Non-coding RNA in Spermatogenesis and Epididymal Maturation

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 886)


Testicular germ and somatic cells express many classes of small ncRNAs, including Dicer-independent PIWI-interacting RNAs, Dicer-dependent miRNAs, and endogenous small interfering RNA. Several studies have identified ncRNAs that are highly, exclusively, or preferentially expressed in the testis and epididymis in specific germ and somatic cell types. Temporal and spatial expression of proteins is a key requirement of successful spermatogenesis and large-scale gene transcription occurs in two key stages, just prior to transcriptional quiescence in meiosis and then during spermiogenesis just prior to nuclear silencing in elongating spermatids. More than 60 % of these transcripts are then stockpiled for subsequent translation. In this capacity ncRNAs may act to interpret and transduce cellular signals to either maintain the undifferentiated stem cell population and/or drive cell differentiation during spermatogenesis and epididymal maturation. The assignation of specific roles to the majority of ncRNA species implicated as having a role in spermatogenesis and epididymal function will underpin fundamental understanding of normal and disease states in humans such as infertility and the development of germ cell tumours.


Noncoding RNA Primordial germ cell Gonocyte Differentiation Meiosis Spermatogenesis Spermiogenesis Epididymis Sertoli cell 



Funding The authors gratefully acknowledge the financial assistance to EAM, JEH and BN by the Australian Research Council, National Health and Medical Research Council and the University of Newcastle. JEH is the recipient of an Australian Research Council DECRA Award. This work was supported by the ARC Centre of Excellence in Biotechnology and Development (CE0348239) to EAM and NHMRC (APP 1062371) to BN, EAM and JEH.

Conflict of Interest The authors declare that there is no conflict of interest as defined by the guidelines of the International Committee of Medical Journal Editors (ICMJE;


  1. Abu-Halima M et al (2013) Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertil Steril 99(5):1249–1255.e16PubMedCrossRefGoogle Scholar
  2. Abu-Halima M et al (2014) A panel of five microRNAs as potential biomarkers for the diagnosis and assessment of male infertility. Fertil Steril 102:989–997.e1PubMedCrossRefGoogle Scholar
  3. Adams BD, Kasinski AL, Slack FJ (2014) Aberrant regulation and function of MicroRNAs in cancer. Curr Biol 24(16):R762–R776PubMedCentralPubMedCrossRefGoogle Scholar
  4. Aitken RJ et al (2007) Proteomic changes in mammalian spermatozoa during epididymal maturation. Asian J Androl 9(4):554–564PubMedCrossRefGoogle Scholar
  5. Anderson EL et al (2008) Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci U S A 105(39):14976–14980PubMedCentralPubMedCrossRefGoogle Scholar
  6. Anguera MC et al (2011) Tsx produces a long noncoding RNA and has general functions in the germline, stem cells, and brain. PLoS Genet 7(9):e1002248PubMedCentralPubMedCrossRefGoogle Scholar
  7. Aravin A et al (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442(7099):203–207PubMedGoogle Scholar
  8. Aravin AA et al (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31(6):785–799PubMedCentralPubMedCrossRefGoogle Scholar
  9. Arun G et al (2012) mrhl RNA, a long noncoding RNA, negatively regulates Wnt signaling through its protein partner Ddx5/p68 in mouse spermatogonial cells. Mol Cell Biol 32(15):3140–3152PubMedCentralPubMedCrossRefGoogle Scholar
  10. Babashah S, Soleimani M (2011) The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur J Cancer 47(8):1127–1137PubMedCrossRefGoogle Scholar
  11. Bachiller D et al (1991) Liposome-mediated DNA uptake by sperm cells. Mol Reprod Dev 30(3):194–200PubMedCrossRefGoogle Scholar
  12. Bahrami A, Ro JY, Ayala AG (2007) An overview of testicular germ cell tumors. Arch Pathol Lab Med 131(8):1267–1280PubMedGoogle Scholar
  13. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233PubMedCentralPubMedCrossRefGoogle Scholar
  14. Baudat F, Imai Y, de Massy B (2013) Meiotic recombination in mammals: localization and regulation. Nat Rev Genet 14(11):794–806PubMedCrossRefGoogle Scholar
  15. Baumann P, Benson FE, West SC (1996) Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87(4):757–766PubMedCrossRefGoogle Scholar
  16. Belleannee C et al (2012a) Role of microRNAs in controlling gene expression in different segments of the human epididymis. PLoS One 7(4):e34996PubMedCentralPubMedCrossRefGoogle Scholar
  17. Belleannee C, Thimon V, Sullivan R (2012b) Region-specific gene expression in the epididymis. Cell Tissue Res 349(3):717–731PubMedCrossRefGoogle Scholar
  18. Belleannee C et al (2013a) Epididymosomes convey different repertoires of microRNAs throughout the bovine epididymis. Biol Reprod 89(2):30PubMedCrossRefGoogle Scholar
  19. Belleannee C et al (2013b) microRNA signature is altered in both human epididymis and seminal microvesicles following vasectomy. Hum Reprod 28(6):1455–1467PubMedCrossRefGoogle Scholar
  20. Bhardwaj A, Singh S, Singh AP (2010) MicroRNA-based cancer therapeutics: big hope from small RNAs. Mol Cell Pharmacol 2(5):213–219PubMedCentralPubMedGoogle Scholar
  21. Bischof JM et al (2013) A genome-wide analysis of open chromatin in human epididymis epithelial cells reveals candidate regulatory elements for genes coordinating epididymal function. Biol Reprod 89(4):104PubMedCentralPubMedCrossRefGoogle Scholar
  22. Bjork JK et al (2010) miR-18, a member of oncomir-1, targets heat shock transcription factor 2 in spermatogenesis. Development 137(19):3177–3184PubMedCrossRefGoogle Scholar
  23. Bjorkgren I et al (2012) Dicer1 ablation in the mouse epididymis causes dedifferentiation of the epithelium and imbalance in sex steroid signaling. PLoS One 7(6):e38457PubMedCentralPubMedCrossRefGoogle Scholar
  24. Blakaj A, Lin H (2008) Piecing together the mosaic of early mammalian development through microRNAs. J Biol Chem 283(15):9505–9508PubMedCentralPubMedCrossRefGoogle Scholar
  25. Boerke A, Dieleman SJ, Gadella BM (2007) A possible role for sperm RNA in early embryo development. Theriogenology 68(Suppl 1):S147–S155PubMedCrossRefGoogle Scholar
  26. Bouhallier F et al (2010) Role of miR-34c microRNA in the late steps of spermatogenesis. RNA 16(4):720–731PubMedCentralPubMedCrossRefGoogle Scholar
  27. Bowles J et al (2006) Retinoid signaling determines germ cell fate in mice. Science 312(5773):596–600PubMedCrossRefGoogle Scholar
  28. Braun JE et al (2011) GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol Cell 44(1):120–133PubMedCrossRefGoogle Scholar
  29. Buchold GM et al (2010) Analysis of MicroRNA expression in the prepubertal testis. PLoS One 5(12):e15317PubMedCentralPubMedCrossRefGoogle Scholar
  30. Chen H et al (2012) Regulation of male fertility by CFTR and implications in male infertility. Hum Reprod Update 18(6):703–713PubMedCrossRefGoogle Scholar
  31. Comazzetto S et al (2014) Oligoasthenoteratozoospermia and infertility in mice deficient for miR-34b/c and miR-449 loci. PLoS Genet 10(10):e1004597PubMedCentralPubMedCrossRefGoogle Scholar
  32. Cooper TG (1986) The epididymis, sperm maturation and fertilisation. Springer, Berlin/Heidelberg/New York/London/Paris/Tokyo, pp 1–281CrossRefGoogle Scholar
  33. Cooper TG (1996) Epididymis and sperm function. Andrologia 28(Suppl 1):57–59PubMedGoogle Scholar
  34. Curry E, Safranski TJ, Pratt SL (2011) Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility. Theriogenology 76(8):1532–1539PubMedCrossRefGoogle Scholar
  35. Da Silva N et al (2011) A dense network of dendritic cells populates the murine epididymis. Reproduction 141(5):653–663PubMedCentralPubMedCrossRefGoogle Scholar
  36. Dacheux JL et al (2006) Human epididymal secretome and proteome. Mol Cell Endocrinol 250(1–2):36–42PubMedCrossRefGoogle Scholar
  37. Dacheux JL et al (2009) Mammalian epididymal proteome. Mol Cell Endocrinol 306(1–2):45–50PubMedCrossRefGoogle Scholar
  38. Dadoune JP (2009) Spermatozoal RNAs: what about their functions? Microsc Res Tech 72(8):536–551PubMedCrossRefGoogle Scholar
  39. Damestoy A et al (2005) Transforming growth factor beta-1 decreases the yield of the second meiotic division of rat pachytene spermatocytes in vitro. Reprod Biol Endocrinol 3:22PubMedCentralPubMedCrossRefGoogle Scholar
  40. de Boer CM et al (2012) DICER1 RNase IIIb domain mutations are infrequent in testicular germ cell tumours. BMC Res Notes 5:569PubMedCentralPubMedCrossRefGoogle Scholar
  41. De Rooij DG, Russell LD (2000) All you wanted to know about spermatogonia but were afraid to ask. J Androl 21(6):776–798PubMedGoogle Scholar
  42. Deng W, Lin H (2002) miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2(6):819–830PubMedCrossRefGoogle Scholar
  43. DeSano JT, Xu L (2009) MicroRNA regulation of cancer stem cells and therapeutic implications. AAPS J 11(4):682–692PubMedCentralPubMedCrossRefGoogle Scholar
  44. Duale N et al (2007) Molecular portrait of cisplatin induced response in human testis cancer cell lines based on gene expression profiles. Mol Cancer 6:53PubMedCentralPubMedCrossRefGoogle Scholar
  45. Faehnle CR, Joshua-Tor L (2007) Argonautes confront new small RNAs. Curr Opin Chem Biol 11(5):569–577PubMedCentralPubMedCrossRefGoogle Scholar
  46. Fullston T et al (2012) Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice. Hum Reprod 27(5):1391–1400PubMedCrossRefGoogle Scholar
  47. Fullston T et al (2013) Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J 27(10):4226–4243PubMedCrossRefGoogle Scholar
  48. Ganesan G, Rao SM (2008) A novel noncoding RNA processed by Drosha is restricted to nucleus in mouse. RNA 14(7):1399–1410PubMedCentralPubMedCrossRefGoogle Scholar
  49. Gapp K et al (2014) Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 17(5):667–669PubMedCentralPubMedCrossRefGoogle Scholar
  50. Garcia TX et al (2013) Constitutive activation of NOTCH1 signaling in Sertoli cells causes gonocyte exit from quiescence. Dev Biol 377(1):188–201PubMedCentralPubMedCrossRefGoogle Scholar
  51. Gillis AJ et al (2007) High-throughput microRNAome analysis in human germ cell tumours. J Pathol 213(3):319–328PubMedCrossRefGoogle Scholar
  52. Grivna ST et al (2006) A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20:1709–1714PubMedCentralPubMedCrossRefGoogle Scholar
  53. Gu S, Kay MA (2010) How do miRNAs mediate translational repression? Silence 1(1):11PubMedCentralPubMedCrossRefGoogle Scholar
  54. Guo X, Wu Y, Hartley RS (2009) MicroRNA-125a represses cell growth by targeting HuR in breast cancer. RNA Biol 6(5):575–583PubMedCentralPubMedCrossRefGoogle Scholar
  55. Hamatani T (2012) Human spermatozoal RNAs. Fertil Steril 97(2):275–281PubMedCrossRefGoogle Scholar
  56. Handel MA, Schimenti JC (2010) Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat Rev Genet 11(2):124–136PubMedGoogle Scholar
  57. Hawkins SM, Buchold GM, Matzuk MM (2011) Minireview: the roles of small RNA pathways in reproductive medicine. Mol Endocrinol 25(8):1257–1279PubMedCentralPubMedCrossRefGoogle Scholar
  58. Hayashi K et al (2008) MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 3(3):e1738PubMedCentralPubMedCrossRefGoogle Scholar
  59. Hermo L et al (2010) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech 73(4):241–278PubMedCrossRefGoogle Scholar
  60. Hess RA, Renato de Franca L (2008) Spermatogenesis and cycle of the seminiferous epithelium. In: Cheng CY (ed) Molecular mechanisms in spermatogenesis. Springer, New York, pp 1–15Google Scholar
  61. Hinton BT et al (1998) Testicular regulation of epididymal gene expression. J Reprod Fertil Suppl 53:47–57PubMedGoogle Scholar
  62. Hobbs RM et al (2012) Functional antagonism between Sall4 and Plzf defines germline progenitors. Cell Stem Cell 10(3):284–298PubMedCentralPubMedCrossRefGoogle Scholar
  63. Hu Z et al (2013) Hormonal regulation of microRNA expression in steroid producing cells of the ovary, testis and adrenal gland. PLoS One 8(10):e78040PubMedCentralPubMedCrossRefGoogle Scholar
  64. Huang Q et al (2008) The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10(2):202–210PubMedCrossRefGoogle Scholar
  65. Huang Y et al (2010) A study of miRNAs targets prediction and experimental validation. Protein Cell 1(11):979–986PubMedCentralPubMedCrossRefGoogle Scholar
  66. Huntzinger E et al (2013) The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets. Nucleic Acids Res 41(2):978–994PubMedCrossRefGoogle Scholar
  67. Huyghe E et al (2007) Impact of diagnostic delay in testis cancer: results of a large population-based study. Eur Urol 52(6):1710–1716PubMedCrossRefGoogle Scholar
  68. Jelinsky SA et al (2007) The rat epididymal transcriptome: comparison of segmental gene expression in the rat and mouse epididymides. Biol Reprod 76(4):561–570PubMedCrossRefGoogle Scholar
  69. Jervis KM, Robaire B (2001) Dynamic changes in gene expression along the rat epididymis. Biol Reprod 65(3):696–703PubMedCrossRefGoogle Scholar
  70. Jodar M et al (2013) The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update 19(6):604–624PubMedCentralPubMedCrossRefGoogle Scholar
  71. Johnston DS et al (2005) The mouse epididymal transcriptome: transcriptional profiling of segmental gene expression in the epididymis. Biol Reprod 73(3):404–413PubMedCrossRefGoogle Scholar
  72. Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88(3):375–384PubMedCrossRefGoogle Scholar
  73. Khazaie Y, Nasr Esfahani MH (2014) MicroRNA and male infertility: a potential for diagnosis. Int J Fertil Steril 8(2):113–118PubMedCentralPubMedGoogle Scholar
  74. Kimmins S, Sassone-Corsi P (2005) Chromatin remodelling and epigenetic features of germ cells. Nature 434(7033):583–589PubMedCrossRefGoogle Scholar
  75. Kimmins S et al (2004) Testis-specific transcription mechanisms promoting male germ-cell differentiation. Reproduction 128(1):5–12PubMedCrossRefGoogle Scholar
  76. Korhonen HM et al (2011) Dicer is required for haploid male germ cell differentiation in mice. PLoS One 6(9):e24821PubMedCentralPubMedCrossRefGoogle Scholar
  77. Kostereva N, Hofmann MC (2008) Regulation of the spermatogonial stem cell niche. Reprod Domest Anim 43(Suppl 2):386–392PubMedCentralPubMedCrossRefGoogle Scholar
  78. Koubova J et al (2006) Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci U S A 103(8):2474–2479PubMedCentralPubMedCrossRefGoogle Scholar
  79. Koubova J et al (2014) Retinoic acid activates two pathways required for meiosis in mice. PLoS Genet 10(8):e1004541PubMedCentralPubMedCrossRefGoogle Scholar
  80. Kraggerud SM et al (2013) Molecular characteristics of malignant ovarian germ cell tumors and comparison with testicular counterparts: implications for pathogenesis. Endocr Rev 34(3):339–376PubMedCentralPubMedCrossRefGoogle Scholar
  81. Krawetz SA et al (2011) A survey of small RNAs in human sperm. Hum Reprod 26(12):3401–3412PubMedCentralPubMedCrossRefGoogle Scholar
  82. Kristensen DM et al (2008) Origin of pluripotent germ cell tumours: the role of microenvironment during embryonic development. Mol Cell Endocrinol 288(1–2):111–118PubMedCrossRefGoogle Scholar
  83. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610PubMedGoogle Scholar
  84. Kubota H, Avarbock MR, Brinster RL (2004) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 101(47):16489–16494PubMedCentralPubMedCrossRefGoogle Scholar
  85. Kung JTY, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193(3):651–669PubMedCentralPubMedCrossRefGoogle Scholar
  86. Lan ZJ, Labus JC, Hinton BT (1998) Regulation of gamma-glutamyl transpeptidase catalytic activity and protein level in the initial segment of the rat epididymis by testicular factors: role of basic fibroblast growth factor. Biol Reprod 58(1):197–206PubMedCrossRefGoogle Scholar
  87. Landgraf P et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414PubMedCentralPubMedCrossRefGoogle Scholar
  88. Li M et al (2009a) MicroRNAs: control and loss of control in human physiology and disease. World J Surg 33(4):667–684PubMedCentralPubMedCrossRefGoogle Scholar
  89. Li C et al (2009b) Therapeutic microRNA strategies in human cancer. AAPS J 11(4):747–757PubMedCentralPubMedCrossRefGoogle Scholar
  90. Li Y et al (2012) Deep sequencing analysis of small non-coding RNAs reveals the diversity of microRNAs and piRNAs in the human epididymis. Gene 497(2):330–335PubMedCrossRefGoogle Scholar
  91. Li XZ et al (2013) An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol Cell 50(1):67–81PubMedCentralPubMedCrossRefGoogle Scholar
  92. Liu X, Fortin K, Mourelatos Z (2008) MicroRNAs: biogenesis and molecular functions. Brain Pathol 18(1):113–121PubMedCrossRefGoogle Scholar
  93. Liu WM et al (2012) Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci U S A 109(2):490–494PubMedCrossRefGoogle Scholar
  94. Liu L et al (2013) MicroRNA-302a sensitizes testicular embryonal carcinoma cells to cisplatin-induced cell death. J Cell Physiol 228(12):2294–2304PubMedCrossRefGoogle Scholar
  95. Looijenga LH, Oosterhuis JW (1999) Pathogenesis of testicular germ cell tumours. Rev Reprod 4(2):90–100PubMedCrossRefGoogle Scholar
  96. Lotvall J, Valadi H (2007) Cell to cell signalling via exosomes through esRNA. Cell Adh Migr 1(3):156–158PubMedCentralPubMedCrossRefGoogle Scholar
  97. Luk AC et al (2014) Long noncoding RNAs in spermatogenesis: insights from recent high-throughput transcriptome studies. Reproduction 147(5):R131–R141PubMedCrossRefGoogle Scholar
  98. Luo L et al (2010) Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes. PLoS One 5(8):e11744PubMedCentralPubMedCrossRefGoogle Scholar
  99. Ma L et al (2009) GASZ is essential for male meiosis and suppression of retrotransposon expression in the male germline. PLoS Genet 5(9):e1000635PubMedCentralPubMedCrossRefGoogle Scholar
  100. Ma W et al (2013) An androgen receptor-microrna-29a regulatory circuitry in mouse epididymis. J Biol Chem 288(41):29369–29381PubMedCentralPubMedCrossRefGoogle Scholar
  101. Maatouk DM et al (2008) Dicer1 is required for differentiation of the mouse male germline. Biol Reprod 79(4):696–703PubMedCrossRefGoogle Scholar
  102. Mahadevaiah SK et al (2001) Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27(3):271–276PubMedCrossRefGoogle Scholar
  103. Marcon E et al (2008a) miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosome Res 16(2):243–260PubMedCrossRefGoogle Scholar
  104. Marcon E et al (2008b) miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosom Res: Int J Mol Supramol Evol Asp Chromosom Biol 16(2):243–260CrossRefGoogle Scholar
  105. Marczylo EL et al (2012) Smoking induces differential miRNA expression in human spermatozoa: a potential transgenerational epigenetic concern? Epigenetics 7(5):432–439PubMedCrossRefGoogle Scholar
  106. McCallie B, Schoolcraft WB, Katz-Jaffe MG (2010) Aberration of blastocyst microRNA expression is associated with human infertility. Fertil Steril 93(7):2374–2382PubMedCrossRefGoogle Scholar
  107. McIver SC et al (2012a) A unique combination of male germ cell miRNAs coordinates gonocyte differentiation. PLoS One 7(4):e35553PubMedCentralPubMedCrossRefGoogle Scholar
  108. McIver SC et al (2012b) miRNA and mammalian male germ cells. Hum Reprod Update 18(1):44–59PubMedCrossRefGoogle Scholar
  109. McIver SC et al (2013) The rise of testicular germ cell tumours: the search for causes, risk factors and novel therapeutic targets. F1000 Res 2:55Google Scholar
  110. McLachlan RI et al (2002) Identification of specific sites of hormonal regulation in spermatogenesis in rats, monkeys, and man. Recent Prog Horm Res 57:149–179PubMedCrossRefGoogle Scholar
  111. Meikar O et al (2011) Chromatoid body and small RNAs in male germ cells. Reproduction 142(2):195–209PubMedCrossRefGoogle Scholar
  112. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159PubMedCrossRefGoogle Scholar
  113. Miller D, Ostermeier GC (2006) Spermatozoal RNA: why is it there and what does it do? Gynecol Obstet Fertil 34(9):840–846PubMedCrossRefGoogle Scholar
  114. Miller D et al (1999) A complex population of RNAs exists in human ejaculate spermatozoa: implications for understanding molecular aspects of spermiogenesis. Gene 237(2):385–392PubMedCrossRefGoogle Scholar
  115. Mittelbrunn M et al (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282PubMedCentralPubMedCrossRefGoogle Scholar
  116. Moens PB et al (2002) The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination. J Cell Sci 115(Pt 8):1611–1622PubMedGoogle Scholar
  117. Moretti F, Thermann R, Hentze MW (2010) Mechanism of translational regulation by miR-2 from sites in the 5′ untranslated region or the open reading frame. RNA 16(12):2493–2502PubMedCentralPubMedCrossRefGoogle Scholar
  118. Ni MJ et al (2011) Identification and characterization of a novel non-coding RNA involved in sperm maturation. PLoS One 6(10):e26053PubMedCentralPubMedCrossRefGoogle Scholar
  119. Nicholls PK et al (2011) Hormonal regulation of sertoli cell micro-RNAs at spermiation. Endocrinology 152(4):1670–1683PubMedCrossRefGoogle Scholar
  120. Nixon B et al (2002) Rabbit epididymal secretory proteins. I. Characterization and hormonal regulation. Biol Reprod 67(1):133–139PubMedCrossRefGoogle Scholar
  121. Novotny GW et al (2007) Analysis of gene expression in normal and neoplastic human testis: new roles of RNA. Int J Androl 30(4):316–326, discussion 326-7PubMedCrossRefGoogle Scholar
  122. O’Hara L et al (2011) Androgen receptor expression in the caput epididymal epithelium is essential for development of the initial segment and epididymal spermatozoa transit. Endocrinology 152(2):718–729PubMedCrossRefGoogle Scholar
  123. Oatley JM, Brinster RL (2012) The germline stem cell niche unit in mammalian testes. Physiol Rev 92(2):577–595PubMedCentralPubMedCrossRefGoogle Scholar
  124. Ogawa Y, Sun BK, Lee JT (2008) Intersection of the RNA interference and X-inactivation pathways. Science 320(5881):1336–1341PubMedCentralPubMedCrossRefGoogle Scholar
  125. Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30(4):460–471PubMedCrossRefGoogle Scholar
  126. Ortogero N et al (2013) Computer-assisted annotation of murine Sertoli cell small RNA transcriptome. Biol Reprod 88(1):3PubMedCrossRefGoogle Scholar
  127. Ostermeier GC et al (2004) Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature 429(6988):154PubMedCrossRefGoogle Scholar
  128. Ostermeier GC et al (2005) A suite of novel human spermatozoal RNAs. J Androl 26(1):70–74PubMedGoogle Scholar
  129. Panneerdoss S et al (2012) Androgen-responsive microRNAs in mouse Sertoli cells. PLoS One 7(7):e41146PubMedCentralPubMedCrossRefGoogle Scholar
  130. Papaioannou MD, Nef S (2010) microRNAs in the testis: building up male fertility. J Androl 31(1):26–33PubMedCrossRefGoogle Scholar
  131. Papaioannou MD et al (2009) Sertoli cell Dicer is essential for spermatogenesis in mice. Dev Biol 326(1):250–259PubMedCrossRefGoogle Scholar
  132. Papaioannou MD et al (2011) Loss of Dicer in Sertoli cells has a major impact on the testicular proteome of mice. Mol Cell Proteomics 10(4):M900587MCP200PubMedCrossRefGoogle Scholar
  133. Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13(4):271–282PubMedGoogle Scholar
  134. Pauli A, Rinn JL, Schier AF (2011) Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet 12(2):136–149PubMedCentralPubMedCrossRefGoogle Scholar
  135. Port M et al (2011) Micro-RNA expression in cisplatin resistant germ cell tumor cell lines. Mol Cancer 10:52PubMedCentralPubMedCrossRefGoogle Scholar
  136. Rakoczy J et al (2013) MicroRNAs-140-5p/140-3p modulate Leydig cell numbers in the developing mouse testis. Biol Reprod 88(6):143PubMedCrossRefGoogle Scholar
  137. Ro S et al (2007a) Cloning and expression profiling of testis-expressed microRNAs. Dev Biol 311(2):592–602PubMedCentralPubMedCrossRefGoogle Scholar
  138. Ro S et al (2007b) Cloning and expression profiling of testis-expressed piRNA-like RNAs. RNA 13(10):1693–1702PubMedCentralPubMedCrossRefGoogle Scholar
  139. Robaire B, Hamzeh M (2011) Androgen action in the epididymis. J Androl 32(6):592–599PubMedCrossRefGoogle Scholar
  140. Robaire B, Hermo L (1988) Efferent ducts, epididymis, and vas deferens: structure, functions, and their regulation. In: Neil J, Knobil E (eds) The physiology of reproduction. Raven Press, New York, pp 999–1080Google Scholar
  141. Rodgers AB et al (2013) Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci 33(21):9003–9012PubMedCentralPubMedCrossRefGoogle Scholar
  142. Romero Y et al (2011) Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects. PLoS One 6(10):e25241PubMedCentralPubMedCrossRefGoogle Scholar
  143. Rossi P, Dolci S (2013) Paracrine mechanisms involved in the control of early stages of mammalian spermatogenesis. Front Endocrinol (Lausanne) 4:181Google Scholar
  144. Ruwanpura SM, McLachlan RI, Meachem SJ (2010) Hormonal regulation of male germ cell development. J Endocrinol 205(2):117–131PubMedCrossRefGoogle Scholar
  145. Sabbaghian N et al (2013) Germ-line DICER1 mutations do not make a major contribution to the etiology of familial testicular germ cell tumours. BMC Res Notes 6:127PubMedCentralPubMedCrossRefGoogle Scholar
  146. Salas-Huetos A et al (2014) New insights into the expression profile and function of micro-ribonucleic acid in human spermatozoa. Fertil Steril 102(1):213–222.e4PubMedCrossRefGoogle Scholar
  147. Santoro F et al (2013) Imprinted Igf2r silencing depends on continuous Airn lncRNA expression and is not restricted to a developmental window. Development 140(6):1184–1195PubMedCrossRefGoogle Scholar
  148. Shinohara A, Ogawa H, Ogawa T (1992) Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69(3):457–470PubMedCrossRefGoogle Scholar
  149. Shomron N, Levy C (2009) MicroRNA-biogenesis and Pre-mRNA splicing crosstalk. J Biomed Biotechnol 2009:594678PubMedCentralPubMedGoogle Scholar
  150. Shum WW et al (2014) Epithelial basal cells are distinct from dendritic cells and macrophages in the mouse epididymis. Biol Reprod 90(5):90PubMedCentralPubMedCrossRefGoogle Scholar
  151. Sipila P et al (2006) Differential endocrine regulation of genes enriched in initial segment and distal caput of the mouse epididymis as revealed by genome-wide expression profiling. Biol Reprod 75(2):240–251PubMedCrossRefGoogle Scholar
  152. Skinner MK, Anway MD (2005) Seminiferous cord formation and germ-cell programming: epigenetic transgenerational actions of endocrine disruptors. Ann N Y Acad Sci 1061:18–32PubMedCrossRefGoogle Scholar
  153. Smith LB, Walker WH (2014) The regulation of spermatogenesis by androgens. Semin Cell Dev Biol 30:2–13PubMedCrossRefGoogle Scholar
  154. Song H-W, Wilkinson MF (2014) Transcriptional control of spermatogonial maintenance and differentiation. Semin Cell Dev Biol 30:14–26PubMedCrossRefGoogle Scholar
  155. Sullivan R, Saez F (2013) Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology. Reproduction 146(1):R21–R35PubMedCrossRefGoogle Scholar
  156. Sullivan R et al (2005) Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cells Mol Dis 35(1):1–10PubMedCrossRefGoogle Scholar
  157. Sullivan R, Frenette G, Girouard J (2007) Epididymosomes are involved in the acquisition of new sperm proteins during epididymal transit. Asian J Androl 9(4):483–491PubMedCrossRefGoogle Scholar
  158. Sun D et al (2014) Regulation of several androgen-induced genes through the repression of the miR-99a/let-7c/miR-125b-2 miRNA cluster in prostate cancer cells. Oncogene 33(11):1448–1457PubMedCrossRefGoogle Scholar
  159. Syring I et al (2015) Circulating serum microRNA (miR-367-3p, miR-371a-3p, miR-372-3p, miR-373-3p) as biomarkers for patients with testicular germ cell cancers. J Urol 193(1) 331–7Google Scholar
  160. Tanaka K et al (2013) Tumor-suppressive function of protein-tyrosine phosphatase non-receptor type 23 in testicular germ cell tumors is lost upon overexpression of miR142-3p microRNA. J Biol Chem 288(33):23990–23999PubMedCentralPubMedCrossRefGoogle Scholar
  161. Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets. Nat Struct Mol Biol 17(10):1169–1174PubMedCrossRefGoogle Scholar
  162. Thomson T, Lin H (2009) The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol 25:355–376PubMedCentralPubMedCrossRefGoogle Scholar
  163. Todorova K et al (2013) Fundamental role of microRNAs in androgen-dependent male reproductive biology and prostate cancerogenesis. Am J Reprod Immunol 69(2):100–104PubMedCrossRefGoogle Scholar
  164. Tong MH et al (2012) Two miRNAs clusters, Mir-17-92 (Mirc1) and Mir-106b-25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice. Biol Reprod 86(3):72Google Scholar
  165. Tscherner A et al (2014) MicroRNA-34 family expression in bovine gametes and preimplantation embryos. Reprod Biol Endocrinol 12(1):85PubMedCentralPubMedCrossRefGoogle Scholar
  166. Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659PubMedCrossRefGoogle Scholar
  167. van de Geijn GJ, Hersmus R, Looijenga LH (2009) Recent developments in testicular germ cell tumor research. Birth Defects Res C Embryo Today 87(1):96–113PubMedCrossRefGoogle Scholar
  168. van den Driesche S et al (2014) Regulation of the germ stem cell niche as the foundation for adult spermatogenesis: a role for miRNAs? Semin Cell Dev Biol 29:76–83PubMedCrossRefGoogle Scholar
  169. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318(5858):1931–1934PubMedCrossRefGoogle Scholar
  170. Viger RS, Robaire B (1996) The mRNAs for the steroid 5 alpha-reductase isozymes, types 1 and 2, are differentially regulated in the rat epididymis. J Androl 17(1):27–34PubMedGoogle Scholar
  171. Voorhoeve PM et al (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124(6):1169–1181PubMedCrossRefGoogle Scholar
  172. Waltering KK et al (2011) Androgen regulation of micro-RNAs in prostate cancer. Prostate 71(6):604–614PubMedCrossRefGoogle Scholar
  173. Wang H, Hoog C (2006) Structural damage to meiotic chromosomes impairs DNA recombination and checkpoint control in mammalian oocytes. J Cell Biol 173(4):485–495PubMedCentralPubMedCrossRefGoogle Scholar
  174. Wang X et al (2008) Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454(7200):126–130PubMedCentralPubMedCrossRefGoogle Scholar
  175. Wang Y et al (2013) Endogenous miRNA sponge lincRNA-RoR regulates Oct4, nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 25(1):69–80PubMedCrossRefGoogle Scholar
  176. Welsh M et al (2009) Androgen action via testicular peritubular myoid cells is essential for male fertility. FASEB J 23(12):4218–4230PubMedCentralPubMedCrossRefGoogle Scholar
  177. Welsh M et al (2012) Androgen receptor signalling in peritubular myoid cells is essential for normal differentiation and function of adult Leydig cells. Int J Androl 35(1):25–40PubMedCrossRefGoogle Scholar
  178. Witkos TM, Koscianska E, Krzyzosiak WJ (2011) Practical aspects of microRNA target prediction. Curr Mol Med 11(2):93–109PubMedCentralPubMedCrossRefGoogle Scholar
  179. Wu Q et al (2012) The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J Biol Chem 287(30):25173–25190PubMedCentralPubMedCrossRefGoogle Scholar
  180. Yadav RP, Kotaja N (2014) Small RNAs in spermatogenesis. Mol Cell Endocrinol 382(1):498–508PubMedCrossRefGoogle Scholar
  181. Yan N et al (2007) A microarray for microRNA profiling in mouse testis tissues. Reproduction 134(1):73–79PubMedCrossRefGoogle Scholar
  182. Yan N et al (2009) Microarray profiling of microRNAs expressed in testis tissues of developing primates. J Assist Reprod Genet 26(4):179–186PubMedCentralPubMedCrossRefGoogle Scholar
  183. Yan Z et al (2011) Widespread expression of piRNA-like molecules in somatic tissues. Nucleic Acids Res 39(15):6596–6607PubMedCentralPubMedCrossRefGoogle Scholar
  184. Yang NQ et al (2014) MiRNA-1297 induces cell proliferation by targeting phosphatase and tensin homolog in testicular germ cell tumor cells. Asian Pac J Cancer Prev 15(15):6243–6246PubMedCrossRefGoogle Scholar
  185. Yeung CH et al (1994) Basal cells of the human epididymis – antigenic and ultrastructural similarities to tissue-fixed macrophages. Biol Reprod 50(4):917–926PubMedCrossRefGoogle Scholar
  186. Yu Z, Raabe T, Hecht NB (2005) MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod 73(3):427–433PubMedCrossRefGoogle Scholar
  187. Zhang B, Wang Q, Pan X (2007) MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210(2):279–289PubMedCrossRefGoogle Scholar
  188. Zhang L et al (2010a) A novel ncRNA gene from mouse chromosome 5 trans-splices with Dmrt1 on chromosome 19. Biochem Biophys Res Commun 400(4):696–700PubMedCrossRefGoogle Scholar
  189. Zhang J et al (2010b) Comparative profiling of genes and miRNAs expressed in the newborn, young adult, and aged human epididymides. Acta Biochim Biophys Sin 42(2):145–153PubMedCrossRefGoogle Scholar
  190. Zhang J et al (2010c) Comparative profiling of genes and miRNAs expressed in the newborn, young adult, and aged human epididymides. Acta Biochim Biophys Sin (Shanghai) 42(2):145–153CrossRefGoogle Scholar
  191. Zhang YL et al (2011) Identification of microRNAs and application of RNA interference for gene targeting in vivo in the rat epididymis. J Androl 32(6):587–591PubMedCrossRefGoogle Scholar
  192. Zhang Y, Yang P, Wang XF (2014) Microenvironmental regulation of cancer metastasis by miRNAs. Trends Cell Biol 24(3):153–160PubMedCrossRefGoogle Scholar
  193. Zhao J et al (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322(5902):750–756PubMedCentralPubMedCrossRefGoogle Scholar
  194. Zhong X et al (2010) Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells. J Biol Chem 285(53):41961–41971PubMedCentralPubMedCrossRefGoogle Scholar
  195. Zhou Q et al (2002) Localization of androgen and estrogen receptors in adult male mouse reproductive tract. J Androl 23(6):870–881PubMedGoogle Scholar
  196. Zhu R et al (2007) Testicular germ cell tumor susceptibility genes from the consomic 129.MOLF-Chr19 mouse strain. Mamm Genome 18(8):584–595PubMedCentralPubMedCrossRefGoogle Scholar
  197. Zovoilis A et al (2008) Multipotent adult germline stem cells and embryonic stem cells have similar microRNA profiles. Mol Hum Reprod 14(9):521–529PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Priority Research Centers in Chemical Biology and Reproductive Science, Discipline of Biological Sciences, School of Environmental & Life SciencesUniversity of NewcastleCallaghanAustralia

Personalised recommendations