Skip to main content

Bulk Chemical Production: Chemo- and Bio-integrated Strategies

  • Chapter
  • First Online:
Sustainable Production of Bulk Chemicals
  • 895 Accesses

Abstract

The fast and stable development of chemical industry demands more sustainable resources, feasible processes, and available techniques to produce the needed chemicals which are continuously increasing and changing. Chemical strategy has long been used in the history of bulk chemical production and dominates today’s chemical industry. The fast development of biotechnology has also enabled green bioconversion processes for the production of an extensive range of bio-based chemicals from renewable biomass. However, in order to economically and technically compete with traditional petroleum-based chemicals, it is essential to develop sustainable and feasible strategies that are capable of producing chemicals with high performance and low production cost. This review summarizes the history of bulk chemicals production, the bottleneck questions in chemical production through bio- or chemo-strategy. In addition, the review addresses the integrated strategies combining bio-, chemo-resources, processes, and techniques, which represent the near-term trends and opportunities for the production of bulk chemicals, more sustainably and broadly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Chemistry Council (2014) In: Guide to the business of chemistry 2014. http://www.americanchemistry.com

  2. CEFIC (2012) Facts and figures 2012: The European chemicals industry in a worldwide perspective. http://www.cefic.org/Documents/FactsAndFigures/2012/Facts-and-Figures-2012-The-Brochure.pdf

  3. Davenport WG, King MJ (2006) Sulfuric acid manufacture: analysis, control and optimization. Elsevier, Amsterdam

    Google Scholar 

  4. Kerr RA (2007) Oil resources—the looming oil crisis could arrive uncomfortably soon. Science 3(16):351

    Article  Google Scholar 

  5. Werpy T, Petersen G (2004) Top value added chemicals from biomass. Office of Energy Efficiency and Renewable Energy, US Department of Energy, Washington, DC

    Google Scholar 

  6. Zou H, Zhao G, Xian M (2013) Microbial conversion of bio-based chemicals: present and future prospects. In: Biomass processing, conversion and biorefinery. Nova Science Publishers, New York

    Google Scholar 

  7. Erickson B, Nelson JE, Winters P (2012) Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol J 7:176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Singh R (2011) Facts, growth, and opportunities in industrial biotechnology. Org Process Res Dev 15:175

    Article  CAS  Google Scholar 

  9. Lee SJ, Lee DY, Kim TY et al (2005) Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl Environ Microbiol 71:7880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Park SJ, Lee SY, Kim TW et al (2012) Biosynthesis of lactate-containing polyesters by metabolically engineered bacteria. Biotechnol J 7:199

    Article  CAS  PubMed  Google Scholar 

  11. Wee YJ, Kim JN, Ryu HW (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44:163

    CAS  Google Scholar 

  12. Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454

    Article  CAS  PubMed  Google Scholar 

  13. Atsumi S, Wu TY, Eckl EM et al (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85:651

    Article  CAS  PubMed  Google Scholar 

  14. Whited GM, Feher FJ, Benko DA et al (2010) Development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering. Ind Biotechnol 6:152

    Article  CAS  Google Scholar 

  15. Keasling JD, Mendoza A, Baran PS (2012) Synthesis: a constructive debate. Nature 492(7428):188

    Article  CAS  PubMed  Google Scholar 

  16. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  17. Siegel JB, Zanghellini A, Lovick HM et al (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329:309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318(5857):1737

    Article  CAS  PubMed  Google Scholar 

  19. Tanabe S, Watanabe M, Minh TB et al (2004) PCDDs, PCDFs, and Coplanar PCBs in Albatross from the North Pacific and southern oceans: levels, patterns, and toxicological implications. Environ Sci Technol 38(2):403

    Article  CAS  PubMed  Google Scholar 

  20. Erickson B, Nelson JE, Winters P (2012) Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol J 7:176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fu CX, Mielenz JR, Xiao XR et al (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci US 108:3803

    Article  CAS  Google Scholar 

  22. Olah GA, Prakash GK, Goeppert A (2011) Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc 133(33):12881

    Article  CAS  PubMed  Google Scholar 

  23. Goeppert A, Czaun M, Jones JP et al (2014) Recycling of carbon dioxide to methanol and derived products—closing the loop. Chem Soc Rev 43(23):7995

    Article  CAS  PubMed  Google Scholar 

  24. Delhomme C, Weuster-Botz D, Kuhn FE (2009) Succinic acid from renewable resources as a C-4 building-block chemical-a review of the catalytic possibilities in aqueous media. Green Chem 11:13

    Article  CAS  Google Scholar 

  25. Thompson B, Moon TS, Nielsen DR (2014) ‘Hybrid’ processing strategies for expanding and improving the synthesis of renewable bioproducts. Curr Opin Biotechnol 30:17

    Article  CAS  PubMed  Google Scholar 

  26. Ro DK, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940

    Article  CAS  PubMed  Google Scholar 

  27. Marr AC, Shifang Liu S (2011) Combining bio- and chemo-catalysis: from enzymes to cells, from petroleum to biomass. Trends Biotechnol 29(5):199

    Article  CAS  PubMed  Google Scholar 

  28. Schoevaart R, Kieboom T (2002) Combined catalytic conversion involving an enzyme, a homogeneous and a heterogeneous catalyst: one-pot preparation of 4-deoxy-D-glucose derivatives from D-galactose. Tetrahedron Lett 43:3399

    Article  CAS  Google Scholar 

  29. Lichmana BR, Lammingb ED, Pesnot T et al (2015) One-pot triangular chemoenzymatic cascades for the syntheses of chiral alkaloids from dopamine. Green Chem 17:852

    Article  Google Scholar 

  30. Liu S et al (2009) Adding value to renewables: a one pot process combining microbial cells and hydrogen transfer catalysis to utilize waste glycerol from biodiesel production. Chem Commun Q 7:2308

    Article  Google Scholar 

  31. Gelman F et al (2002) One-pot sequences of reactions with sol–gel entrapped opposing reagents: an enzyme and metal-complex catalysts. J Am Chem Soc 124:14460

    Article  CAS  PubMed  Google Scholar 

  32. Dĺaz-Rodrĺguez A, Davis BG (2011) Chemical modification in the creation of novel biocatalysts. Curr Opin Chem Biol 15:211

    Article  Google Scholar 

  33. Taylor AI, Pinheiro VB, Smola MJ et al (2015) Catalysts from synthetic genetic polymers. Nature 518:427

    Article  CAS  PubMed  Google Scholar 

  34. Krutsakorn B, Honda K, Ye X et al (2013) In vitro production of n-butanol from glucose. Metab Eng 20:84

    Article  CAS  PubMed  Google Scholar 

  35. Yim H, Haselbeck R, Niu W et al (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445

    Article  CAS  PubMed  Google Scholar 

  36. Zhang K, Li H, Cho KM, Liao JC (2010) Expanding metabolism for total biosynthesis of the nonnatural amino acid L-homoalanine. Proc Natl Acad Sci USA 107:6234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee JW, Na D, Park JM et al (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8:536

    Article  CAS  PubMed  Google Scholar 

  38. Shin JH, Kim HU, Kim DI et al (2013) Production of bulk chemicals via novel metabolic pathways in microorganisms. Biotechnol Adv 31:925

    Article  CAS  PubMed  Google Scholar 

  39. Dusselier M, Mascal M, Sels BF (2014) Top chemical opportunities from carbohydrate biomass: a chemist’s view of the biorefinery. Top Curr Chem 353:1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo Xian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zou, H., Zhao, G., Liu, H., Xian, M. (2016). Bulk Chemical Production: Chemo- and Bio-integrated Strategies. In: Xian, M. (eds) Sustainable Production of Bulk Chemicals. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7475-8_1

Download citation

Publish with us

Policies and ethics