Skip to main content

Luminescence Efficiency of Cadmium Selenide/Zinc Sulfide (CdSe/ZnS) Quantum Dot Nanoparticle Sensors Under X-Ray Excitation

  • Conference paper
  • First Online:
  • 617 Accesses

Abstract

This paper presents the luminescence efficiency (LE) of toluene dissolved Cadmium Selenide/Zinc Sulfide (CdSe/ZnS) quantum dot (QD) samples after their irradiation with X-rays and UV. The LE was investigated as a function of the weight over volume (w/v) QD concentration under variable fluxes of X-rays and wavelengths of UV radiation. All the samples were handled through cubic 12.5 × 12.5 × 45 mm3 quartz cuvettes. For the X-ray experiments, the QD samples were irradiated by a ΒΜΙ General Medical Merate tube in the peak voltage range between 50 and 130 kVp. The tube was of rotating Tungsten anode type with inherent filtration equivalent to 2 mm Al. The w/v concentration varied between 7.1 × 10−5 mg/mL to 49.7 × 10−5 mg/mL. The UV induced LE was of symmetrical distribution versus UV wavelength, with maximum at the 590 nm. The X-ray induced LE, increased with w/v QD sample concentration, saturating however, in the w/v range between 21.3 × 10−5 mg/mL and 28.4 × 10−5 mg/mL. The maximum LE was observed for the 21.3 × 10−5 mg/mL QD sample after the irradiation of 90 kVp X-rays. The distinction of the LE values in the highly concentrated samples was vague. In the peak voltage range between 120 and 130 kVp, all QD concentration levels exhibited comparable X-ray induced LE values. The LE properties of the studied QD samples could be promising as X-ray radiation sensors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Antonuk LE (2006) Electronic portal imaging devices: a review and historical perspective of contemporary technologies and research. Phys Med Biol 47:R31–65

    Google Scholar 

  2. Antonuk LE, Mohri Y, El YW (2000) Erratum: Strategies to improve the signal and noise performance of active matrix, flat-panel imagers for diagnostic x-ray applications. Med Phys 27:289–306

    Article  Google Scholar 

  3. Baharin R, Hobson PR, Smith DR (2010) Simulation of MeV electron energy deposition in CdS quantum dots absorbed in silicate glass for radiation dosimetry. J Phys Conf Ser 245:012007

    Google Scholar 

  4. Baharin R, Hobson PR, Leslie DE, Smith DR (2010) Simulation of MeV electron energy deposition in CdS quantum dots absorbed in silicate glass for radiation dosimetry. J Phys Conf Ser 245:012007

    Google Scholar 

  5. Blasse G, Grabmaier B (1994) Luminescent materials. Springer, Berlin

    Google Scholar 

  6. Doi K (2006) Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology. Phys Med Biol 51:R5–R27

    Article  ADS  Google Scholar 

  7. Eychmuller A (2000) Structure and photophysics of semiconductor nanocrystals. J Phys Chem B 104:6514–6528

    Google Scholar 

  8. Gupta R, Grasruck M, Suess C, Bartling S, Schmidt B, Stierstorfer K, Popescu S, Brady T, Flohr T (2006) Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization. Eur Radiol 16:1191–1205

    Article  Google Scholar 

  9. Guo S, Konopny L, Popovitz-Biro R, Cohen H, Sirota M, Lifshitz E, Lahav M (2000) Topotactic release of CdS and Cd1-xMnxS from solid thioalkanoates with ammonia to yield quantum particles arranged in layers within an organic composite. Adv Mater 12:302–306

    Article  Google Scholar 

  10. Hobson PR, Leslie DE, Smith DR (2011) Effect of gamma radiation on potential ionising radiation detectors and dosimeters based on quantum dots. IEEE Nucl Sci Conf Record MICI2.M-115:3015

    Google Scholar 

  11. Kandarakis I, Cavouras D (2001) Modeling the effect of light generation and light attenuation properties on the performance of phosphors used in medical imaging radiation detectors. Nucl Instrum Meth Phys Res A 460:412–423

    Article  ADS  Google Scholar 

  12. Kim S, Park J, Kang S, Cha B, Cho S, Shin J, Son D, Nam S (2007) Investigation of the imaging characteristics of the Gd2O3:Eu nanophosphor for high-resolution digital X-ray imaging system. Nucl Instrum Meth Phys Res A 576:70–74

    Article  ADS  Google Scholar 

  13. Kobayashi M, Aogaki S, Takeutchi F, Tamagawa Y, Usuki Y (2012) Performance of thin long scintillator strips of GSO:Ce LGSO:Ce and LuAG:Pr for low energy γ-rays. Nucl Instrum Method Phys Res A 693:226–235

    Article  ADS  Google Scholar 

  14. Konstantatos G, Clifford J, Levina L, Sargent E (2007) Sensitive solution-processed visible-wavelength photodetectors. Nat Photon 1(9):531–534

    Article  ADS  Google Scholar 

  15. Konstantatos G, Sargent E (2010) Nanostructured materials for photon detection. Nat Nanotechnol 5(6):391–400

    Article  ADS  Google Scholar 

  16. Lawrence WG, Thacker S, Palamakumbura S, Riley KJ, Nagarkar VV (2012) Quantum dot-organic polymer composite materials for radiation detection and imaging. IEEE Trans Nucl Sci 59(1):215–221

    Article  ADS  Google Scholar 

  17. Lumidot (2014) CdSe/ZnS 610, core-shell type quantum dots, specification sheet, 694614 Sigma-Aldrich, http://www.sigmaaldrich.com/catalog/product/aldrich/694614?lang=en&region=GR

  18. Ma Y, Qi L, Ma J, Cheng H, Shen W (2003) Synthesis of submicrometer-sized CdS hollow spheres in aqueous solutions of a triblock copolymer. Langmuir 19:9079–9085

    Article  Google Scholar 

  19. Michail C, David S, Liaparinos P, Valais I, Nikolopoulos D, Kalivas N, Toutountzis A, Sianoudis I, Cavouras D, Dimitropoulos N, Nomicos C, Kourkoutas K, Kandarakis I, Panayiotakis G (2007) Evaluation of the imaging performance of LSO powder scintillator for use in X-ray mammography. Nucl Instrum Meth Phys Res A 580:558–561

    Article  ADS  Google Scholar 

  20. Michail C, Spyropoulou V, Fountos G, Kalyvas N, Valais I, Kandarakis I, Panayiotakis G (2011) Experimental and theoretical evaluation of a high resolution CMOS based detector under X-ray imaging conditions. IEEE Trans Nucl Sci 58(1):314–322

    Article  ADS  Google Scholar 

  21. Michail C, Valais I, Seferis I, Kalyvas N, Fountos G, Kandarakis I (2015) Experimental measurement of a high resolution CMOS detector coupled to CsI scintillators under X-ray radiation. Radiat Meas 74:39–46

    Article  Google Scholar 

  22. Michail C, Valais I, Seferis I, Kalyvas N, David S, Fountos G, Kandarakis I (2014a) Measurement of the luminescence properties of Gd 2 O 2 S: Pr, Ce, F powder scintillators under X-ray radiation. Radiat Meas 70:59–64

    Article  Google Scholar 

  23. Michail C, Kalyvas N, Valais I, David S, Seferis I, Toutountzis A, Karabotsos A, Liaparinos P, Fountos G, Kandarakis I (2013) On the response of GdAlO 3: Ce powder scintillators. J Lumin 144:45–52

    Article  Google Scholar 

  24. Michail C, Fountos G, David S, Valais I, Toutountzis A, Kalyvas N, Kandarakis I, Panayiotakis G (2009) A comparative investigation of Lu2SiO5: Ce and Gd2O2S: Eu powder scintillators for use in x-ray mammography detectors. Meas Sci Technol 20(10):104008

    Article  ADS  Google Scholar 

  25. Michail C, Kalyvas N, Valais I, Fudos I, Fountos G, Dimitropoulos N, Koulouras G, Kandris D, Samarakou M, Kandarakis I (2014b) Image quality assessment of a CMOS/Gd2O2S:Pr, Ce, F X-ray sensor. Biomed Res Int 2014:634856

    Article  Google Scholar 

  26. Nagarkar V, Miller S, Tipnis S, Lempicki A, Brecher C, Lingertat H (2004) A new large area scintillator screen for X-ray imaging. Nucl Instrum Meth B 213:250–254

    Article  ADS  Google Scholar 

  27. Rauch T, Böberl M, Tedde S, Fürst J, Kovalenko M, Hesser G, Lemmer U, Heiss W, Hayden O (2009) Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat Photon 3:332–336

    Article  ADS  Google Scholar 

  28. Rossa W, Cody D, Hazle J (2006) Design and performance characteristics of a digital flat-panel computed tomography system. Med Phys 33(6):1888

    Article  Google Scholar 

  29. Seferis I, Michail C, Valais I, Fountos G, Kalyvas N, Stromatia F, Oikonomou G, Kandarakis I, Panayiotakis G (2013) On the response of a europium doped phosphor-coated CMOS digital imaging detector. Nucl Instrum Meth Phys Res A 729:307–315

    Article  ADS  Google Scholar 

  30. Seferis I, Michail C, Valais I, Zeler J, Liaparinos P, Fountos G, Kalyvas N, David S, Stromatia F, Zych E, Kandarakis I, Panayiotakis G (2014a) Light emission efficiency and imaging performance of Lu2O3:Eu nanophosphor under X-ray radiography conditions: comparison with Gd2O2S:Eu. J Lumin 151:229–234

    Article  Google Scholar 

  31. Seferis I, Michail C, Valais I, Zeler J, Liaparinos P, Fountos G, Kalyvas N, David S, Stromatia F, Sreebunpeng K, Chewpraditkul W, Nikl M (2014b) On the response of a europium doped phosphor-coated CMOS digital imaging detector. Radiat Meas 60:42

    Article  Google Scholar 

  32. Sreebunpeng K, Chewpraditkul W, Babin V, Nikl M, Nejezchleb K (2014) Scintillation response of Y3Al5O12:Pr3+ single crystal scintillators. Radiat Meas 56:94–97

    Article  Google Scholar 

  33. Wang C, Chen A, Chen I (2006) Preparation of a highly luminescent nanocomposite by chelating copolymer. Polym Adv Technol 17:598–603

    Article  Google Scholar 

  34. Valais I, Nikolopoulos D, Kalivas N, Gaitanis A, Loudos G, Sianoudis I, Giokaris N, Cavouras D, Dimitropoulos N, Nomicos CD, Kandarakis I, Panayiotakis GS (2007) A systematic study of the performance of the CsI: Tl single-crystal scintillator under X-ray excitation. Nucl Instrum Meth A 571:343–345

    Article  ADS  Google Scholar 

  35. Yaffe M, Mainprize J, Jong R (2008) Technical developments in mammography. Health Phys 95(5):599–611

    Article  Google Scholar 

  36. Yanagida T, Fujimoto Y, Watanabe K, Fukuda K (2014) Dosimeter properties of Ce and Eu doped LiCaAlF6. Radiat Meas 71:148–152

    Article  Google Scholar 

  37. van Eijk C (2002) Inorganic scintillators in medical imaging. Phys Med Biol 45:R85–R106

    Article  Google Scholar 

  38. Zych E, Meijerink A, Doneg C (2003) Quantum efficiency of europium emission from nanocrystalline powders of Lu2O3:Eu. J Phys Condens Matter 15:5145–5155. PII: S0953-8984(03)62446-X.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Nikolopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Nikolopoulos, D. et al. (2016). Luminescence Efficiency of Cadmium Selenide/Zinc Sulfide (CdSe/ZnS) Quantum Dot Nanoparticle Sensors Under X-Ray Excitation. In: Kervalishvili, P., Yannakopoulos, P. (eds) Nuclear Radiation Nanosensors and Nanosensory Systems. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7468-0_5

Download citation

Publish with us

Policies and ethics