Skip to main content

Paleobiology and Adaptations of Paleogene Metatherians

  • Chapter
  • First Online:

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

Diversity, dietary, and body mass analyses suggest that the early Eocene represents the major radiation event in South America metatherian evolutionary history. During this period, representatives of all orders typical of the Paleogene reached their greatest diversity (i.e., “basal ameridelphians”; Polydolopimorphia Polydolopiformes, and Bonapartheriiformes Bonapartherioidea); frugivory was the dominant trophic niche. By the middle late Eocene occurs a functional and taxonomic turnover. Among the Polydolopimorphia, frugivore types declined and were replaced by larger-sized frugivores/folivores (Polydolopiformes) and smaller-sized granivores (Bonapartheriiformes). The Sparassodonta showed a diversity increase and occupied the large-sized hypercarnivore niches. The Eocene–Oligocene boundary constitutes another extinction and turnover event marked by the disappearance of “basal ameridelphians”, the Polydolopiformes and Bonapartheriiformes Bonapartherioidea. Lineages that survive into the Deseadan are the Sparassodonta, Paucituberculata, Microbiotheria, and Bonapartheriiformes Argyrolagoidea. Dominant trophic types were those of carnivores and granivores. Environmental factors probably modeled the Paleogene metatherian faunal dynamics in South America. Mean annual temperatures (MAT) and precipitations seem the main factors modeling the taxonomic and trophic diversity, respectively. The adaptive radiation of the early Eocene seems associated with the maximum thermal event of the late Paleocene-early Eocene. The turnover event of the late Eocene seems associated with a sharp drop in the rainfall regime. The extinction and turnover event of the Eocene–Oligocene boundary also seem associated with a strong drop in ambient temperatures. The diversity in evolution of Paleogene metatherians shows a pattern similar to that of living marsupials at the latitudinal level. For a given mean temperature, the number of species in extinct associations is very close to that of the living ones.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abello MA, Candela AM (2010) Postcranial skeleton of the Miocene marsupial Palaeothentes (Paucituberculata, Palaeothentidae): paleobiology and phylogeny. J Vert Paleontol 5:1515–1527

    Article  Google Scholar 

  • Argot C (2001) Functional-adaptive anatomy of the forelimb in the didelphidae, and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 247(1):51–79

    Article  Google Scholar 

  • Argot C (2003) Functional adaptations of the postcranial skeleton of two Miocene borhyaenoids (Mammalia, Metatheria) Borhyaena and Prothylacynus, from South America. Palaeontol 46:1213–1267

    Article  Google Scholar 

  • Argot C (2004) Evolution of South American mammalian predators (Borhyaenoidea): anatomical and palaeobiological implications. Zool J Linn Soc 140:487–521

    Article  Google Scholar 

  • Argot C, Babot J (2011) Postcranial morphology, functional adaptations and paleobiology of Callistoe vincei, a predaceous metatherian from the Eocene of Salta, North-western Argentina. Paleontol 54(2):447–480

    Article  Google Scholar 

  • Babot MJ, Powell JE, de Muizon C (2002) Callistoe vincei, a new Proborhyaenidae (Borhyaenoidea, Metatheria, Mammalia) from the Early Eocene of Argentina. Geobios 35:615–629

    Article  Google Scholar 

  • Barnosky AD (2001) Distinguishing the effects of the red queen and court jester on Miocene mammal evolution in the northern Rocky Mountains. J Vertebr Paleontol 21:172–185

    Article  Google Scholar 

  • Barreda V, Palazzesi I (2007) Patagonian vegetation turnovers during the Paleogene-early Neogene: origin of arid-adapted floras. Botan Rev 73:31–50

    Article  Google Scholar 

  • Bellosi ES, Gonzales P (2010) Paleosols of the middle Cenozoic Sarmiento Formation, central Patagonia. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The paleontology of Gran Barranca: evolution and environmental change through the Middle Cenozoic of Patagonia. Cambridge University Press, New York

    Google Scholar 

  • Birney EC, Monjeau JA (2003) Latitudinal variation in South American marsupial biology. In: Menna J, Dickman C, Archer M (eds) Predators with pouches. The biology of carnivorous marsupials. Csiro Publishing, Colingwood

    Google Scholar 

  • Bond M, Pascual R (1983) Nuevos y elocuentes restos craneanos de Proborhyaena gigantea Ameghino, 1897 (Marsupialia, Borhyaenidae, Proborhyaeninae) de la edad Deseadense. Un ejemplo de coevolución. Ameghiniana 10(1–2):47–60

    Google Scholar 

  • Bozinovic F, Ruiz G, Rosenmann M (2004) Energetics and torpor of a South American living fossil, the microbiotheriid Dromiciops gliroides. J Comp Physiol B 174:293–297

    Google Scholar 

  • Bozinovic F, Ruiz G, Cortés A, Rosenmann M (2005) Energetics, thermoregulation and torpor in the Chilean mouseopossum Thylamys elegans (Didelphidae). Rev Chilena Hist Nat 78:199–206

    Google Scholar 

  • Bown TM, Fleagle JG (1993) Systematics, Biostratigraphy, and dental evolution of the Palaeothentidae, later Oligocene to earlymiddle Miocene (Deseadan-Santacrucian) caenolestoid marsupials of South America. Mem Paleont Soc 29:1–76

    Google Scholar 

  • Butler PM (1983) Molar wear facets of early tertiary North American primates. In: Symposium of the 4 international congress of primatology, vol 3, pp 1–27

    Google Scholar 

  • Butler PM (1985) Homologies of molar cusps and crests, and their bearing on assessments of rodent phylogeny. In: Luckett WP, Hartenberger J-L (eds) Evolutionary relationships among rodents. A multidisciplinary analysis. Plenum Press, New York

    Google Scholar 

  • Charnov EL (1976) Optimal foraging: attack strategy of a mantid. Am Nat 110(971):141–151

    Article  Google Scholar 

  • Chivers DJ, Langer P (1994) The digestive system in mammals. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cope ED (1887) The origin of the fittest. D. Appleton & Co, New York

    Google Scholar 

  • Damuth J, MacFadden BJ (1990) Body size in mammalian paleobiology: estimation and biological implications. Cambridge University Press, Cambridge

    Google Scholar 

  • de Muizon C (1991) La fauna de mamíferos de Tiupampa (Paleoceno Inferior, Formación Santa Lucía) Bolivia. In: Suarez-Soruco R (ed) Fósiles y Facies de Bolivia, Vol. I: Vertebrados. Rev Técn Yacimientos Petrolíferos Fiscales de Bolivia 12:575–624

    Google Scholar 

  • de Muizon C (1998) A new carnivorous marsupial from the Paleocene of Bolivia and the problem of the marsupial monophyly. Nature 370:208–211

    Article  Google Scholar 

  • Dewar EW (2003) Functional diversity within the Littleton fauna (early Paleocene) Colorado: evidence from body mass, tooth structure and tooth wear. Paleobios 23(1):1–19

    Google Scholar 

  • Dumont ER, Strait SG, Friscia AR (2000) Abderitid marsupials from the Miocene of Patagonia: an assessment of form, function, and evolution. J Paleontol 74(6):1161–1172

    Article  Google Scholar 

  • Evans AR (2003) Functional dental morphology of insectivorous microchiropterans: spatial modelling and functional analysis of tooth form and the influence of tooth wear and dietary properties. PhD thesis, School of Biological Sciences, Monash University

    Google Scholar 

  • Feldhamer GA (2004) Mammalogy: adaptation, diversity, and ecology. McGraw-Hill, San Francisco

    Google Scholar 

  • Fisher DO, Owens IPF, Johnson C (2001) The ecological basis of life history variation in marsupials. Ecol 82(12):3531–3540

    Article  Google Scholar 

  • Freeman PW (1981) Correspondence of food habits and morphology in insectivorous bats. J Mammal 62(1):166–173

    Article  Google Scholar 

  • Gardner AL (2007) Mammals of South America, Volume 1: Marsupials, Xenarthrans, Shrews and bats. University of Chicago Press, Chicago

    Google Scholar 

  • Geiser F (2001) Hibernation: endotherms. In: Enciclopedia of life sciences. Wiley, Chichester

    Google Scholar 

  • Geiser F, Ferguson C (2001) Intraspecific differences in behaviour and physiology: effects of captive breeding on patterns of torpor in feathertail gliders. J Comp Physiol B 171:569–576

    Article  Google Scholar 

  • Goin FJ (1991) Los Didelphoidea (Mammalia, Marsupialia, Didelphimorphia) del Cenozoico tardío de la Región Pampeana. PhD thesis, Univ Nac La Plata

    Google Scholar 

  • Goin FJ (1997) New clues for understanding Neogene marsupial radiation. In: Kay RF, Madden RH, Cifelli RL, Flynn JF (eds) Vertebrate paleontology in the neotropics. The Miocene fauna of La Venta, Colombia. Smithsonian Institution Press, Washington

    Google Scholar 

  • Goin FJ, Abello MA (2013) Los Metatheria sudamericanos de comienzos del Neógeno (Mioceno temprano Edad Mamífero Colhuehuapense): Microbiotheria y Polydolopimorphia. Ameghiniana 50(I):51–78

    Google Scholar 

  • Goin FJ, Candela A (2004) New Paleogene Marsupials from the Amazon Basin of Eastern Perú. In: Campbell KE Jr (ed) The Paleogene Mammalian Fauna of Santa Rosa, Amazonian Perú. Nat Hist Mus Los Angeles County, Science Series, vol 40, pp 15–60

    Google Scholar 

  • Goin FJ, Velázquez C, Scaglia O (1992) Orientación de las crestas cortantes en el molar tribosfénico. Sus implicancias funcionales en didelfoideos (Marsupialia) fósiles y vivientes. Rev Mus La Plata, ns, Paleontol 9(57):183–198

    Google Scholar 

  • Goin FJ, Woodburne MO, Case JA, Vizcaíno SF, Reguero MA (1999) New discoveries of “opossum-like” marsupials from Antartica (Seymour Island, Middle Eocene). J Mammal Evol 6(4):335–365

    Article  Google Scholar 

  • Goin FJ, Zimicz AN, Reguero MA, Santillana S, Marenssi SA, Moly JJ (2007) A new Mammal from the Eocene of Antarctica, and the origins of the microbiotheria. Rev Asoc Geol Arg 62(4):597–603

    Google Scholar 

  • Goin FJ, Candela AM, Abello MA, Oliveira EO (2009) Earliest South American Paucituberculatans and their significance in the understanding of “pseudodiprotodont” marsupial radiations. Zool J Linn Soc 155:867–884

    Article  Google Scholar 

  • Goin FJ, Abello MA, Chornogubsky L (2010a) Middle Tertiary marsupials from central Patagonia (early Oligocene of Gran Barranca): understanding South America’s Grande Coupure. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The paleontology of Gran Barranca: evolution and environmental change through the Middle Cenozoic of Patagonia. Cambridge University Press, New York

    Google Scholar 

  • Goin FJ, Tejedor MF, Abello MA, Martin GM (2010b) Un nuevo microbiotérido (Mammalia, Marsupialia, Microbiotheria) de la Formación Pinturas (Mioceno temprano) de la provincia de Santa Cruz. Ameghiniana 47(1):117–122

    Article  Google Scholar 

  • Goin FJ, Zimicz AN, Forasiepi AM, Chornogubsky L, Abello MA (2013) The rise and fall of South American metatherians: contexts, adaptations, radiations, and extinctions. In: Rosenberger AL, Tejedor MF (eds) Origins and evolution of cenozoic South American Mammals. Vertebrate Paleobiology and Paleoanthropology Series. Springer, Berlin

    Google Scholar 

  • Gould SJ (1988) Trends as changes in variances: a new slant on progress and directionality in evolution. J Paleontol 62:319–329

    Article  Google Scholar 

  • Gordon CL (2003) A first look at estimating body size in dentally conservative marsupials. J Mammal Evol 10(1/2):1–21

    Article  Google Scholar 

  • Green B (1997) Field energetics and water flux in marsupials. In: Saunders NR, Hinds LA (eds) Marsupial biology: recent research, new perspectives. University of New South Wales Press, Sydney

    Google Scholar 

  • Haq BU, Handerbol J, Vail PR (1987) Chronology of fluctuating sea levels since the triassic. Science 235:1156–1167

    Article  Google Scholar 

  • Hiiemae KM (2000) Feeding in mammals. In: Schwenk K (ed) Feeding, form, function and evolution in tetrapod vertebrates. Academic Press, San Diego

    Google Scholar 

  • Hiiemae K, Crompton AW (1985) Mastication, food transport and swallowing. In: Hildebrand M, Bramble B, Liem K, Wake D (eds) Functional vertebrate morphology. Belknapp Press-Harvard University Press, Cambridge

    Google Scholar 

  • Hinojosa LF (2005) Cambios climáticos y vegetacionales inferidos a partir de paleofloras cenozoicas del sur de Sudamérica. Rev Chilena Hist Nat 32:95–115

    Google Scholar 

  • Hume ID (1999) Marsupial nutrition. Cambridge University Press, Cambridge

    Google Scholar 

  • Janis CM (1984) The use of fossil ungulate communities as indicators of climate and environment. In: Brenchley P (ed) Fossils and climate. Wiley, Chichester

    Google Scholar 

  • Janis CM (1988) An estimation of tooth volume and hypsodonty indices in ungulate mammals; and the correlation of these factors with dietary preferences. In: Proceedings of the VIIth international symposium on dental morphology. Mem Mus nat Hist Nat 53:367–387

    Google Scholar 

  • Kay RF, Hylander WL (1978) The dental structure of mammalian folivores with special reference to Primates and Phalangeroidea (Marsupialia). In: Montgomery G (ed) The ecology of arboreal folivores. Smithsonian Institution Press, Washington

    Google Scholar 

  • Körtner G, Geiser F (1998) Ecology of natural hibernation in the marsupial mountain pygmy-possum (Burramys parvus). Oecologia 113:170–178

    Article  Google Scholar 

  • Krause DW (1982) Jaw movement, dental function, and diet in the Paelocene multituberculate Ptilodus. Paleobiol 8:265–281

    Article  Google Scholar 

  • Lagabrielle Y, Godderis Y, Donnadieu Y, Mallabieille J, Suarez M (2009) The tectonic history of Drake Passage and its possible impacts on global climate. Earth Planet Sci Lett 279:197–211

    Article  Google Scholar 

  • Lee AK, Cockburn A (1985) Evolutionary ecology of marsupials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lucas PW (1994) Categorization to food items relevant to oral processing. In: Chivers DJ, Langer P (eds) The digestive system in mammals: food, form and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Lucas PW, Luke DA (1984) Chewing it over: basic principles of food breakdown. In: Chivers DJ, Wood BA, Bilsborough A (eds) Food acquisition and processing in primates. Plenum Press, New York

    Google Scholar 

  • Lucas PW, Peters CR (2000) Function of postcanine tooth crown shape in mammals. In: Teadford MF, Smith MM, Ferguson MWJ (eds) Development, function and evolution of teeth. Cambridge University Press, Cambridge

    Google Scholar 

  • Lucas PW, Prinz JF, Agrawal KR, Bruce IC (2002) Food physics and oral physiology. Food Qual Prefer 13:203–213

    Article  Google Scholar 

  • McKinney ML (1990a) Clasifying and analysing evolutionary trends. In: McNamara KJ (ed) Evolutionary trends. Belhaven Press, London

    Google Scholar 

  • McKinney ML (1990b) Trends in body-size evolution. In: McNamara KJ (ed) Evolutionary trends. Belhaven Press, London

    Google Scholar 

  • McNab BK (1971) On the ecological significance of Bergmann’s rule. Ecology 52:845–854

    Article  Google Scholar 

  • McNab BK (1986) Food habits, energetics and the reproduction of marsupials. J Zool London A 208:595–614

    Article  Google Scholar 

  • McNab BK (2005) Uniformity in the basal metabolic rate of marsupials: its causes and consequences. Rev Chilena Hist Nat 78:183–198

    Google Scholar 

  • Marshall LG (1977) A new species of Lycopsis (Borhyaenidae: Marsupialia) from the La Venta Fauna (Late Miocene) of Colombia, South America. J Paleontol 51(3):633–642

    Google Scholar 

  • Marshall LG (1978) Evolution of the Borhyaenidae, extinct South American predaceous marsupials. Univ California Publ Geol Sci 117:1–89

    Google Scholar 

  • Marshall LG (1980a) Review of the Hathlyacyninae, an extinct subfamily of South American “dog-like” marsupials. Fieldiana Geol NS 7:1–132

    Google Scholar 

  • Marshall LG (1980b) Systematics of the South American marsupial family Caenolestidae. Fieldiana Geol NS 5:1–145

    Google Scholar 

  • Marshall LG (1982a) Systematics of the South American marsupial family Microbiotheriidae. Fieldiana Geol NS 10:1–75

    Google Scholar 

  • Marshall LG (1982b) Systematics of the extinct South American marsupial family Polydolopidae. Fieldiana Geol NS 12:1–109

    Google Scholar 

  • Martin GM (2008) Sistemática, distribución y adaptaciones de los marsupiales patagónicos. PhD thesis, Univ Nac La Plata

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Belknap Press, Cambridge

    Book  Google Scholar 

  • Meng J, Mckenna MC (1998) Faunal turnovers of Paleogene mammals from the Mongolian Plateau. Nature 394:364–367

    Article  Google Scholar 

  • Palmqvist P, Martínez-Navarro B, Pérez-Claros JA, Torregrosa V, Figuerido B, Jiménez Arenas JM, Patrocinio Espigares M, Ros-Montoya S, De Renzi M (2011) The giant hyena Pachycrocuta brevirostris: modelling the bone-cracking behavior of an extinct carnivore. Quatern Int 12:1–19

    Google Scholar 

  • Pascual R (1980) Nuevos y singulares tipos ecológicos de marsupiales extinguidos de América del Sur (Paleoceno tardío o Eoceno temprano) del noroeste argentino. Actas 2 Congr Arg Paleontol Bioestrat 2:151–173

    Google Scholar 

  • Prothero DR (1994) The late Eocene-Oligocene extinctions. Ann Rev Earth Planet Sci 22:145–165

    Article  Google Scholar 

  • Randall D, Burggren W, French K (1997) Eckert. Fisiología animal. Mecanismos y adaptaciones. McGraw-Hill Interamericana, Madrid

    Google Scholar 

  • Romero EJ (1986) Paleogene Phytogeography and Climatology of South America. Ann Missouri Bot Gard 73(2):449–461

    Article  Google Scholar 

  • Sanson GD (1989) Morphological adaptations of theeth to diets and feeding in the Macropodoidea. In: Grigg G, Jarman P, Hume I (eds) Kangaroos, Wallabies and Rat-kangaroos. Surrey Beatty and Sons Pty. Limited, New South Wales

    Google Scholar 

  • Sanson GD (1996) Predicting the diet of fossil mammals. In: Vickers-Rich P, Monaghan JM, Baird RF, Rich TH (eds) Vertebrate Palaeontology of Australasia. Monash University of Publishing Committee, Melbourne

    Google Scholar 

  • Schmidt-Nielsen K (1975) Scaling in biology: the consequences of size. J Exp Zool 194:287–307

    Article  Google Scholar 

  • Shaw G (2006) Reproduction. In: Armati PJ, Dickman CRY, Hume ID (eds) Marsupials. Cambridge University Press, Cambridge

    Google Scholar 

  • Solounias N, Teaford M, Walker A (1988) Interpreting the diet of extinct ruminants: the case of a non-browsing giraffid. Paleobiology 14(3):287–300

    Article  Google Scholar 

  • Spears RI, Crompton RH (1995) The mechanical significance of the occlusal geometry of great ape molars in food breakdown. J Human Evol 31:517–535

    Article  Google Scholar 

  • Stanley MS (1973) An explanation for Cope’s rule. Evol 27(1):1–26

    Article  Google Scholar 

  • Stehlin HG (1910) Remarques sur les faunules de Mammifères des couches Éocènes et Oligocènes du Bassin de Paris. Bull Soc Géol France 9:488–520

    Google Scholar 

  • Strait SG, Vincent JFV (1998) Primate Faunivores: physical properties of prey items. Int J Primatol 19(5):867–878

    Article  Google Scholar 

  • Tyndale-Biscoe CH, Renfree MB (1987) Reproductive physiology of Marsupials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Van Valkenburgh B (1988) Diversity in past and present guilds of large predatory mammals. Paleobiology 14(2):155–173

    Article  Google Scholar 

  • Van Valkenburgh B (1991) Iterative evolution of hipercarnivory in canids (Mammalia, Carnivora): evolutionary interactions among sympatric predators. Paleobiology 17(4):340–362

    Article  Google Scholar 

  • Vrba ES (1985) Environment and evolution: alternative causes of the temporal distribution of evolutionary events. S Afr J Sci 81:229–236

    Google Scholar 

  • Walker A, Hoeck HN, Pérez L (1978) Microwear of mammalian teeth as indicator of diet. Science 201(4359):908–910

    Article  Google Scholar 

  • Wilf P, Johnson KR, Cuneo R, Smith ME, Singer BS, Gandolfo MA (2005) Eocene plant diversity at Laguna del Hunco and Río Pichileufú, Patagonia, Argentina. Am Nat 165(6):10–44

    Article  Google Scholar 

  • Wilf P, Little SA, Iglesias A, Zamaloa M, Gandolfo MA, Cúneo NR, Johnson KR (2009) Papuacedrus (Cupressaceae) in Eocene Patagonia: a new fossil link to Australasian rainforests. Am J Bot 96(11):2031–2047

    Article  Google Scholar 

  • Woodburne MO, Goin FJ, Bond M, Carlini AA, Gelfo JN, López GM, Iglesias A, Zimicz AN (2013) Paleogene Land Mammal Faunas of South America; a response to global climatic changes and indigenous floral diversity. J Mamm Evol. doi:10.1007/s10914-012-9222-1

    Google Scholar 

  • Wroe S, Myers T, Seebacher F, Kear B, Gillespie A, Crowther M, Salisbury S (2003) An alternative method for predicting body mass: the case of the Pleistocene marsupial lion. Palaeobiology 29(3):403–411

    Article  Google Scholar 

  • Wroe S, Argot C, Dickman C (2004) On the rarity of big fierce carnivores and primacy of isolation and area: tracking large mammalian carnivore diversity on two isolated continents. Proc R Soc London (B) 271:1203–1211

    Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  Google Scholar 

  • Zimicz AN (2004) Paleoecología y extinción de los marsupiales con dentición plagiaulacoide de América del Sur: un estudio basado en los cambios en el tamaño corporal. Lic thesis, Univ Nac Patagonia S J Bosco

    Google Scholar 

  • Zimicz AN (2012) Ecomorfología de los marsupiales paleógenos de América del Sur. PhD thesis, Univ Nac La Plata

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Goin .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Goin, F.J., Woodburne, M.O., Zimicz, A.N., Martin, G.M., Chornogubsky, L. (2016). Paleobiology and Adaptations of Paleogene Metatherians. In: A Brief History of South American Metatherians. Springer Earth System Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7420-8_6

Download citation

Publish with us

Policies and ethics