Advertisement

Non-coding RNAs in Uterine Development, Function and Disease

  • Warren B. NothnickEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 886)

Abstract

The major function of the uterus is to accept and provide a suitable environment for an embryo, ultimately leading the birth of offspring and successful propagation of the species. For this occur, there must be precise coordination of hormonal signalling within both the endometrial and myometrial components of this organ. Non-coding RNAs, specifically, microRNAs (miRNAs) have been shown to be essential for normal uterine development and function. Within this organ, miRNAs are proposed to fine-tune the actions of the female steroid hormones estradiol and progesterone. Not surprising, mis-expression of miRNAs has been documented in diseases of the endometrium and myometrium such as endometriosis and leiomyomas, respectively. In this chapter, I will review the current understanding on the role, regulation and function of non-coding RNAs focusing on miRNAs in both the normal physiology of the endometrium and myometrium as well as in pathologies of these tissues, namely endometriosis and leiomyomas.

Keywords

Uterus Endometrium Myometrium Endometriosis Leiomyoma miRNA 

Notes

Acknowledgements

Gratitude is expressed to Mr Stanton Fernald for graphic design. A portion of the original work performed by the author and cited in this chapter was funded by grants HD069043 and HD056387 from the Eunice Kennedy Shriver Institute of Child Health and Development (NICHD/NIH) to WBN.

References

  1. Abe W, Nasu K, Nakada C, Kawano Y, Moriyama M, Narahara H (2013) miR-196b targets c-myc and Bcl-2 expression, inhibits proliferation and induces apoptosis in endometriotic stromal cells. Hum Reprod 28:750–761CrossRefPubMedGoogle Scholar
  2. Adammek M, Greve B, Kässens N, Schneider C, Brüggemann K, Schüring AN, Starzinski-Powitz A, Kiesel L, Götte M (2013) MicroRNA miR-145 inhibits proliferation, invasiveness, and stem cell phenotype of an in vitro endometriosis model by targeting multiple cytoskeletal elements and pluripotency factors. Fertil Steril 99:1346–1355CrossRefPubMedGoogle Scholar
  3. Altmäe S, Martinez-Conejero JA, Esteban FJ, Ruiz-Alonso M, Stavreus-Evers A, Horcajadas JA, Salumets A (2013) MicroRNAs miR30b, miR-30d and miR-494 regulate human endometrial receptivity. Reprod Sci 20:308–317CrossRefPubMedPubMedCentralGoogle Scholar
  4. Banno K, Yanokura M, Kisu I, Yamagami W, Susumu N, Aoki D (2013) MicroRNAs in endometrial cancer. Int J Clin Oncol 18:186–192CrossRefPubMedGoogle Scholar
  5. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefPubMedGoogle Scholar
  6. Burney RO, Hamilton AE, Aghajanova L, Vo KC, Nezhat CN, Lessey BA, Giudice LC (2009) MicroRNA expression profiling of eutopic secretory endometrium in women with versus without endometriosis. Mol Hum Reprod 15:625–631CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chakrabarty A, Tranguch S, Daikoku T, Jensen K, Furneaux H, Dey SK (2007) MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proc Natl Acad Sci U S A 104:15144–15149CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cheung HH, Davis AJ, Lee TL, Pang AL, Nagrani S, Rennert OM, Chan WY (2011) Methylation of an intronic region regulates miR-199a in testicular tumor malignancy. Oncogene 30:3404–3415CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chuang TD, Panda H, Luo X, Chegini N (2012) miR-200c is aberrantly expressed in leiomyomas in an ethnic-dependent manner and targets ZEBs, VEGFA, TIMP2, and FBLN5. Endocrinol Relat Cancer 19:541–556CrossRefGoogle Scholar
  10. Chung TK, Lau TS, Cheung TH, Yim SF, Lo KW, Siu NS, Chan LK, Yu MY, Kwong J, Doran G, Barroilhet LM, Ng AS, Wong RR, Wang VW, Mok SC, Smith DI, Berkowitz RS, Wong YF (2012) Dysregulation of microRNAs-204 mediates migration and invasion of endometrial cancer by regulating FOXC1. Int J Cancer 130:1036–1045CrossRefPubMedGoogle Scholar
  11. Dai L, Gu L, Di W (2012) MiR-199a attenuates endometrial stromal cell invasiveness through suppression of the IKKβ/NF-κB pathway and reduced interleukin-8 expression. Mol Hum Reprod 18:136–145CrossRefPubMedGoogle Scholar
  12. Fabbri M (2013) MicroRNAs and cancer: towards a personalized medicine. Curr Mol Med 13:751–756CrossRefPubMedGoogle Scholar
  13. Feng R, Chen X, Yu Y, Su L, Yu B, Li J, Cai Q, Yan M, Liu B, Zhu Z (2010) miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett 298:50–63CrossRefPubMedGoogle Scholar
  14. Filigheddu N, Gregnanin I, Porporato PE, Surico D, Perego B, Galli L, Patrignani C, Graziani A, Surico N (2010) Differential expression of microRNAs between eutopic and ectopic endometrium in ovarian endometriosis. J Biomed Biotechnol 2010:369549CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fitzgerald JB, Chennathukuzhi V, Koohestani F, Nowak RA, Christenson LK (2012) Role of microRNA-21 and programmed cell death 4 in the pathogenesis of human uterine leiomyomas. Fertil Steril 98:726–734CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gilabert-Estelles J, Braza-Boils A, Ramon LA, Zorio E, Medina P, Espana F, Estelles A (2012) Role of microRNAs in gynecological pathology. Curr Med Chem 19:2406–2413CrossRefPubMedGoogle Scholar
  17. Gonzalez G, Behringer RR (2009) Dicer is required for female reproductive tract development and fertility in the mouse. Mol Reprod Dev 76:678–688CrossRefPubMedPubMedCentralGoogle Scholar
  18. Goto T, Takano M, Albergaria A, Briese J, Pomeranz KM, Cloke B, Fusi L, Feroze-Zaidi F, Maywald N, Sajin M, Dina RE, Ishihara O, Takeda S, Lam EW, Bamberger AM, Ghaem-Maghami S, Brosens JJ (2008) Mechanism and functional consequences of loss of FOXO1 expression in endometrioid endometrial cancer cells. Oncogene 27:9–19CrossRefPubMedGoogle Scholar
  19. Götte M, Mohr C, Koo CY, Stock C, Vaske AK, Viola M, Ibrahim SA, Peddibhotla S, Teng YH, Low JY, Ebnet K, Kiesel L, Yip GW (2010) miR-145-dependent targeting of junctional adhesion molecule A and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness. Oncogene 29:6569–6580CrossRefPubMedGoogle Scholar
  20. Guo C, Sah JF, Beard L, Wilson JK, Markowitz SD, Guda K (2008) The non-coding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Gene Chromosome Cancer 47:939–946CrossRefGoogle Scholar
  21. Hawkins SM, Creighton CJ, Han DY, Zariff A, Anderson ML, Gunaratne PH, Matzuk MM (2011) Functional microRNA involved in endometriosis. Mol Endocrinol 25:821–832CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hong X, Luense LJ, McGinnis LK, Nothnick WB, Christenson LK (2008) Dicer1 is essential for female fertility and normal development of the female reproductive system. Endocrinology 149:6207–6212CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hu SJ, Ren G, Liu JL, Zhao ZA, Yu YS, Su RW, Ma XH, Ni H, Lei W, Yang ZM (2008) MicroRNA expression and regulation in mouse uterus during embryo implantation. J Biol Chem 283:23473–23484CrossRefPubMedGoogle Scholar
  24. Jiang F, Liu T, He Y, Yan Q, Chen X, Wang H, Wan X (2011) MiR-125b promotes proliferation and migration of type II endometrial carcinoma cells through targeting TP53INP1 tumor suppressor in vitro and in vivo. BMC Cancer 11:425CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW (2010) Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod 82:791–801CrossRefPubMedGoogle Scholar
  26. Lee JW, Park YA, Choi JJ, Lee YY, Kim CJ, Choi C, Kim TJ, Lee NW, Kim BG, Bae DS (2011) The expression of the miRNA-200 family in endometrial endometrioid carcinoma. Gynecol Oncol 120:56–62CrossRefPubMedGoogle Scholar
  27. Lessey BA (2010) Fine tuning of endometrial function by estrogen and progesterone through microRNAs. Biol Reprod 82:653–655CrossRefPubMedGoogle Scholar
  28. Liu S, Gao S, Wang XY, Wang DB (2012) Expression of miR-126 and Crk in endometriosis: miR-126 may affect the progression of endometriosis by regulating Crk expression. Arch Gynecol Obstet 285:1065–1072CrossRefPubMedGoogle Scholar
  29. Marsh EE, Lin Z, Yin P, Milad M, Chakravanti D, Bulun SE (2008) Differential expression of microRNAs species in human uterine leiomyoma versus normal myometrium. Fertil Steril 89:1771–1776CrossRefPubMedGoogle Scholar
  30. Myatt SS, Lam EW (2007) The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 7:847–859CrossRefPubMedGoogle Scholar
  31. Myatt SS, Wang J, Monteiro LJ, Chrisitan M, Ho KK, Fusi L, Dinea RE, Brosens JJ, Ghaem-Maghami S, Lam EW (2010) Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res 70:367–377CrossRefPubMedGoogle Scholar
  32. Nagaraja AK, Andreu-Vieyra C, Franco HL, Ma L, Chen RH, Han DY, Zhu HF, Agno JE, Gunaratne PH, DeMayo FJ, Matzuk MM (2008) Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol 22:2336–2352CrossRefPubMedPubMedCentralGoogle Scholar
  33. Nothnick WB (2008) Regulation of uterine matrix metalloproteinase-9 and the role of microRNAs. Semin Reprod Med 26:494–499CrossRefPubMedPubMedCentralGoogle Scholar
  34. Nothnick WB, Healy C (2010) Estrogen induces distinct patterns of microRNA expression within the mouse uterus. Reprod Sci 17:987–994CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ohlsson Teague EM, Van der Hoek KH, Van der Hoek MB, Perry N, Wagaarachchi P, Robertson SA, Print CG, Hull LM (2009) MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol 23:265–275CrossRefPubMedPubMedCentralGoogle Scholar
  36. Pan Q, Luo X, Toloubeydokhti T, Chegini N (2007) The expression profile of micro-RNA in endometrium and endometriosis and the influence of ovarian steroids on their expression. Mol Hum Reprod 13:797–806CrossRefPubMedGoogle Scholar
  37. Pan Q, Luo X, Chegini N (2008) Differential expression of microRNAs in myometrium and leiomyomas and regulation by ovarian steroids. J Cell Mol Med 12:227–240CrossRefPubMedGoogle Scholar
  38. Park YA, Lee JW, Choi JJ, Jeon HK, Cho Y, Choi C, Kim TJ, Lee NW, Kim BG, Bae DS (2012) The interactions between MicroRNA-200c and BRD7 in endometrial carcinoma. Gynecol Oncol 124:125–133CrossRefPubMedGoogle Scholar
  39. Petracco R, Grechukhina O, Popkhadze S, Massasa E, Zhou Y, Taylor HS (2011) MicroRNA 135 regulates HOXA10 expression in endometriosis. J Clin Endocrinol Metab 96:E1925–E1933CrossRefPubMedPubMedCentralGoogle Scholar
  40. Qi S, Song Y, Peng Y, Wang H, Long H, Yu X, Li Z, Fang L, Wu A, Luo W, Zhen Y, Zhou Y, Chen Y, Mai C, Liu Z, Fang W (2012) ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion and apoptosis in glioma. PLoS ONE 7:e38842CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ramón LA, Braza-Boïls A, Gilabert-Estellés J, Gilabert J, España F, Chirivella M, Estellés A (2011) microRNA expression in endometriosis and their relationship to angiogenic factors. Hum Reprod 26:1082–1090CrossRefPubMedGoogle Scholar
  42. Renthal NE, Chen CC, Williams KC, Gerard RD, Prange-Kiel J, Mendelson CR (2010) miR-200 family and targets ZEB1 and ZEB2, modulate uterine quiescence and contractility during pregnancy and labor. Proc Natl Acad Sci U S A 107:20828–20833CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sha A-G, Liu J-L, Jiang X-M, Ren J-Z, Ma C-H, Lei W, Su R-W, Yang Z-M (2011) Genome-wide identification of micro-ribonucleic acids associated with human endometrial receptivity in natural and stimulated cycles by deep sequencing. Fertil Steril 96:150–155CrossRefPubMedGoogle Scholar
  44. Shen Q, Cicinnati VR, Zhang X, Iacob S, Weber F, Sotiropoulos GC, Radtke A, Lu M, Paul A, Gerken G, Beckebaum S (2010) Role of microRNA-199a-5p and discoidin domain receptor 1 in human hepatocellular carcinoma invasion. Mol Cancer 9:227CrossRefPubMedPubMedCentralGoogle Scholar
  45. Shen L, Yang S, Huang W, Xu W, Wang Q, Song Y, Liu Y (2013) MicroRNA23a and microRNA23b deregulation derepresses SF-1 and upregulates estrogen signaling in ovarian endometriosis. J Clin Endocrinol Metab 98:1575–1582CrossRefPubMedGoogle Scholar
  46. Snowdon J, Zhang X, Childs T, Tron VA, Feilotter H (2011) The microRNAs-200 family is upregulated in endometrial carcinoma. PLoS ONE 6:e22828CrossRefPubMedPubMedCentralGoogle Scholar
  47. Stewart CL (1994) The role of leukemia inhibitory factor (LIF) and other cytokines in regulating implantation in mammals. Ann N Y Acad Sci 734:157–165CrossRefPubMedGoogle Scholar
  48. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs: regulators of disease. J Pathol 220:126–139CrossRefPubMedGoogle Scholar
  49. Taylor HS, Arici A, Olive D, Igarashi P (1998) HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest 101:1379–1384CrossRefPubMedPubMedCentralGoogle Scholar
  50. Taylor HS, Bagot C, Kardana A, Olive D, Arici A (1999) HOX gene expression is altered in the endometrium of women with endometriosis. Hum Reprod 14:1328–1331CrossRefPubMedGoogle Scholar
  51. Toloubeydokhti T, Pan Q, Luo X, Bukulmez O, Chegini N (2008) The expression and ovarian steroid regulation of endometrial micro-RNAs. Reprod Sci 15:993–1001CrossRefPubMedPubMedCentralGoogle Scholar
  52. Wang T, Zhang X, Obijuru L, Laser J, Aris V, Lee P, Mittal K, Soteropoulos P, Wei J-J (2007) A micro-RNA signature associated with race, tumor size and target gene activity in human uterine leiomyomas. Gene Chromosome Cancer 46:336–347CrossRefGoogle Scholar
  53. Williams KC, Renthal NE, Condon JC, Gerard RD, Mendelson CR (2012a) MicroRNA-200a serves a key role in the decline of progesterone receptor function leading to term and preterm labor. Proc Natl Acad Sci U S A 109:7529–7534CrossRefPubMedPubMedCentralGoogle Scholar
  54. Williams KC, Renthal NE, Gerard RD, Mendelson CR (2012b) The microRNA (miR)-199a/214 cluster mediates opposing effects of progesterone and estrogen on uterine contractility during pregnancy and labor. Mol Endocrinol 26:1857–1867CrossRefPubMedPubMedCentralGoogle Scholar
  55. Xia HF, Jin XH, Song PP, Cui Y, Liu CM, Ma X (2010a) Temporal and spatial regulation of let-7a in the uterus during embryo implantation in the rat. J Reprod Dev 56:73–78CrossRefPubMedGoogle Scholar
  56. Xia HF, Jin XH, Song PP, Cui Y, Liu CM, Ma X (2010b) Temporal and spatial regulation of miR-320 in the uterus during embryo implantation in the rat. Int J Mol Sci 11:719–730CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yao Q, Xu H, Zhang QQ, Zhou H, Qu LH (2009) MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells. Biochem Biophys Res Commun 388:539–542CrossRefPubMedGoogle Scholar
  58. Yoon S, Choi YC, Lee S, Jeong Y, Yoon J, Baek K (2010) Induction of growth arrest by miR-542-3p that targets survivin. FEBS Lett 584:4048–4052CrossRefPubMedGoogle Scholar
  59. Zavadil J, Ye H, Liu Z, Wu J, Lee P, Hernando E, Soteropoulos P, Toruner GA, Wei JJ (2010) Profiling and functional analyses of microRNAs and their target gene products in human uterine leiomyomas. PLoS ONE 5:e12362CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zhang R, He Y, Zhang X, Xing B, Sheng Y, Lu H, Wei Z (2012) Estrogen receptor-regulated microRNAs contribute to the BCL2/BAX imbalance in endometrial adenocarcinoma and precancerous lesions. Cancer Lett 314:155–165CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityUSA

Personalised recommendations