Advertisement

Non-coding RNAs in Mammary Gland Development and Disease

  • Gurveen K. Sandhu
  • Michael J. G. Milevskiy
  • Wesley Wilson
  • Annette M. Shewan
  • Melissa A. BrownEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 886)

Abstract

Non-coding RNAs (ncRNAs) are untranslated RNA molecules that function to regulate the expression of numerous genes and associated biochemical pathways and cellular functions. NcRNAs include small interfering RNAs (siRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs). They participate in the regulation of all developmental processes and are frequently aberrantly expressed or functionally defective in disease. This Chapter will focus on the role of ncRNAs, in particular miRNAs and lncRNAs, in mammary gland development and disease.

Keywords

Breast cancer Epithelial-stromal interactions Hormonal regulation Epithelial cell differentiation EMT Signalling pathways 

Notes

Acknowledgments

The authors are most grateful to the support provided by the National Breast Cancer Foundation (Australia), the Cancer Council of Queensland (Australia) and The University of Queensland.

References

  1. Adams BD, Furneaux H, White BA (2007) The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol 21:1132–1147CrossRefPubMedGoogle Scholar
  2. Adams BD, Cowee DM, White BA (2009) The role of miR-206 in the epidermal growth factor (EGF) induced repression of estrogen receptor-alpha (ERalpha) signaling and a luminal phenotype in MCF-7 breast cancer cells. Mol Endocrinol 23:1215–1230PubMedCentralCrossRefPubMedGoogle Scholar
  3. Adriaenssens E, Dumont L, Lottin S, Bolle D, Lepretre A, Delobelle A, Bouali F, Dugimont T, Coll J, Curgy JJ (1998) H19 overexpression in breast adenocarcinoma stromal cells is associated with tumor values and steroid receptor status but independent of p53 and Ki-67 expression. Am J Pathol 153:1597–1607PubMedCentralCrossRefPubMedGoogle Scholar
  4. Adriaenssens E, Lottin S, Dugimont T, Fauquette W, Coll J, Dupouy JP, Boilly B, Curgy JJ (1999) Steroid hormones modulate H19 gene expression in both mammary gland and uterus. Oncogene 18:4460–4473CrossRefPubMedGoogle Scholar
  5. Altieri DC (2010) Survivin and IAP proteins in cell-death mechanisms. Biochem J 430:199–205PubMedCentralCrossRefPubMedGoogle Scholar
  6. Amaral PP, Neyt C, Wilkins SJ, Askarian-Amiri ME, Sunkin SM, Perkins AC, Mattick JS (2009) Complex architecture and regulated expression of the Sox2ot locus during vertebrate development. RNA 15:2013–2027PubMedCentralCrossRefPubMedGoogle Scholar
  7. Andrechek ER, Mori S, Rempel RE, Chang JT, Nevins JR (2008) Patterns of cell signaling pathway activation that characterize mammary development. Development 135:2403–2413PubMedCentralCrossRefPubMedGoogle Scholar
  8. Askarian-Amiri ME, Crawford J, French JD, Smart CE, Smith MA, Clark MB, Ru K, Mercer TR, Thompson ER, Lakhani SR, Vargas AC, Campbell IG, Brown MA, Dinger ME, Mattick JS (2011) SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA 17:878–891PubMedCentralCrossRefPubMedGoogle Scholar
  9. Augello C, Caruso L, Maggioni M, Donadon M, Montorsi M, Santambrogio R, Torzilli G, Vaira V, Pellegrini C, Roncalli M, Coggi G, Bosari S (2009) Inhibitors of apoptosis proteins (IAPs) expression and their prognostic significance in hepatocellular carcinoma. BMC Cancer 9:125PubMedCentralCrossRefPubMedGoogle Scholar
  10. Augoff K, McCue B, Plow EF, Sossey-Alaoui K (2012) miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol Cancer 11:5PubMedCentralCrossRefPubMedGoogle Scholar
  11. Avery-Kiejda KA, Braye SG, Mathe A, Forbes JF, Scott RJ (2014) Decreased expression of key tumour suppressor microRNAs is associated with lymph node metastases in triple negative breast cancer. BMC Cancer 14:51PubMedCentralCrossRefPubMedGoogle Scholar
  12. Avril-Sassen S, Goldstein LD, Stingl J, Blenkiron C, Le Quesne J, Spiteri I, Karagavriilidou K, Watson CJ, Tavare S, Miska EA, Caldas C (2009) Characterisation of microRNA expression in post-natal mouse mammary gland development. BMC Genomics 10:548PubMedCentralCrossRefPubMedGoogle Scholar
  13. Bailey ST, Westerling T, Brown M (2015) Loss of estrogen-regulated microRNA expression increases HER2 signaling and is prognostic of poor outcome in luminal breast cancer. Cancer Res 75:436–445CrossRefPubMedGoogle Scholar
  14. Bakirtzi K, Hatziapostolou M, Karagiannides I, Polytarchou C, Jaeger S, Iliopoulos D, Pothoulakis C (2011) Neurotensin signaling activates microRNAs-21 and -155 and Akt, promotes tumor growth in mice, and is increased in human colon tumors. Gastroenterology 141:1749–1761 e1741PubMedCentralCrossRefPubMedGoogle Scholar
  15. Bar J, Feniger-Barish R, Lukashchuk N, Shaham H, Moskovits N, Goldfinger N, Simansky D, Perlman M, Papa M, Yosepovich A, Rechavi G, Rotter V, Oren M (2009) Cancer cells suppress p53 in adjacent fibroblasts. Oncogene 28:933–936CrossRefPubMedGoogle Scholar
  16. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837CrossRefPubMedGoogle Scholar
  17. Barski A, Jothi R, Cuddapah S, Cui K, Roh TY, Schones DE, Zhao K (2009) Chromatin poises miRNA- and protein-coding genes for expression. Genome Res 19:1742–1751PubMedCentralCrossRefPubMedGoogle Scholar
  18. Bernascone I, Martin-Belmonte F (2013) Crossroads of Wnt and Hippo in epithelial tissues. Trends Cell Biol 23(8):380–389Google Scholar
  19. Berteaux N, Lottin S, Monte D, Pinte S, Quatannens B, Coll J, Hondermarck H, Curgy JJ, Dugimont T, Adriaenssens E (2005) H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J Biol Chem 280:29625–29636CrossRefPubMedGoogle Scholar
  20. Bhan A, Hussain I, Ansari KI, Kasiri S, Bashyal A, Mandal SS (2013) Antisense transcript long noncoding RNA (lncRNA) HOTAIR is transcriptionally induced by estradiol. J Mol Biol 425:3707–3722PubMedCentralCrossRefPubMedGoogle Scholar
  21. Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J, Benz CC (2008) Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27:5643–5647PubMedCentralCrossRefPubMedGoogle Scholar
  22. Bian Y, Lei Y, Wang C, Wang J, Wang L, Liu L, Liu L, Gao X, Li Q (2015) Epigenetic regulation of miR-29s affects the lactation activity of dairy cow mammary epithelial cells. J Cell Physiol 230:2152–2163CrossRefPubMedGoogle Scholar
  23. Biddle A, Mackenzie IC (2012) Cancer stem cells and EMT in carcinoma. Cancer Metastasis RevGoogle Scholar
  24. Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, Barbosa-Morais NL, Teschendorff AE, Green AR, Ellis IO, Tavare S, Caldas C, Miska EA (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8:R214PubMedCentralCrossRefPubMedGoogle Scholar
  25. Bockhorn J, Dalton R, Nwachukwu C, Huang S, Prat A, Yee K, Chang YF, Huo D, Wen Y, Swanson KE, Qiu T, Lu J, Park SY, Dolan ME, Perou CM, Olopade OI, Clarke MF, Greene GL, Liu H (2013) MicroRNA-30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 and IL-11. Nat Commun 4:1393PubMedCentralCrossRefPubMedGoogle Scholar
  26. Bockmeyer CL, Christgen M, Muller M, Fischer S, Ahrens P, Langer F, Kreipe H, Lehmann U (2011) MicroRNA profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes. Breast Cancer Res Treat 130:735–745CrossRefPubMedGoogle Scholar
  27. Bosch A, Eroles P, Zaragoza R, Vina JR, Lluch A (2010) Triple-negative breast cancer: molecular features, pathogenesis, treatment and current lines of research. Cancer Treat Rev 36:206–215CrossRefPubMedGoogle Scholar
  28. Bouchie A (2013) First microRNA mimic enters clinic. Nat Biotechnol 31:577CrossRefPubMedGoogle Scholar
  29. Boussadia O, Kutsch S, Hierholzer A, Delmas V, Kemler R (2002) E-cadherin is a survival factor for the lactating mouse mammary gland. Mech Dev 115:53–62CrossRefPubMedGoogle Scholar
  30. Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G, Firat E, Wellner U, Dimmler A, Faller G, Schubert J, Brabletz T (2011) The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J 30:770–782PubMedCentralCrossRefPubMedGoogle Scholar
  31. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68:7846–7854CrossRefPubMedGoogle Scholar
  32. Bronisz A, Godlewski J, Wallace JA, Merchant AS, Nowicki MO, Mathsyaraja H, Srinivasan R, Trimboli AJ, Martin CK, Li F, Yu L, Fernandez SA, Pecot T, Rosol TJ, Cory S, Hallett M, Park M, Piper MG, Marsh CB, Yee LD, Jimenez RE, Nuovo G, Lawler SE, Chiocca EA, Leone G, Ostrowski MC (2012) Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol 14:159–167CrossRefGoogle Scholar
  33. Bryant DM, Mostov KE (2008) From cells to organs: building polarized tissue. Nat Rev Mol Cell Biol 9:887–901PubMedCentralCrossRefPubMedGoogle Scholar
  34. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589PubMedCentralCrossRefPubMedGoogle Scholar
  35. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927PubMedCentralCrossRefPubMedGoogle Scholar
  36. Cai J, Guan H, Fang L, Yang Y, Zhu X, Yuan J, Wu J, Li M (2013) MicroRNA-374a activates Wnt/beta-catenin signaling to promote breast cancer metastasis. J Clin Invest 123:566–579PubMedCentralCrossRefPubMedGoogle Scholar
  37. Capuco AV, Akers RM (2009) The origin and evolution of lactation. J Biol 8:37PubMedCentralCrossRefPubMedGoogle Scholar
  38. Castilla MA, Lopez-Garcia MA, Atienza MR, Rosa-Rosa JM, Diaz-Martin J, Pecero ML, Vieites B, Romero-Perez L, Benitez J, Calcabrini A, Palacios J (2014) VGLL1 expression is associated with a triple-negative basal-like phenotype in breast cancer. Endocr Relat Cancer 21:587–599CrossRefPubMedGoogle Scholar
  39. Castro NP, Osorio CA, Torres C, Bastos EP, Mourao-Neto M, Soares FA, Brentani HP, Carraro DM (2008) Evidence that molecular changes in cells occur before morphological alterations during the progression of breast ductal carcinoma. Breast Cancer Res 10:R87PubMedCentralCrossRefPubMedGoogle Scholar
  40. Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, Yu WH, Rehman SK, Hsu JL, Lee HH, Liu M, Chen CT, Yu D, Hung MC (2011a) p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13:317–323PubMedCentralCrossRefPubMedGoogle Scholar
  41. Chang S, Wang RH, Akagi K, Kim KA, Martin BK, Cavallone L, Kathleen Cuningham Foundation Consortium for Research into Familial, Breast C, Haines DC, Basik M, Mai P, Poggi E, Isaacs C, Looi LM, Mun KS, Greene MH, Byers SW, Teo SH, Deng CX, Sharan SK (2011b) Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nat Med 17:1275–1282PubMedCentralCrossRefPubMedGoogle Scholar
  42. Chatzistamou I, Dioufa N, Trimis G, Sklavounou A, Kittas C, Kiaris H, Papavassiliou AG (2010) p21/waf1 and smooth-muscle actin alpha expression in stromal fibroblasts of oral cancers. Anal Cell Pathol 33:19–26CrossRefGoogle Scholar
  43. Chen D, Sun Y, Wei Y, Zhang P, Rezaeian AH, Teruya-Feldstein J, Gupta S, Liang H, Lin HK, Hung MC, Ma L (2012) LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med 18:1511–1517PubMedCentralCrossRefPubMedGoogle Scholar
  44. Chen Y, Sun Y, Chen L, Xu X, Zhang X, Wang B, Min L, Liu W (2013) miRNA-200c increases the sensitivity of breast cancer cells to doxorubicin through the suppression of E-cadherin-mediated PTEN/Akt signaling. Mol Med Rep 7:1579–1584PubMedGoogle Scholar
  45. Cheng CW, Wang HW, Chang CW, Chu HW, Chen CY, Yu JC, Chao JI, Liu HF, Ding SL, Shen CY (2012) MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Res Treat 134:1081–1093CrossRefPubMedGoogle Scholar
  46. Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, Liu C, Svoronos A, Braddock DT, Glazer PM, Engelman DM, Saltzman WM, Slack FJ (2015) MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518:107–110CrossRefPubMedGoogle Scholar
  47. Chiyomaru T, Yamamura S, Fukuhara S, Yoshino H, Kinoshita T, Majid S, Saini S, Chang I, Tanaka Y, Enokida H, Seki N, Nakagawa M, Dahiya R (2013) Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR. PLoS One 8:e70372PubMedCentralCrossRefPubMedGoogle Scholar
  48. Chou J, Lin JH, Brenot A, Kim JW, Provot S, Werb Z (2013) GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol 15:201–213PubMedCentralCrossRefPubMedGoogle Scholar
  49. Cimino-Mathews A, Subhawong AP, Illei PB, Sharma R, Halushka MK, Vang R, Fetting JH, Park BH, Argani P (2013) GATA3 expression in breast carcinoma: utility in triple-negative, sarcomatoid, and metastatic carcinomas. Hum Pathol 44:1341–1349PubMedCentralCrossRefPubMedGoogle Scholar
  50. Clarkson RW, Wayland MT, Lee J, Freeman T, Watson CJ (2004) Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res 6:R92–R109CrossRefPubMedGoogle Scholar
  51. Cloonan N, Brown MK, Steptoe AL, Wani S, Chan WL, Forrest AR, Kolle G, Gabrielli B, Grimmond SM (2008) The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition. Genome Biol 9:R127PubMedCentralCrossRefPubMedGoogle Scholar
  52. Cochrane DR, Jacobsen BM, Connaghan KD, Howe EN, Bain DL, Richer JK (2012) Progestin regulated miRNAs that mediate progesterone receptor action in breast cancer. Mol Cell Endocrinol 355:15–24PubMedCentralCrossRefPubMedGoogle Scholar
  53. Cooper C, Guo J, Yan Y, Chooniedass-Kothari S, Hube F, Hamedani MK, Murphy LC, Myal Y, Leygue E (2009) Increasing the relative expression of endogenous non-coding Steroid Receptor RNA Activator (SRA) in human breast cancer cells using modified oligonucleotides. Nucleic Acids Res 37:4518–4531PubMedCentralCrossRefPubMedGoogle Scholar
  54. Cressman VL, Backlund DC, Avrutskaya AV, Leadon SA, Godfrey V, Koller BH (1999) Growth retardation, DNA repair defects, and lack of spermatogenesis in BRCA1-deficient mice. Mol Cell Biol 19:7061–7075PubMedCentralCrossRefPubMedGoogle Scholar
  55. Csibi A, Blenis J (2012) Hippo-YAP and mTOR pathways collaborate to regulate organ size. Nat Cell Biol 14:1244–1245CrossRefPubMedGoogle Scholar
  56. Cui W, Li Q, Feng L, Ding W (2011) MiR-126-3p regulates progesterone receptors and involves development and lactation of mouse mammary gland. Mol Cell Biochem 355:17–25CrossRefPubMedGoogle Scholar
  57. Daheron L, Opitz SL, Zaehres H, Lensch MW, Andrews PW, Itskovitz-Eldor J, Daley GQ (2004) LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 22:770–778CrossRefPubMedGoogle Scholar
  58. Davalos V, Moutinho C, Villanueva A, Boque R, Silva P, Carneiro F, Esteller M (2012) Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene 31:2062–2074CrossRefPubMedGoogle Scholar
  59. de Antonellis P, Liguori L, Falanga A, Carotenuto M, Ferrucci V, Andolfo I, Marinaro F, Scognamiglio I, Virgilio A, De Rosa G, Galeone A, Galdiero S, Zollo M (2013) MicroRNA 199b-5p delivery through stable nucleic acid lipid particles (SNALPs) in tumorigenic cell lines. Naunyn Schmiedebergs Arch Pharmacol 386:287–302CrossRefPubMedGoogle Scholar
  60. Ding X, Park SI, McCauley LK, Wang CY (2013) Signaling between transforming growth factor beta (TGF-beta) and transcription factor SNAI2 represses expression of microRNA miR-203 to promote epithelial-mesenchymal transition and tumor metastasis. J Biol Chem 288:10241–10253PubMedCentralCrossRefPubMedGoogle Scholar
  61. Dow LE, Kauffman JS, Caddy J, Zarbalis K, Peterson AS, Jane SM, Russell SM, Humbert PO (2007) The tumour-suppressor Scribble dictates cell polarity during directed epithelial migration: regulation of Rho GTPase recruitment to the leading edge. Oncogene 26:2272–2282CrossRefPubMedGoogle Scholar
  62. Dvinge H, Git A, Graf S, Salmon-Divon M, Curtis C, Sottoriva A, Zhao Y, Hirst M, Armisen J, Miska EA, Chin SF, Provenzano E, Turashvili G, Green A, Ellis I, Aparicio S, Caldas C (2013) The shaping and functional consequences of the microRNA landscape in breast cancer. Nature 497:378–382CrossRefPubMedGoogle Scholar
  63. Eades G, Yao Y, Yang M, Zhang Y, Chumsri S, Zhou Q (2011) miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J Biol Chem 286:25992–26002PubMedCentralCrossRefPubMedGoogle Scholar
  64. Elliman SJ, Howley BV, Mehta DS, Fearnhead HO, Kemp DM, Barkley LR (2014) Selective repression of the oncogene cyclin D1 by the tumor suppressor miR-206 in cancers. Oncogenesis 3:e113PubMedCentralCrossRefPubMedGoogle Scholar
  65. Elsarraj HS, Stecklein SR, Valdez K, Behbod F (2012) Emerging functions of microRNA-146a/b in development and breast cancer: MicroRNA-146a/b in development and breast cancer. J Mammary Gland Biol Neoplasia 17:79–87CrossRefPubMedGoogle Scholar
  66. Farmaki E, Chatzistamou I, Bourlis P, Santoukou E, Trimis G, Papavassiliou AG, Kiaris H (2012) Selection of p53-deficient stromal cells in the tumor microenvironment. Genes Cancer 3:592–598PubMedCentralCrossRefPubMedGoogle Scholar
  67. Faure E, Heisterkamp N, Groffen J, Kaartinen V (2000) Differential expression of TGF-beta isoforms during postlactational mammary gland involution. Cell Tissue Res 300:89–95CrossRefPubMedGoogle Scholar
  68. Ferraro L, Ravo M, Nassa G, Tarallo R, De Filippo MR, Giurato G, Cirillo F, Stellato C, Silvestro S, Cantarella C, Rizzo F, Cimino D, Friard O, Biglia N, De Bortoli M, Cicatiello L, Nola E, Weisz A (2012) Effects of oestrogen on microRNA expression in hormone-responsive breast cancer cells. Horm Cancer 3:65–78CrossRefPubMedGoogle Scholar
  69. Feuermann Y, Robinson GW, Zhu BM, Kang K, Raviv N, Yamaji D, Hennighausen L (2012) The miR-17/92 cluster is targeted by STAT5 but dispensable for mammary development. Genesis 50:665–671PubMedCentralCrossRefPubMedGoogle Scholar
  70. Foschini MP, Morandi L, Leonardi E, Flamminio F, Ishikawa Y, Masetti R, Eusebi V (2013) Genetic clonal mapping of in situ and invasive ductal carcinoma indicates the field cancerization phenomenon in the breast. Hum Pathol 44:1310–1319CrossRefPubMedGoogle Scholar
  71. Foulds CE, Tsimelzon A, Long W, Le A, Tsai SY, Tsai MJ, O’Malley BW (2010) Research resource: expression profiling reveals unexpected targets and functions of the human steroid receptor RNA activator (SRA) gene. Mol Endocrinol 24:1090–1105PubMedCentralCrossRefPubMedGoogle Scholar
  72. Fu N, Lindeman GJ, Visvader JE (2014) The mammary stem cell hierarchy. Curr Top Dev Biol 107:133–160CrossRefPubMedGoogle Scholar
  73. Gabory A, Jammes H, Dandolo L (2010) The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays 32:473–480CrossRefPubMedGoogle Scholar
  74. Gee HE, Buffa FM, Camps C, Ramachandran A, Leek R, Taylor M, Patil M, Sheldon H, Betts G, Homer J, West C, Ragoussis J, Harris AL (2011) The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. Br J Cancer 104:1168–1177PubMedCentralCrossRefPubMedGoogle Scholar
  75. Gibbons DL, Lin W, Creighton CJ, Rizvi ZH, Gregory PA, Goodall GJ, Thilaganathan N, Du L, Zhang Y, Pertsemlidis A, Kurie JM (2009) Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev 23:2140–2151PubMedCentralCrossRefPubMedGoogle Scholar
  76. Ginger MR, Gonzalez-Rimbau MF, Gay JP, Rosen JM (2001) Persistent changes in gene expression induced by estrogen and progesterone in the rat mammary gland. Mol Endocrinol 15:1993–2009CrossRefPubMedGoogle Scholar
  77. Ginger MR, Shore AN, Contreras A, Rijnkels M, Miller J, Gonzalez-Rimbau MF, Rosen JM (2006) A noncoding RNA is a potential marker of cell fate during mammary gland development. Proc Natl Acad Sci U S A 103:5781–5786PubMedCentralCrossRefPubMedGoogle Scholar
  78. Giricz O, Reynolds PA, Ramnauth A, Liu C, Wang T, Stead L, Childs G, Rohan T, Shapiro N, Fineberg S, Kenny PA, Loudig O (2012) Hsa-miR-375 is differentially expressed during breast lobular neoplasia and promotes loss of mammary acinar polarity. J Pathol 226:108–119CrossRefPubMedGoogle Scholar
  79. Godde NJ, Galea RC, Elsum IA, Humbert PO (2010) Cell polarity in motion: redefining mammary tissue organization through EMT and cell polarity transitions. J Mammary Gland Biol Neoplasia 15:149–168CrossRefPubMedGoogle Scholar
  80. Greene SB, Gunaratne PH, Hammond SM, Rosen JM (2010) A putative role for microRNA-205 in mammary epithelial cell progenitors. J Cell Sci 123:606–618PubMedCentralCrossRefPubMedGoogle Scholar
  81. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601CrossRefPubMedGoogle Scholar
  82. Gu Y, Li M, Wang T, Liang Y, Zhong Z, Wang X, Zhou Q, Chen L, Lang Q, He Z, Chen X, Gong J, Gao X, Li X, Lv X (2012) Lactation-related microRNA expression profiles of porcine breast milk exosomes. PLoS One 7:e43691PubMedCentralCrossRefPubMedGoogle Scholar
  83. Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130:77–88PubMedCentralCrossRefPubMedGoogle Scholar
  84. Gumireddy K, Li A, Yan J, Setoyama T, Johannes GJ, Orom UA, Tchou J, Liu Q, Zhang L, Speicher DW, Calin GA, Huang Q (2013) Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step. EMBO J 32:2672–2684PubMedCentralCrossRefPubMedGoogle Scholar
  85. Guo S, Liu M, Gonzalez-Perez RR (2011) Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim Biophys Acta 1815:197–213PubMedGoogle Scholar
  86. Guo L, Chen C, Shi M, Wang F, Chen X, Diao D, Hu M, Yu M, Qian L, Guo N (2013) Stat3-coordinated Lin-28-let-7-HMGA2 and miR-200-ZEB1 circuits initiate and maintain oncostatin M-driven epithelial-mesenchymal transition. Oncogene 532:1–12Google Scholar
  87. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076PubMedCentralCrossRefPubMedGoogle Scholar
  88. Gutschner T, Diederichs S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9:703–719PubMedCentralCrossRefPubMedGoogle Scholar
  89. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227PubMedCentralCrossRefPubMedGoogle Scholar
  90. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefPubMedGoogle Scholar
  91. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388CrossRefPubMedGoogle Scholar
  92. Hark AT, Tilghman SM (1998) Chromatin conformation of the H19 epigenetic mark. Hum Mol Genet 7:1979–1985CrossRefPubMedGoogle Scholar
  93. Howe EN, Cochrane DR, Richer JK (2012) The miR-200 and miR-221/222 microRNA families: opposing effects on epithelial identity. J Mammary Gland Biol Neoplasia 17:65–77PubMedCentralCrossRefPubMedGoogle Scholar
  94. Huang GL, Zhang XH, Guo GL, Huang KT, Yang KY, Hu XQ (2008) Expression of microRNA-21 in invasive ductal carcinoma of the breast and its association with phosphatase and tensin homolog deleted from chromosome expression and clinicopathologic features. Zhonghua Yi Xue Za Zhi 88:2833–2837PubMedGoogle Scholar
  95. Huang GL, Zhang XH, Guo GL, Huang KT, Yang KY, Shen X, You J, Hu XQ (2009) Clinical significance of miR-21 expression in breast cancer: SYBR-green I-based real-time RT-PCR study of invasive ductal carcinoma. Oncol Rep 21:673–679PubMedGoogle Scholar
  96. Hube F, Guo J, Chooniedass-Kothari S, Cooper C, Hamedani MK, Dibrov AA, Blanchard AA, Wang X, Deng G, Myal Y, Leygue E (2006) Alternative splicing of the first intron of the steroid receptor RNA activator (SRA) participates in the generation of coding and noncoding RNA isoforms in breast cancer cell lines. DNA Cell Biol 25:418–428CrossRefPubMedGoogle Scholar
  97. Hurlbut GD, Kankel MW, Lake RJ, Artavanis-Tsakonas S (2007) Crossing paths with Notch in the hyper-network. Curr Opin Cell Biol 19:166–175CrossRefPubMedGoogle Scholar
  98. Hurst DR, Edmonds MD, Welch DR (2009) Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res 69:7495–7498PubMedCentralCrossRefPubMedGoogle Scholar
  99. Ibarra I, Erlich Y, Muthuswamy SK, Sachidanandam R, Hannon GJ (2007) A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells. Genes Dev 21:3238–3243PubMedCentralCrossRefPubMedGoogle Scholar
  100. Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K (2010) Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 39:761–772PubMedCentralCrossRefPubMedGoogle Scholar
  101. Imig J, Brunschweiger A, Brummer A, Guennewig B, Mittal N, Kishore S, Tsikrika P, Gerber AP, Zavolan M, Hall J (2015) miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction. Nat Chem Biol 11:107–114CrossRefPubMedGoogle Scholar
  102. Inman JL, Bissell MJ (2010) Apical polarity in three-dimensional culture systems: where to now? J Biol 9:2PubMedCentralCrossRefPubMedGoogle Scholar
  103. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070CrossRefPubMedGoogle Scholar
  104. Jeschke U, Mylonas I, Shabani N, Kunert-Keil C, Schindlbeck C, Gerber B, Friese K (2005) Expression of sialyl lewis X, sialyl Lewis A, E-cadherin and cathepsin-D in human breast cancer: immunohistochemical analysis in mammary carcinoma in situ, invasive carcinomas and their lymph node metastasis. Anticancer Res 25:1615–1622PubMedGoogle Scholar
  105. Jeyapalan Z, Yang BB (2012) The non-coding 3′UTR of CD44 induces metastasis by regulating extracellular matrix functions. J Cell Sci 125:2075–2085CrossRefGoogle Scholar
  106. Ji Z, Wang G, Xie Z, Wang J, Zhang C, Dong F, Chen C (2012) Identification of novel and differentially expressed MicroRNAs of dairy goat mammary gland tissues using solexa sequencing and bioinformatics. PLoS One 7:e49463PubMedCentralCrossRefPubMedGoogle Scholar
  107. Jiang GX, Liu W, Cui YF, Zhong XY, Tai S, Wang ZD, Shi YG, Li CL, Zhao SY (2010) Reconstitution of secreted frizzled-related protein 1 suppresses tumor growth and lung metastasis in an orthotopic model of hepatocellular carcinoma. Dig Dis Sci 55:2838–2843CrossRefPubMedGoogle Scholar
  108. Johnsson P, Ackley A, Vidarsdottir L, Lui WO, Corcoran M, Grander D, Morris KV (2013) A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 20:440–446PubMedCentralCrossRefPubMedGoogle Scholar
  109. Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG, DeNicola G, Webster KA, Weiss D, Perez-Mancera PA, Krauthammer M, Halaban R, Provero P, Adams DJ, Tuveson DA, Pandolfi PP (2011) In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147:382–395PubMedCentralCrossRefPubMedGoogle Scholar
  110. Kendrick H, Regan JL, Magnay FA, Grigoriadis A, Mitsopoulos C, Zvelebil M, Smalley MJ (2008) Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate. BMC Genomics 9:591PubMedCentralCrossRefPubMedGoogle Scholar
  111. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106:11667–11672PubMedCentralCrossRefPubMedGoogle Scholar
  112. Khan S, Jutzy JM, Aspe JR, McGregor DW, Neidigh JW, Wall NR (2011) Survivin is released from cancer cells via exosomes. Apoptosis Int J Program Cell Death 16:1–12CrossRefGoogle Scholar
  113. Khan S, Jutzy JM, Valenzuela MM, Turay D, Aspe JR, Ashok A, Mirshahidi S, Mercola D, Lilly MB, Wall NR (2012) Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer. PLoS One 7:e46737PubMedCentralCrossRefPubMedGoogle Scholar
  114. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187PubMedCentralCrossRefPubMedGoogle Scholar
  115. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3:ra8PubMedCentralPubMedGoogle Scholar
  116. Kittrell FS, Carletti MZ, Kerbawy S, Heestand J, Xian W, Zhang M, Lamarca HL, Sonnenberg A, Rosen JM, Medina D, Behbod F (2011) Prospective isolation and characterization of committed and multipotent progenitors from immortalized mouse mammary epithelial cells with morphogenic potential. Breast Cancer Res 13:R41PubMedCentralCrossRefPubMedGoogle Scholar
  117. Klinge CM (2012) miRNAs and estrogen action. Trends Endocrinol Metab 23:223–233PubMedCentralCrossRefPubMedGoogle Scholar
  118. Knezevic J, Pfefferle AD, Petrovic I, Greene SB, Perou CM, Rosen JM (2015) Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances chemosensitivity and reduces metastatic potential. Oncogene 27:189–195Google Scholar
  119. Koch U, Radtke F (2007) Notch and cancer: a double-edged sword. Cell Mol Life Sci 64:2746–2762CrossRefPubMedGoogle Scholar
  120. Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, Cheng JQ (2008) MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28:6773–6784PubMedCentralCrossRefPubMedGoogle Scholar
  121. Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910–14914PubMedCentralCrossRefPubMedGoogle Scholar
  122. Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY, Tsai MJ, O’Malley BW (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97:17–27CrossRefPubMedGoogle Scholar
  123. Lanz RB, Chua SS, Barron N, Soder BM, DeMayo F, O’Malley BW (2003) Steroid receptor RNA activator stimulates proliferation as well as apoptosis in vivo. Mol Cell Biol 23:7163–7176PubMedCentralCrossRefPubMedGoogle Scholar
  124. Le Guillou S, Sdassi N, Laubier J, Passet B, Vilotte M, Castille J, Laloe D, Polyte J, Bouet S, Jaffrezic F, Cribiu EP, Vilotte JL, Le Provost F (2012) Overexpression of miR-30b in the developing mouse mammary gland causes a lactation defect and delays involution. PLoS One 7:e45727PubMedCentralCrossRefPubMedGoogle Scholar
  125. Lee M, Vasioukhin V (2008) Cell polarity and cancer – cell and tissue polarity as a non-canonical tumor suppressor. J Cell Sci 121:1141–1150CrossRefPubMedGoogle Scholar
  126. Lee CW, Raskett CM, Prudovsky I, Altieri DC (2008a) Molecular dependence of estrogen receptor-negative breast cancer on a Notch-survivin signaling axis. Cancer Res 68:5273–5281PubMedCentralCrossRefPubMedGoogle Scholar
  127. Lee CW, Simin K, Liu Q, Plescia J, Guha M, Khan A, Hsieh CC, Altieri DC (2008b) A functional Notch-survivin gene signature in basal breast cancer. Breast Cancer Res 10:R97PubMedCentralCrossRefPubMedGoogle Scholar
  128. Leong KG, Niessen K, Kulic I, Raouf A, Eaves C, Pollet I, Karsan A (2007) Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med 204:2935–2948PubMedCentralCrossRefPubMedGoogle Scholar
  129. Li H, Solomon E, Duhachek Muggy S, Sun D, Zolkiewska A (2011) Metalloprotease-disintegrin ADAM12 expression is regulated by Notch signaling via microRNA-29. J Biol Chem 286:21500–21510PubMedCentralCrossRefPubMedGoogle Scholar
  130. Li Z, Liu H, Jin X, Lo L, Liu J (2012) Expression profiles of microRNAs from lactating and non-lactating bovine mammary glands and identification of miRNA related to lactation. BMC Genomics 13:731PubMedCentralCrossRefPubMedGoogle Scholar
  131. Li L, Liu B, Wapinski OL, Tsai MC, Qu K, Zhang J, Carlson JC, Lin M, Fang F, Gupta RA, Helms JA, Chang HY (2013a) Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep 5:3–12PubMedCentralCrossRefPubMedGoogle Scholar
  132. Li W, Notani D, Ma Q, Tanasa B, Nunez E, Chen AY, Merkurjev D, Zhang J, Ohgi K, Song X, Oh S, Kim HS, Glass CK, Rosenfeld MG (2013b) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498:516–520PubMedCentralCrossRefPubMedGoogle Scholar
  133. Li D, Xie X, Wang J, Bian Y, Li Q, Gao X, Wang C (2015) MiR-486 regulates lactation and targets the PTEN gene in cow mammary glands. PLoS One 10:e0118284PubMedCentralCrossRefPubMedGoogle Scholar
  134. Liang Z, Li Y, Huang K, Wagar N, Shim H (2011) Regulation of miR-19 to breast cancer chemoresistance through targeting PTEN. Pharm Res 28:3091–3100PubMedCentralCrossRefPubMedGoogle Scholar
  135. Liu S, Patel SH, Ginestier C, Ibarra I, Martin-Trevino R, Bai S, McDermott SP, Shang L, Ke J, Ou SJ, Heath A, Zhang KJ, Korkaya H, Clouthier SG, Charafe-Jauffret E, Birnbaum D, Hannon GJ, Wicha MS (2012) MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells. PLoS Genet 8:e1002751PubMedCentralCrossRefPubMedGoogle Scholar
  136. Llobet-Navas D, Rodriguez-Barrueco R, Castro V, Ugalde AP, Sumazin P, Jacob-Sendler D, Demircan B, Castillo-Martin M, Putcha P, Marshall N, Villagrasa P, Chan J, Sanchez-Garcia F, Pe’er D, Rabadan R, Iavarone A, Cordon-Cardo C, Califano A, Lopez-Otin C, Ezhkova E, Silva JM (2014a) The miR-424(322)/503 cluster orchestrates remodeling of the epithelium in the involuting mammary gland. Genes Dev 28:765–782PubMedCentralCrossRefPubMedGoogle Scholar
  137. Llobet-Navas D, Rodriguez-Barrueco R, de la Iglesia-Vicente J, Olivan M, Castro V, Saucedo-Cuevas L, Marshall N, Putcha P, Castillo-Martin M, Bardot E, Ezhkova E, Iavarone A, Cordon-Cardo C, Silva JM (2014b) The microRNA 424/503 cluster reduces CDC25A expression during cell cycle arrest imposed by transforming growth factor beta in mammary epithelial cells. Mol Cell Biol 34:4216–4231PubMedCentralCrossRefPubMedGoogle Scholar
  138. Lu LM, Li Q, Wang CM, Li Y, Gao XJ (2009) Impact of miR-221 on mouse mammary epithelial cells and lactation. Chin J Biochem Mol Biol Cell 265:454–458Google Scholar
  139. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesompele J, Weinberg RA (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12:247–256PubMedCentralPubMedGoogle Scholar
  140. Ma F, Zhang J, Zhong L, Wang L, Liu Y, Wang Y, Peng L, Guo B (2014) Upregulated microRNA-301a in breast cancer promotes tumor metastasis by targeting PTEN and activating Wnt/beta-catenin signaling. Gene 535:191–197CrossRefPubMedGoogle Scholar
  141. Macias H, Hinck L (2012) Mammary gland development. Wiley interdisciplinary reviews. Dev Biol 1:533–557Google Scholar
  142. Maggrah A, Robinson K, Creed J, Wittock R, Gehman K, Gehman T, Brown H, Harbottle A, Froberg MK, Klein D, Reguly B, Parr R (2013) Paired ductal carcinoma in situ and invasive breast cancer lesions in the D-loop of the mitochondrial genome indicate a cancerization field effect. BioMed Res Int 2013:379438Google Scholar
  143. Mailleux AA, Overholtzer M, Schmelzle T, Bouillet P, Strasser A, Brugge JS (2007) BIM regulates apoptosis during mammary ductal morphogenesis, and its absence reveals alternative cell death mechanisms. Dev Cell 12:221–234PubMedCentralCrossRefPubMedGoogle Scholar
  144. Mailleux AA, Overholtzer M, Brugge JS (2008) Lumen formation during mammary epithelial morphogenesis: insights from in vitro and in vivo models. Cell Cycle 7:57–62CrossRefPubMedGoogle Scholar
  145. Mandal CC, Ghosh-Choudhury T, Dey N, Choudhury GG, Ghosh-Choudhury N (2012) miR-21 is targeted by omega-3 polyunsaturated fatty acid to regulate breast tumor CSF-1 expression. Carcinogenesis 33:1897–1908PubMedCentralCrossRefPubMedGoogle Scholar
  146. Marquis ST, Rajan JV, Wynshaw-Boris A, Xu J, Yin GY, Abel KJ, Weber BL, Chodosh LA (1995) The developmental pattern of Brca1 expression implies a role in differentiation of the breast and other tissues. Nat Genet 11:17–26CrossRefPubMedGoogle Scholar
  147. Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T, Parenti AR, Daidone MG, Bicciato S, Piccolo S (2010) A MicroRNA targeting dicer for metastasis control. Cell 141:1195–1207CrossRefPubMedGoogle Scholar
  148. Master SR, Stoddard AJ, Bailey LC, Pan TC, Dugan KD, Chodosh LA (2005) Genomic analysis of early murine mammary gland development using novel probe-level algorithms. Genome Biol 6:R20PubMedCentralCrossRefPubMedGoogle Scholar
  149. Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73:1907–1920CrossRefPubMedGoogle Scholar
  150. Matouk IJ, Mezan S, Mizrahi A, Ohana P, Abu-Lail R, Fellig Y, Degroot N, Galun E, Hochberg A (2010) The oncofetal H19 RNA connection: hypoxia, p53 and cancer. Biochim Biophys Acta 1803:443–451CrossRefPubMedGoogle Scholar
  151. McBryan J, Howlin J, Kenny PA, Shioda T, Martin F (2007) ERalpha-CITED1 co-regulated genes expressed during pubertal mammary gland development: implications for breast cancer prognosis. Oncogene 26:6406–6419CrossRefPubMedGoogle Scholar
  152. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658PubMedCentralCrossRefPubMedGoogle Scholar
  153. Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, Campani V, Zarone MR, Gulla A, Tagliaferri P, Tassone P, Caraglia M (2014) Mir-34: a new weapon against cancer? Mol Ther Nucleic Acids 3:e194CrossRefPubMedGoogle Scholar
  154. Moes M, Le Bechec A, Crespo I, Laurini C, Halavatyi A, Vetter G, Del Sol A, Friederich E (2012) A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition. PLoS One 7:e35440PubMedCentralCrossRefPubMedGoogle Scholar
  155. Morey L, Helin K (2010) Polycomb group protein-mediated repression of transcription. Trends Biochem Sci 35:323–332CrossRefPubMedGoogle Scholar
  156. Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT (2009) GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28:195–208CrossRefPubMedGoogle Scholar
  157. Muthuswamy SK, Xue B (2012) Cell polarity as a regulator of cancer cell behavior plasticity. Annu Rev Cell Dev Biol 28:599–625PubMedCentralCrossRefPubMedGoogle Scholar
  158. Nagaoka K, Zhang H, Watanabe G, Taya K (2013) Epithelial cell differentiation regulated by MicroRNA-200a in mammary glands. PLoS One 8:e65127PubMedCentralCrossRefPubMedGoogle Scholar
  159. Nam DH, Jeon HM, Kim S, Kim MH, Lee YJ, Lee MS, Kim H, Joo KM, Lee DS, Price JE, Bang SI, Park WY (2008) Activation of notch signaling in a xenograft model of brain metastasis. Clin Cancer Res Off J Am Assoc Cancer Res 14:4059–4066CrossRefGoogle Scholar
  160. Nishio M, Otsubo K, Maehama T, Mimori K, Suzuki A (2013) Capturing the mammalian Hippo: elucidating its role in cancer. Cancer Sci 104:1271–1277CrossRefPubMedGoogle Scholar
  161. Ochoa-Espinosa A, Affolter M (2012) Branching morphogenesis: from cells to organs and back. Cold Spring Harb Perspect Biol 4:a008342CrossRefGoogle Scholar
  162. Osmani N, Vitale N, Borg JP, Etienne-Manneville S (2006) Scrib controls Cdc42 localization and activity to promote cell polarization during astrocyte migration. Curr Biol CB 16:2395–2405CrossRefPubMedGoogle Scholar
  163. Ozsolak F, Song JS, Liu XS, Fisher DE (2007) High-throughput mapping of the chromatin structure of human promoters. Nat Biotechnol 25:244–248CrossRefPubMedGoogle Scholar
  164. Pal B, Bouras T, Shi W, Vaillant F, Sheridan JM, Fu N, Breslin K, Jiang K, Ritchie ME, Young M, Lindeman GJ, Smyth GK, Visvader JE (2013) Global changes in the mammary epigenome are induced by hormonal cues and coordinated by Ezh2. Cell Rep 3:411–426CrossRefPubMedGoogle Scholar
  165. Parmar H, Cunha GR (2004) Epithelial-stromal interactions in the mouse and human mammary gland in vivo. Endocr Relat Cancer 11:437–458CrossRefPubMedGoogle Scholar
  166. Pellegrino L, Stebbing J, Braga VM, Frampton AE, Jacob J, Buluwela L, Jiao LR, Periyasamy M, Madsen CD, Caley MP, Ottaviani S, Roca-Alonso L, El-Bahrawy M, Coombes RC, Krell J, Castellano L (2013) miR-23b regulates cytoskeletal remodeling, motility and metastasis by directly targeting multiple transcripts. Nucleic Acids Res 41:5400–5412PubMedCentralCrossRefPubMedGoogle Scholar
  167. Peng J, Zhao JS, Shen YF, Mao HG, Xu NY (2015) MicroRNA expression profiling of lactating mammary gland in divergent phenotype swine breeds. Int J Mol Sci 16:1448–1465PubMedCentralCrossRefPubMedGoogle Scholar
  168. Piao HL, Ma L (2012) Non-coding RNAs as regulators of mammary development and breast cancer. J Mammary Gland Biol Neoplasia 17:33–42PubMedCentralCrossRefPubMedGoogle Scholar
  169. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038PubMedCentralCrossRefPubMedGoogle Scholar
  170. Qi L, Bart J, Tan LP, Platteel I, Sluis T, Huitema S, Harms G, Fu L, Hollema H, Berg A (2009) Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer 9:163PubMedCentralCrossRefPubMedGoogle Scholar
  171. Quinn JJ, Ilik IA, Qu K, Georgiev P, Chu C, Akhtar A, Chang HY (2014) Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nat Biotechnol 32:933–940PubMedCentralCrossRefPubMedGoogle Scholar
  172. Rana S, Malinowska K, Zoller M (2013) Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia 15:281–295PubMedCentralCrossRefPubMedGoogle Scholar
  173. Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, Iscove N, Jones S, McKinney S, Emerman J, Aparicio S, Marra M, Eaves C (2008) Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell 3:109–118CrossRefPubMedGoogle Scholar
  174. Rijnkels M, Kabotyanski E, Montazer-Torbati MB, Hue Beauvais C, Vassetzky Y, Rosen JM, Devinoy E (2010) The epigenetic landscape of mammary gland development and functional differentiation. J Mammary Gland Biol Neoplasia 15:85–100PubMedCentralCrossRefPubMedGoogle Scholar
  175. Rivenbark AG, Coleman WB (2012) Field cancerization in mammary carcinogenesis – implications for prevention and treatment of breast cancer. Exp Mol Pathol 93:391–398CrossRefPubMedGoogle Scholar
  176. Rizzo P, Miao H, D’Souza G, Osipo C, Song LL, Yun J, Zhao H, Mascarenhas J, Wyatt D, Antico G, Hao L, Yao K, Rajan P, Hicks C, Siziopikou K, Selvaggi S, Bashir A, Bhandari D, Marchese A, Lendahl U, Qin JZ, Tonetti DA, Albain K, Nickoloff BJ, Miele L (2008) Cross-talk between notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res 68:5226–5235PubMedCentralCrossRefPubMedGoogle Scholar
  177. Rudolph MC, McManaman JL, Phang T, Russell T, Kominsky DJ, Serkova NJ, Stein T, Anderson SM, Neville MC (2007) Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol Genomics 28:323–336CrossRefPubMedGoogle Scholar
  178. Rutnam ZJ, Yang BB (2012) The non-coding 3′ UTR of CD44 induces metastasis by regulating extracellular matrix functions. J Cell Sci 125:2075–2085CrossRefPubMedGoogle Scholar
  179. Sabatier R, Finetti P, Guille A, Adelaide J, Chaffanet M, Viens P, Birnbaum D, Bertucci F (2014) Claudin-low breast cancers: clinical, pathological, molecular and prognostic characterization. Mol Cancer 13:228PubMedCentralCrossRefPubMedGoogle Scholar
  180. Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U (2008) Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci U S A 105:6392–6397PubMedCentralCrossRefPubMedGoogle Scholar
  181. Sakakura T, Suzuki Y, Shiurba R (2013) Mammary stroma in development and carcinogenesis. J Mammary Gland Biol Neoplasia 18:189–197CrossRefPubMedGoogle Scholar
  182. Sati S, Ghosh S, Jain V, Scaria V, Sengupta S (2012) Genome-wide analysis reveals distinct patterns of epigenetic features in long non-coding RNA loci. Nucleic Acids Res 40:10018–10031PubMedCentralCrossRefPubMedGoogle Scholar
  183. Schubert J, Brabletz T (2011) p53 spreads out further: suppression of EMT and stemness by activating miR-200c expression. Cell Res 21:705–707PubMedCentralCrossRefPubMedGoogle Scholar
  184. Shewan AM, Maddugoda M, Kraemer A, Stehbens SJ, Verma S, Kovacs EM, Yap AS (2005) Myosin 2 is a key Rho kinase target necessary for the local concentration of E-cadherin at cell-cell contacts. Mol Biol Cell 16:4531–4542PubMedCentralCrossRefPubMedGoogle Scholar
  185. Shore AN, Herschkowitz JI, Rosen JM (2012a) Noncoding RNAs involved in mammary gland development and tumorigenesis: there’s a long way to go. J Mammary Gland Biol Neoplasia 17:43–58PubMedCentralCrossRefPubMedGoogle Scholar
  186. Shore AN, Kabotyanski EB, Roarty K, Smith MA, Zhang Y, Creighton CJ, Dinger ME, Rosen JM (2012b) Pregnancy-induced noncoding RNA (PINC) associates with polycomb repressive complex 2 and regulates mammary epithelial differentiation. PLoS Genet 8:e1002840PubMedCentralCrossRefPubMedGoogle Scholar
  187. Slaughter DP (1953) The role of internal mammary node dissection in the treatment of breast cancer. Proc Inst Med Chic 19:300PubMedGoogle Scholar
  188. Solomon A, Mian Y, Ortega-Cava C, Liu VW, Gurumurthy CB, Naramura M, Band V, Band H (2008) Upregulation of the let-7 microRNA with precocious development in lin-12/Notch hypermorphic Caenorhabditis elegans mutants. Dev Biol 316:191–199PubMedCentralCrossRefPubMedGoogle Scholar
  189. Song G, Zhang Y, Wang L (2009) MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation. J Biol Chem 284:31921–31927PubMedCentralCrossRefPubMedGoogle Scholar
  190. Sorensen KP, Thomassen M, Tan Q, Bak M, Cold S, Burton M, Larsen MJ, Kruse TA (2015) Long non-coding RNA expression profiles predict metastasis in lymph node-negative breast cancer independently of traditional prognostic markers. Breast Cancer Res 17:55PubMedCentralCrossRefPubMedGoogle Scholar
  191. Sreekumar R, Sayan BS, Mirnezami AH, Sayan AE (2011) MicroRNA control of invasion and metastasis pathways. Front Genet 2:58PubMedCentralCrossRefPubMedGoogle Scholar
  192. Standaert L, Adriaens C, Radaelli E, Van Keymeulen A, Blanpain C, Hirose T, Nakagawa S, Marine JC (2014) The long noncoding RNA Neat1 is required for mammary gland development and lactation. RNA 20:1844–1849PubMedCentralCrossRefPubMedGoogle Scholar
  193. Stefansson OA, Esteller M (2012) BRCA1 as a tumor suppressor linked to the regulation of epigenetic states: keeping oncomiRs under control. Breast Cancer Res 14:304PubMedCentralCrossRefPubMedGoogle Scholar
  194. Stein T, Morris JS, Davies CR, Weber-Hall SJ, Duffy MA, Heath VJ, Bell AK, Ferrier RK, Sandilands GP, Gusterson BA (2004) Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res 6:R75–R91CrossRefPubMedGoogle Scholar
  195. Strange R, Li F, Saurer S, Burkhardt A, Friis RR (1992) Apoptotic cell death and tissue remodelling during mouse mammary gland involution. Development 115:49–58PubMedGoogle Scholar
  196. Tanaka T, Haneda S, Imakawa K, Sakai S, Nagaoka K (2009) A microRNA, miR-101a, controls mammary gland development by regulating cyclooxygenase-2 expression. Differentiation 77:181–187CrossRefPubMedGoogle Scholar
  197. Tang J, Ahmad A, Sarkar FH (2012) The role of MicroRNAs in breast cancer migration, invasion and metastasis. Int J Mol Sci 13:13414–13437PubMedCentralCrossRefPubMedGoogle Scholar
  198. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890CrossRefPubMedGoogle Scholar
  199. Timmins NE, Harding FJ, Smart C, Brown MA, Nielsen LK (2005) Method for the generation and cultivation of functional three-dimensional mammary constructs without exogenous extracellular matrix. Cell Tissue Res 320:207–210CrossRefPubMedGoogle Scholar
  200. Tomita K, van Bokhoven A, van Leenders GJ, Ruijter ET, Jansen CF, Bussemakers MJ, Schalken JA (2000) Cadherin switching in human prostate cancer progression. Cancer Res 60:3650–3654PubMedGoogle Scholar
  201. Tomita S, Abdalla MO, Fujiwara S, Matsumori H, Maehara K, Ohkawa Y, Iwase H, Saitoh N, Nakao M (2015) A cluster of noncoding RNAs activates the ESR1 locus during breast cancer adaptation. Nat Commun 6:6966PubMedCentralCrossRefPubMedGoogle Scholar
  202. Topper YJ, Freeman CS (1980) Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev 60:1049–1106PubMedGoogle Scholar
  203. Trimis G, Chatzistamou I, Politi K, Kiaris H, Papavassiliou AG (2008) Expression of p21waf1/Cip1 in stromal fibroblasts of primary breast tumors. Hum Mol Genet 17:3596–3600CrossRefPubMedGoogle Scholar
  204. Trujillo KA, Heaphy CM, Mai M, Vargas KM, Jones AC, Vo P, Butler KS, Joste NE, Bisoffi M, Griffith JK (2011a) Markers of fibrosis and epithelial to mesenchymal transition demonstrate field cancerization in histologically normal tissue adjacent to breast tumors. Int J Cancer J Int Cancer 129:1310–1321CrossRefGoogle Scholar
  205. Trujillo KA, Hines WC, Vargas KM, Jones AC, Joste NE, Bisoffi M, Griffith JK (2011b) Breast field cancerization: isolation and comparison of telomerase-expressing cells in tumor and tumor adjacent, histologically normal breast tissue. Mol Cancer Res 9:1209–1221PubMedCentralCrossRefPubMedGoogle Scholar
  206. Tsuchiya S, Oku M, Imanaka Y, Kunimoto R, Okuno Y, Terasawa K, Sato F, Tsujimoto G, Shimizu K (2009) MicroRNA-338-3p and microRNA-451 contribute to the formation of basolateral polarity in epithelial cells. Nucleic Acids Res 37:3821–3827PubMedCentralCrossRefPubMedGoogle Scholar
  207. Tsuchiya S, Fujiwara T, Sato F, Shimada Y, Tanaka E, Sakai Y, Shimizu K, Tsujimoto G (2011) MicroRNA-210 regulates cancer cell proliferation through targeting fibroblast growth factor receptor-like 1 (FGFRL1). J Biol Chem 286:420–428CrossRefPubMedGoogle Scholar
  208. Tumaneng K, Schlegelmilch K, Russell RC, Yimlamai D, Basnet H, Mahadevan N, Fitamant J, Bardeesy N, Camargo FD, Guan KL (2012) YAP mediates crosstalk between the Hippo and PI(3)K-TOR pathways by suppressing PTEN via miR-29. Nat Cell Biol 14:1322–1329PubMedCentralCrossRefPubMedGoogle Scholar
  209. Turcatel G, Rubin N, El-Hashash A, Warburton D (2012) MIR-99a and MIR-99b modulate TGF-beta induced epithelial to mesenchymal plasticity in normal murine mammary gland cells. PLoS One 7:e31032PubMedCentralCrossRefPubMedGoogle Scholar
  210. Ucar A, Vafaizadeh V, Jarry H, Fiedler J, Klemmt PA, Thum T, Groner B, Chowdhury K (2010) miR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland development. Nat Genet 42:1101–1108CrossRefPubMedGoogle Scholar
  211. Vaira V, Faversani A, Dohi T, Montorsi M, Augello C, Gatti S, Coggi G, Altieri DC, Bosari S (2012) miR-296 regulation of a cell polarity-cell plasticity module controls tumor progression. Oncogene 31:27–38CrossRefPubMedGoogle Scholar
  212. Valentin MD, da Silva SD, Privat M, Alaoui-Jamali M, Bignon YJ (2012) Molecular insights on basal-like breast cancer. Breast Cancer Res Treat 134:21–30CrossRefPubMedGoogle Scholar
  213. Vallejo DM, Caparros E, Dominguez M (2011) Targeting Notch signalling by the conserved miR-8/200 microRNA family in development and cancer cells. EMBO J 30:756–769PubMedCentralCrossRefPubMedGoogle Scholar
  214. Vallorosi CJ, Day KC, Zhao X, Rashid MG, Rubin MA, Johnson KR, Wheelock MJ, Day ML (2000) Truncation of the beta-catenin binding domain of E-cadherin precedes epithelial apoptosis during prostate and mammary involution. J Biol Chem 275:3328–3334CrossRefPubMedGoogle Scholar
  215. van Balkom BW, de Jong OG, Smits M, Brummelman J, den Ouden K, de Bree PM, van Eijndhoven MA, Pegtel DM, Stoorvogel W, Wurdinger T, Verhaar MC (2013) Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 121:3997–4006, S3991–S3915CrossRefPubMedGoogle Scholar
  216. Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, Sharma N, Dekoninck S, Blanpain C (2011) Distinct stem cells contribute to mammary gland development and maintenance. Nature 479:189–193CrossRefPubMedGoogle Scholar
  217. Velagapudi SP, Gallo SM, Disney MD (2014) Sequence-based design of bioactive small molecules that target precursor microRNAs. Nat Chem Biol 10:291–297PubMedCentralCrossRefPubMedGoogle Scholar
  218. Venkatesh S, Workman JL (2012) Non-coding transcription SETs up regulation. Cell Res 23:311–313PubMedCentralCrossRefPubMedGoogle Scholar
  219. Visvader JE (2009) Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 23:2563–2577PubMedCentralCrossRefPubMedGoogle Scholar
  220. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261PubMedCentralCrossRefPubMedGoogle Scholar
  221. Vuong D, Simpson PT, Green B, Cummings MC, Lakhani SR (2014) Molecular classification of breast cancer. Virchows Arch Int J Pathol 465:1–14CrossRefGoogle Scholar
  222. Wang CM, Li Q, Li Y (2008) miR-138 function and its targets on mouse mammary epithelial cells. Program Biochem Biophys 435:834–838Google Scholar
  223. Wang G, Wang Y, Shen C, Huang YW, Huang K, Huang TH, Nephew KP, Li L, Liu Y (2010a) RNA polymerase II binding patterns reveal genomic regions involved in microRNA gene regulation. PLoS One 5:e13798Google Scholar
  224. Wang Z, Li Y, Kong D, Ahmad A, Banerjee S, Sarkar FH (2010b) Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Lett 292:141–148CrossRefPubMedGoogle Scholar
  225. Wang D, Garcia-Bassets I, Benner C, Li W, Su X, Zhou Y, Qiu J, Liu W, Kaikkonen MU, Ohgi KA, Glass CK, Rosenfeld MG, Fu XD (2011a) Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474:390–394PubMedCentralCrossRefPubMedGoogle Scholar
  226. Wang ZX, Lu BB, Wang H, Cheng ZX, Yin YM (2011b) MicroRNA-21 modulates chemosensitivity of breast cancer cells to doxorubicin by targeting PTEN. Arch Med Res 42:281–290CrossRefPubMedGoogle Scholar
  227. Wang L, Zeng X, Chen S, Ding L, Zhong J, Zhao JC, Sarver A, Koller A, Zhi J, Ma Y, Yu J, Chen J, Huang H (2013) BRCA1 is a negative modulator of the PRC2 complex. EMBO J 32:1584–1597PubMedCentralCrossRefPubMedGoogle Scholar
  228. Wang J, Bian Y, Wang Z, Li D, Wang C, Li Q, Gao X (2014a) MicroRNA-152 regulates DNA methyltransferase 1 and is involved in the development and lactation of mammary glands in dairy cows. PLoS One 9:e101358PubMedCentralCrossRefPubMedGoogle Scholar
  229. Wang S, Cao M, Deng X, Xiao X, Yin Z, Hu Q, Zhou Z, Zhang F, Zhang R, Wu Y, Sheng W, Zeng Y (2014b) Degradable hyaluronic acid/protamine sulfate interpolyelectrolyte complexes as miRNA-delivery nanocapsules for triple-negative breast cancer therapy. Adv Healthc Mater 3:1130–1132CrossRefGoogle Scholar
  230. Watson CJ, Khaled WT (2008) Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development 135:995–1003CrossRefPubMedGoogle Scholar
  231. Wee EJ, Peters K, Nair SS, Hulf T, Stein S, Wagner S, Bailey P, Lee SY, Qu WJ, Brewster B, French JD, Dobrovic A, Francis GD, Clark SJ, Brown MA (2012) Mapping the regulatory sequences controlling 93 breast cancer-associated miRNA genes leads to the identification of two functional promoters of the Hsa-mir-200b cluster, methylation of which is associated with metastasis or hormone receptor status in advanced breast cancer. Oncogene 31:4182–4195PubMedCentralCrossRefPubMedGoogle Scholar
  232. Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234CrossRefPubMedGoogle Scholar
  233. Wiseman BS, Werb Z (2002) Stromal effects on mammary gland development and breast cancer. Science 296:1046–1049PubMedCentralCrossRefPubMedGoogle Scholar
  234. Wright JA, Richer JK, Goodall GJ (2010) microRNAs and EMT in mammary cells and breast cancer. J Mammary Gland Biol Neoplasia 15:213–223CrossRefPubMedGoogle Scholar
  235. Xue W, Dahlman JE, Tammela T, Khan OF, Sood S, Dave A, Cai W, Chirino LM, Yang GR, Bronson R, Crowley DG, Sahay G, Schroeder A, Langer R, Anderson DG, Jacks T (2014) Small RNA combination therapy for lung cancer. Proc Natl Acad Sci U S A 111:E3553–E3561PubMedCentralCrossRefPubMedGoogle Scholar
  236. Yalcin-Ozuysal O, Fiche M, Guitierrez M, Wagner KU, Raffoul W, Brisken C (2010) Antagonistic roles of Notch and p63 in controlling mammary epithelial cell fates. Cell Death Differ 17:1600–1612CrossRefPubMedGoogle Scholar
  237. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX, Shao JY (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14:2348–2360PubMedCentralCrossRefPubMedGoogle Scholar
  238. Yang JH, Li JH, Jiang S, Zhou H, Qu LH (2013) ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Res 41:D177–D187CrossRefPubMedGoogle Scholar
  239. Ye X, Bai W, Zhu H, Zhang X, Chen Y, Wang L, Yang A, Zhao J, Jia L (2014) MiR-221 promotes trastuzumab-resistance and metastasis in HER2-positive breast cancers by targeting PTEN. BMB Rep 47:268–273PubMedCentralCrossRefPubMedGoogle Scholar
  240. Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292CrossRefPubMedGoogle Scholar
  241. Yoo KH, Kang K, Feuermann Y, Jang SJ, Robinson GW, Hennighausen L (2014) The STAT5-regulated miR-193b locus restrains mammary stem and progenitor cell activity and alveolar differentiation. Dev Biol 395:245–254PubMedCentralCrossRefPubMedGoogle Scholar
  242. Yoshida R, Kimura N, Harada Y, Ohuchi N (2001) The loss of E-cadherin, alpha- and beta-catenin expression is associated with metastasis and poor prognosis in invasive breast cancer. Int J Oncol 18:513–520PubMedGoogle Scholar
  243. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–1123CrossRefPubMedGoogle Scholar
  244. Yu X, Zhang X, Dhakal IB, Beggs M, Kadlubar S, Luo D (2012) Induction of cell proliferation and survival genes by estradiol-repressed microRNAs in breast cancer cells. BMC Cancer 12:29PubMedCentralCrossRefPubMedGoogle Scholar
  245. Zhang Z, Zhang B, Li W, Fu L, Zhu Z, Dong JT (2011) Epigenetic silencing of miR-203 upregulates SNAI2 and contributes to the invasiveness of malignant breast cancer cells. Genes Cancer 2:782–791PubMedCentralCrossRefPubMedGoogle Scholar
  246. Zhang Y, Eades G, Yao Y, Li Q, Zhou Q (2012) Estrogen receptor alpha signaling regulates breast tumor-initiating cells by down-regulating miR-140 which targets the transcription factor SOX2. J Biol Chem 287:41514–41522PubMedCentralCrossRefPubMedGoogle Scholar
  247. Zhang CM, Zhao J, Deng HY (2013) MiR-155 promotes proliferation of human breast cancer MCF-7 cells through targeting tumor protein 53-induced nuclear protein 1. J Biomed Sci 20:79PubMedCentralCrossRefPubMedGoogle Scholar
  248. Zhang C, Zhao Y, Wang Y, Wu H, Fang X, Chen H (2014a) Deep RNA sequencing reveals that microRNAs play a key role in lactation in rats. J Nutr 144:1142–1149CrossRefPubMedGoogle Scholar
  249. Zhang Y, Xia J, Li Q, Yao Y, Eades G, Gernapudi R, Duru N, Kensler TW, Zhou Q (2014b) NRF2/long noncoding RNA ROR signaling regulates mammary stem cell expansion and protects against estrogen genotoxicity. J Biol Chem 289:31310–31318PubMedCentralCrossRefPubMedGoogle Scholar
  250. Zhong X, Li N, Liang S, Huang Q, Coukos G, Zhang L (2010) Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells. J Biol Chem 285:41961–41971PubMedCentralCrossRefPubMedGoogle Scholar
  251. Zhong S, Li W, Chen Z, Xu J, Zhao J (2013) MiR-222 and miR-29a contribute to the drug-resistance of breast cancer cells. Gene 531:8–14CrossRefPubMedGoogle Scholar
  252. Zhou J, Tian Y, Li J, Lu B, Sun M, Zou Y, Kong R, Luo Y, Shi Y, Wang K, Ji G (2013) miR-206 is down-regulated in breast cancer and inhibits cell proliferation through the up-regulation of cyclinD2. Biochem Biophys Res Commun 433:207–212CrossRefPubMedGoogle Scholar
  253. Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282:14328–14336CrossRefPubMedGoogle Scholar
  254. Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18:350–359CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Gurveen K. Sandhu
    • 1
  • Michael J. G. Milevskiy
    • 1
  • Wesley Wilson
    • 1
  • Annette M. Shewan
    • 1
  • Melissa A. Brown
    • 1
    Email author
  1. 1.School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaAustralia

Personalised recommendations