second generation bioethanol production. Lett Appl Microbiol 51:518–524

    Article  CAS  PubMed  Google Scholar 

  36. Garcia-Perez M, Wang S, Shen J, Rhodes M, Lee WJ, Li CZ (2008) Effects of temperature on the formation of lignin-derived oligomers during the fast pyrolysis of Mallee woody biomass. Energy Fuels 22:2022–2032

    Article  CAS  Google Scholar 

  37. Piskorz J, Radlein D, Scott DS (1986) On the mechanism of the rapid pyrolysis of cellulose. J Anal Appl Pyrolysis 9:121–137

    Article  CAS  Google Scholar 

  38. Piskorz J, Radlein D, Scott DS (1989) Pretreatment of wood and cellulose for production of sugars by fast pyrolysis. J Anal Appl Pyrolysis 16:127–142

    Article  CAS  Google Scholar 

  39. Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2010) Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour Technol 101:4646–4655

    Article  CAS  PubMed  Google Scholar 

  40. Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2009) Product distribution from fast pyrolysis of glucose-based carbohydrates. J Anal Appl Pyrolysis 86:323–330

    Article  CAS  Google Scholar 

  41. Lian J, Chen S, Zhou S, Wang Z, O’Fallon J, Li C-Z, Garcia-Perez M (2010) Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids. Bioresour Technol 101:9688–9699

    Article  CAS  PubMed  Google Scholar 

  42. Chan JKS, Duff SJB (2010) Methods for mitigation of bio-oil extract toxicity. Bioresour Technol 101:3755–3759

    Article  CAS  PubMed  Google Scholar 

  43. Prosen E, Radlein D, Piskorz J, Scott DS (1993) Microbial utilization of levoglucosan in wood pyrolysate as a carbon and energy source. Biotechnol Bioeng 42:538–541

    Article  CAS  PubMed  Google Scholar 

  44. Lian J, Garcia-Perez M, Chen S (2013) Fermentation of levoglucosan with oleaginous yeasts for lipid production. Bioresour Technol 133:183–189

    Article  CAS  PubMed  Google Scholar 

  45. Kitamura Y, Abe Y, Yasui T (1991) Metabolism of levoglucosan (1,6-Anhydro-β-D-glucopyranose) in microorganisms. Agric Biol Chem 55:515–521

    CAS  Google Scholar 

  46. Zhuang X, Zhang H (2002) Identification, characterization of levoglucosan kinase, and cloning and expression of levoglucosan kinase cDNA from Aspergillus niger CBX-209 in Escherichia coli. Protein Expr Purif 26:71–81

    Article  CAS  PubMed  Google Scholar 

  47. Dai J, Yu Z, He Y, Zhang L, Bai Z, Dong Z, Du Y, Zhang H (2009) Cloning of a novel levoglucosan kinase gene from Lipomyces starkeyi and its expression in Escherichia coli. World J Microbiol Biotechnol 25:1589–1595

    Article  CAS  Google Scholar 

  48. Nakagawa M, Sakai Y, Yasui T (1984) Itaconic acid fermentation of levoglucosan. J Ferment Technol 62:201–203

    CAS  Google Scholar 

  49. Zhuang X, Zhang H, Yang J, Qi H (2001) Preparation of levoglucosan by pyrolysis of cellulose and its citric acid fermentation. Bioresour Technol 79:63–66

    Article  CAS  PubMed  Google Scholar 

  50. Nakahara K, Kitamura Y, Yamagishi Y, Shoun H, Yasui T (1994) Levoglucosan dehydrogenase involved in the assimilation of levoglucosan in Arthrobacter sp. I-552. Biosci Biotechnol Biochem 58:2193–2196

    Article  CAS  PubMed  Google Scholar 

  51. Panneman H, Ruijter GJ, van den Broeck HC, Driever ET, Visser J (1996) Cloning and biochemical characterisation of an Aspergillus niger glucokinase. Evidence for the presence of separate glucokinase and hexokinase enzymes. Eur J Biochem 240:518–525

    Article  CAS  PubMed  Google Scholar 

  52. Layton DS, Ajjarapu A, Choi DW, Jarboe LR (2011) Engineering ethanologenic Escherichia coli for levoglucosan utilization. Bioresour Technol 102:8318–8322

    Article  CAS  PubMed  Google Scholar 

  53. Mohan D, Shi J, Nicholas DD, Pittman CU Jr, Steele PH, Cooper JE (2008) Fungicidal values of bio-oils and their lignin-rich fractions obtained from wood/bard fast pyrolysis. Chemosphere 71:456–465

    Article  CAS  PubMed  Google Scholar 

  54. Almeida JRM, Roder A, Modig T, Laddan B, Lidén G, Gorwa-Grauslund MF (2008) NADH- vs. NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 78:939–945

    Article  CAS  PubMed  Google Scholar 

  55. Boopathy R, Bokang H, Daniels L (1993) Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. J Ind Microbiol 11:147–150

    Article  CAS  Google Scholar 

  56. Gutiérrez T, Ingram LO, Preston JF (2006) Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LY01—an enzyme important in the detoxification of furfural during ethanol production. J Biotechnol 121:154–164

    Article  PubMed  CAS  Google Scholar 

  57. Miller EN, Jarboe LR, Yomano LP, York SW, Shanmugam KT, Ingram LO (2009) Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl Environ Microbiol 75:4315–4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Miller EN, Turner PC, Jarboe LR, Ingram LO (2010) Genetic changes that increase 5-hydroxymethyl furfural resistance in ethanol-producing Escherichia coli LY180. Biotechnol Lett 32:661–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies and interactions with food matrix components. Front Microbiol 3:12

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fitzgerald DJ, Stratford M, Gasson MJ, Ueckert J, Bos A, Narbad A (2004) Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J Appl Microbiol 97:104–113

    Article  CAS  PubMed  Google Scholar 

  61. Oyedemi SO, Okoh AI, Mabinya LV, Pirochenva G, Afolayan AJ (2009) The proposed mechanism of bactericidal action of eugenol, α-terpineol and γ-terpinene against Listeria monocytogenes, Streptococcus pyogenes, Proteus vulgaris and Escherichia coli. Afr J Biotechnol 8:1280–1286

    CAS  Google Scholar 

  62. Voda K, Boh B, Vrtacnik M (2004) A quantitative structure-antifungal activity relationship study of oxygenated aromatic essential oil compounds using data structuring and PLS regression analysis. J Mol Model 10:76–84

    Article  CAS  PubMed  Google Scholar 

  63. Voda K, Boh B, Vrtacnik M, Pohleven F (2003) Effect of the antifungal activity of oxygenated aromatic essential oil compounds on the white-rot Trametes versicolor and the brown-rot Coniophora puteana. Int Biodeterior Biodegradation 51:51–59

    Article  CAS  Google Scholar 

  64. Gonzalez B, Acevedo C, Brezny R, Joyce T (1993) Metabolism of chlorinated guaiacols by a guaiacol-degrading Acinetobacter junii strain. Appl Environ Microbiol 59:3424–3429

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bumpus JA, Aust SD (1987) Biodegradation of environmental pollutants by the white rot fungus Phanerochaete chrysosporium: involvement of the lignin degrading system. BioEssays 6:166–170

    Article  CAS  Google Scholar 

  66. Alfaro M, Oguiza JA, Ramírez L, Pisabarro AG (2014) Comparative analysis of secretomes in basidiomycete fungi. J Proteomics 102:28–43

    Article  CAS  PubMed  Google Scholar 

  67. Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  PubMed  Google Scholar 

  68. Grethlein AJ, Soni BK, Worden RM, Jain MK (1992) Influence of hydrogen sulfide on the growth and metabolism of Butyribacterium methylotrophicum and Clostridium acetobutylicum. Appl Biochem Biotechnol 34–35:233–246

    Article  Google Scholar 

  69. Köpke M, Mihalcea C, Liew F, Tizard JH, Ali MS, Conolly JJ, Al-Sinawi B, Simpson SD (2011) 2,3-butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77:5467–5475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Daniell J, Köpke M, Simpson S (2012) Commercial biomass syngas fermentation. Energies 5:5372–5417

    Article  CAS  Google Scholar 

  71. Liew FM, Köpke M, Simpson SD (2013) Gas fermentation for commercial biofuels production. In: Fang Z (ed) Liquid, gaseous and solid biofuels—conversion techniques. INTECH, pp 125–173

    Google Scholar 

  72. Bengelsdorf F, Straub M, Dürre P (2013) Bacterial synthesis gas (syngas) fermentation. Environ Technol 34:1639–1651

    Article  CAS  PubMed  Google Scholar 

  73. Latif H, Zeidan AA, Nielsen AT, Zengler K (2014) Trash to treasure: Production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr Opin Biotechnol 27:79–87

    Article  CAS  PubMed  Google Scholar 

  74. Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40:415–450

    Article  CAS  PubMed  Google Scholar 

  75. Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta Proteins Proteomics 1784:1873–1898

    Article  CAS  Google Scholar 

  76. Wood HG (1991) Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J 5:156–163

    CAS  PubMed  Google Scholar 

  77. Fuchs G (2011) Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65:631–658

    Article  CAS  PubMed  Google Scholar 

  78. Drake HL, Gößner AS, Daniel SL (2008) Old acetogens, new light. Ann NY Acad Sci 1125:100–128

    Article  CAS  PubMed  Google Scholar 

  79. Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira I a C, Allen JF, Lane N, Martin WF (2013) Early bioenergetic evolution. Philos Trans R Soc Lond B Biol Sci 368:20130088

    Google Scholar 

  80. Schuchmann K, Müller V (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12:809–821

    Article  CAS  PubMed  Google Scholar 

  81. Nagarajan H, Sahin M, Nogales J, Latif H, Lovley DR, Ebrahim A, Zengler K (2013) Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii. Microb Cell Fact 12:118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Fast AG, Papoutsakis ET (2012) Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr Opin Chem Eng 1:380–395

    Article  Google Scholar 

  84. Isom CE, Nanny MA, Tanner RS (2015) Improved conversion efficiencies for n-fatty acid reduction to primary alcohols by the solventogenic acetogen “Clostridium ragsdalei”. J Ind Microbiol Biotechnol 42:29–38

    Article  CAS  PubMed  Google Scholar 

  85. White H, Huber C, Feicht R, Simon H (1993) On a reversible molybdenum-containing aldehyde oxidoreductase from Clostridium formicoaceticum. Arch Microbiol 159:244–249

    Article  CAS  Google Scholar 

  86. Diekert GB, Graf EG, Thauer RK (1979) Nickel requirement for carbon monoxide dehydrogenase formation in Clostridium pasteurianum. Arch Microbiol 122:117–120

    Article  CAS  Google Scholar 

  87. Drake H, Hu S, Wood H (1980) Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermocaceticum. J Biol Chem 255:7174–7180

    CAS  PubMed  Google Scholar 

  88. Schuchmann K, Müller V (2012) A bacterial electron-bifurcating hydrogenase. J Biol Chem 287:31165–31171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Le Berre C, Serp P, Kalck P, Torrence GP (2013) Acetic acid. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–34

    Google Scholar 

  90. Hu P, Rismani-Yazdi H, Stephanopoulos G (2013) Anaerobic CO2 fixation by the acetogenic bacterium Moorella thermoacetica. AIChE J 59:3176–3183

    Article  CAS  Google Scholar 

  91. Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int J Syst Bacteriol 27:355–361

    Article  CAS  Google Scholar 

  92. Demler M, Weuster-Botz D (2011) Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii. Biotechnol Bioeng 108:470–474

    Article  CAS  PubMed  Google Scholar 

  93. Straub M, Demler M, Weuster-Botz D, Dürre P (2014) Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii. J Biotechnol 178:67–72

    Article  CAS  PubMed  Google Scholar 

  94. Klemps R, Schoberth SM, Sahm H (1987) Production of acetic acid by Acetogenium kivui. Appl Microbiol Biotechnol 27:229–234

    Article  CAS  Google Scholar 

  95. Kosaric N, Duvnjak Z, Farkas A, Sahm H, Bringer-Meyer S, Goebel O, Mayer D (2012) Ethanol. Ullmann’s Encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 334–403

    Google Scholar 

  96. Syldatk C, Schaub G, Schulze I, Ernst D, Neumann A (2011) Renewable raw materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  97. Yasin M, Jeong Y, Park S, Jeong J, Yeol E, Lovitt RW, Hong B, Lee J, Seop I (2015) Bioresource Technology Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. Bioresour Technol 177:361–374

    Article  CAS  PubMed  Google Scholar 

  98. Henstra AM, Sipma J, Rinzema A, Stams AJ (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:200–206

    Article  CAS  PubMed  Google Scholar 

  99. Phillips JR, Klasson KT, Clausen EC, Gaddy JL (1993) Biological production of ethanol from coal synthesis gas. Appl Biochem Biotechnol 39:559–571

    Article  Google Scholar 

  100. Ueki T, Nevin KP, Woodard TL, Lovley DR (2014) Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. MBio 5:1–10

    Article  CAS  Google Scholar 

  101. Abubackar HN, Veiga MC, Kennes C (2012) Biological conversion of carbon monoxide to ethanol: effect of pH, gas pressure, reducing agent and yeast extract. Bioresour Technol 114:518–522

    Article  CAS  PubMed  Google Scholar 

  102. Köpke M, Havill A (2014) LanzaTech’s route to bio-butadiene. Catal Rev 27:7–12

    Google Scholar 

  103. Köpke M, Mihalcea C, Bromley JC, Simpson SD (2011) Fermentative production of ethanol from carbon monoxide. Curr Opin Biotechnol 22:320–325

    Article  PubMed  CAS  Google Scholar 

  104. Zhang C, Yang H, Yang F, Ma Y (2009) Current progress on butyric acid production by fermentation. Curr Microbiol 59:656–663

    Article  CAS  PubMed  Google Scholar 

  105. Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK (2008) Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol 190:843–850

    Article  CAS  PubMed  Google Scholar 

  106. Worden RM, Grethlein a. J, Zeikus JG, Datta R (1989) Butyrate production from carbon monoxide by Butyribacterium methylotrophicum. Appl Biochem Biotechnol 20–21:687–698

    Google Scholar 

  107. Liou JSC, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091

    Article  CAS  PubMed  Google Scholar 

  108. Hahn H-D, Dämbkes G, Rupprich N, Bahl H, Frey GD (2013) Butanols. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–13

    Google Scholar 

  109. Grethlein AJ, Worden RM, Jain MK, Datta R (1991) Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum. J Ferment Bioeng 72:58–60

    Article  CAS  Google Scholar 

  110. Bruant G, Lévesque MJ, Peter C, Guiot SR, Masson L (2010) Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans strain P7T. PLoS ONE 5:1–12

    Article  CAS  Google Scholar 

  111. Maddipati P, Atiyeh HK, Bellmer DD, Huhnke RL (2011) Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresour Technol 102:6494–6501

    Article  CAS  PubMed  Google Scholar 

  112. Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci USA 107:13087–13092

    Article  PubMed  PubMed Central  Google Scholar 

  113. Köpke M, Gerth ML, Maddock DJ, Mueller AP, Liew F, Simpson SD, Patrick WM (2014) Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase. Appl Environ Microbiol 80:3394–3403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Wang S, Huang H, Kahnt HH, Mueller AP, Köpke M, Thauer RK (2013) NADP-Specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. J Bacteriol 195:4373–4386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Weber M, Pompetzki W, Bonmann R, Weber M (2013) Acetone. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–19

    Google Scholar 

  116. Lederle SM (2010) Heterofermentative Acetonproduktion. Dissertation University of Ulm

    Google Scholar 

  117. Heap JT, Ehsaan M, Cooksley CM, Ng YK, Cartman ST, Winzer K, Minton NP (2012) Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Res 40:e59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Heap JT, Kuehne SA, Ehsaan M, Cartman ST, Cooksley CM, Scott JC, Minton NP (2010) The ClosTron: mutagenesis in Clostridium refined and streamlined. J Microbiol Methods 80:49–55

    Google Scholar 

  119. Schiel-Bengelsdorf B, Dürre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586:2191–2198

    Article  CAS  PubMed  Google Scholar 

  120. Przybylski D, Rohwerder T, Dilßner C, Maskow T, Harms H, Müller RH (2014) Exploiting mixtures of H2, CO2, and O2 for improved production of methacrylate precursor 2-hydroxyisobutyric acid by engineered Cupriavidus necator strains. Appl Microbiol Biotechnol 99:2131–2145

    Article  PubMed  CAS  Google Scholar 

  121. Rohwerder T, Müller RH (2010) Biosynthesis of 2-hydroxyisobutyric acid (2-HIBA) from renewable carbon. Microb Cell Fact 9:1–10

    Article  CAS  Google Scholar 

  122. Do YS, Smeenk J, Broer KM, Kisting CJ, Brown R, Heindel TJ, Bobik TA, Dispirito AA (2007) Growth of Rhodospirillum rubrum on synthesis gas: conversion of CO to H2 and poly-b-hydroxyalkanoate. Biotechnol Bioeng 97:279–286

    Article  CAS  PubMed  Google Scholar 

  123. Heinrich D, Raberg M, Steinbüchel A (2015) Synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from unrelated carbon sources in engineered Rhodospirillum rubrum. FEMS Microbiol Lett (in press)

    Google Scholar 

  124. Fast AG, Schmidt ED, Jones SW, Tracy BP (2015) Acetogenic mixotrophy: novel options for yield improvement in biofuels and biochemicals production. Curr Opin Biotechnol 33:60–72

    Article  CAS  PubMed  Google Scholar 

  125. Shen Y, Brown R, Wen Z (2014) Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: evaluating the mass transfer coefficient and ethanol production performance. Biochem Eng J 85:21–29

    Article  CAS  Google Scholar 

  126. Shen Y, Brown R, Wen Z (2014) Enhancing mass transfer and ethanol production in syngas fermentation of Clostridium carboxidivorans P7 through a monolithic biofilm reactor. Appl Energy 136:68–76

    Article  CAS  Google Scholar 

  127. Leang C, Ueki T, Nevin KP, Lovley DR (2013) A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Appl Environ Microbiol 79:1102–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kita A, Iwasaki Y, Sakai S, Okuto S, Takaoka K, Suzuki T, Yano S, Sawayama S, Tajima T, Kato J, Nishio N, Murakami K, Nakashimada Y (2013) Development of genetic transformation and heterologous expression system in carboxydotrophic thermophilic acetogen Moorella thermoacetica. J Biosci Bioeng 115:347–352

    Article  CAS  PubMed  Google Scholar 

  129. Cho C, Jang Y-S, Moon HG, Lee J, Lee SY (2015) Metabolic engineering of clostridia for the production of chemicals. Biofuels Bioprod Biorefin 9(2):211–225

    Google Scholar 

  130. Dong H, Tao W, Gong F, Li Y, Zhang Y (2014) A functional recT gene for recombineering of Clostridium. J Biotechnol 173:65–67

    Article  CAS  PubMed  Google Scholar 

  131. Wang J, Yang X, Chen C-C, Yang S-T (2014) Engineering clostridia for butanol production from biorenewable resources: from cells to process integration. Curr Opin Chem Eng 6:43–54

    Article  Google Scholar 

  132. Green RV (1966) Carbon monoxide. In: Standen A (ed) Kirk-Othmer encyclopedia of chemical technology. 2nd completely revised edition, vol 4. Wiley, New York, pp 424–445

    Google Scholar 

  133. van der Drift A, van Doorn J, Vermeulen JW (2001) Ten residual biomass fuels for circulating fluidized-bed gasification. Biomass Bioenergy 20:45–56

    Article  Google Scholar 

  134. Gordillo G, Annamalai K (2010) Adiabatic fixed bed gasification of dairy biomass with air and steam. Fuel 89:384–391

    Article  CAS  Google Scholar 

  135. Galindo AL, Lora ES, Andrade RV, Giraldo SY, Jaén RL, Cobas VM (2014) Biomass gasification in a downdraft gasifier with a two-stage air supply: effect of operating conditions on gas quality. Biomass Bioenergy 61:236–244

    Article  CAS  Google Scholar 

  136. Boateng AA, Banowetz GM, Steiner JJ, Barton TF, Taylor DG, Hicks KB, El-Nashaar H, Sethi VK (2006) Gasification of Kentucky bluegrass (Poa pratensis I.) staw in a farm-scale reactor. Biomass Bioenergy 31:153–161

    Article  CAS  Google Scholar 

  137. Calvo LF, Gil MV, Otero M, Morán A, García AI (2012) Gasification of rice straw in a fluidized-bed gasifier for syngas application in close-coupled boiler-gasifier systems. Bioresour Technol 109:206–214

    Article  CAS  PubMed  Google Scholar 

  138. Leijenhorst EJ, Assink D, van de Beld L, Weiland F, Wiinikka H, Carlsson P, Öhrman OGW (2014) Entrained flow gasification of straw- and wood-derived pyrolysis oil in a pressurized oxygen blown gasifier. Biomass Bioenergy (in press)

    Google Scholar 

  139. Broer KM, Woolcock PJ, Johnston PA, Brown RC (2015) Steam/oxygen gasification system for the production of clean syngas from switchgrass. Fuel 140:282–292

    Article  CAS  Google Scholar 

  140. Prasad L, Subbarao PMV, Subrahmanyam JP (2014) Pyrolysis and gasification characteristics of Pongamia residue (de-oiled cake) using thermogravimetry and downdraft gasifier. Appl Therm Eng 63:379–386

    Article  CAS  Google Scholar 

  141. Demirbas M, Balat M (2007) Biomass pyrolysis for liquid fuels and chemicals: a review. J Sci Ind Res 66:797–804

    CAS  Google Scholar 

  142. Czernik S, Bridgwater A (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuels 590–598

    Google Scholar 

  143. Zaldivar J, Ingram LO (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 66:203–210

    Article  CAS  PubMed  Google Scholar 

  144. Zaldivar J, Martinez A, Ingram L (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33

    Article  CAS  PubMed  Google Scholar 

  145. Zaldivar J, Martinez A, Ingram L (2000) Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 68:524–530

    Article  CAS  PubMed  Google Scholar 

  146. Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Indust Microbiol Biotechnol 20:132–138

    Article  CAS  Google Scholar 

  147. Poehlein A, Schmidt S, Kaster AK, Goenrich M, Vollmers J, Thürmer A, Bertsch J, Schuchmann K, Voigt B, Hecker M, Daniel R, Thauer RK, Gottschalk G, Müller V (2012) An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS ONE 7:e33439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Braun M, Mayer F, Gottschalk G (1981) Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch Microbiol 128:288–293

    Article  CAS  PubMed  Google Scholar 

  149. Lux MF, Drake HL (1992) Re-examination of the metabolic potentials of the acetogens Clostridium aceticum and Clostridium formicoaceticum: Chemolithoautotrophic and aromatic-dependent growth. FEMS Microbiol Lett 95:49–56

    Article  CAS  Google Scholar 

  150. Lee S, Song Y, Choe D, Cho S, Yu SJ, Cho Y, Kim SC, Cho B-K (2015) Reconstruction of acetogenesis pathway using short-read sequencing of Clostridium aceticum genome. J Nanosci Nanotechnol 15:3852–3861

    Article  CAS  PubMed  Google Scholar 

  151. Abrini J, Naveau H, Nyns E (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161:345–351

    Article  CAS  Google Scholar 

  152. Brown SD, Nagaraju S, Utturkar S, De Tissera S, Segovia S, Mitchell W, Land ML, Dassanayake A, Köpke M (2014) Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia. Biotechnol Biofuels 7:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Paul D, Austin FW, Arick T, Bridges SM, Burgess SC, Dandass YS, Lawrence ML (2010) Genome sequence of the solvent-producing bacterium Clostridium carboxidivorans strain P7T. J Bacteriol 192:5554–5555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gößner AS, Picardal F, Tanner RS, Drake HL (2008) Carbon metabolism of the moderately acid-tolerant acetogen Clostridium drakei isolated from peat. FEMS Microbiol Lett 287:236–242

    Article  PubMed  CAS  Google Scholar 

  155. Whitehead TR, Price NP, Drake HL, Cotta MA (2008) Catabolic pathway for the production ofskatole and indoleacetic acid by the acetogen Clostridium drakei, Clostridium scatologenes, and swine manure. Appl Environ Microbiol 74:1950–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Saxena J, Tanner RS (2011) Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. J Ind Microbiol Biotechnol 38:513–521

    Article  CAS  PubMed  Google Scholar 

  157. Genthner BRS, Bryant MP (1982) Growth of Eubacterium limosum with carbon monoxide as the energy source. Appl Environ Microbiol 43:70–74

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Roh H, Ko HJ, Kim D, Choi DG, Park S, Kim S, Chang IS, Choi IG (2011) Complete genome sequence of a carbon monoxide-utilizing acetogen, Eubacterium limosum KIST612. J Bacteriol 193:307–308

    Article  CAS  PubMed  Google Scholar 

  159. Daniel SL, Hsu T, Dean SI, Drake HL (1990) Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol 172:4464–4471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Pierce E, Xie G, Barabote RD, Saunders E, Han CS, Detter JC, Richardson P, Brettin TS, Das A, Ljungdahl LG, Ragsdale SW (2008) The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ Microbiol 10:2550–2573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ (1998) Multiple beta-ketothiolases mediate poly(beta-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180:1979–1987

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Pötter M, Schwartz E, Strittmatter A, Voss I, Gottschalk G, Steinbüchel A, Friedrich B, Bowien B (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262

    Article  PubMed  Google Scholar 

  163. Fuchs G (2007) Allgemeine Mikrobiologie, 8th edn. Thieme, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Ochsenreither .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Neumann, A., Dörsam, S., Oswald, F., Ochsenreither, K. (2016). Microbial Production of Value-Added Chemicals from Pyrolysis Oil and Syngas. In: Xian, M. (eds) Sustainable Production of Bulk Chemicals. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7475-8_4

Download citation

Publish with us

Policies and ethics