Skip to main content

Characterization and Research Methods of Gas-Exploded Materials

  • Chapter
  • First Online:
Gas Explosion Technology and Biomass Refinery
  • 489 Accesses

Abstract

The cell length, cell wall thickness, and lumen diameter are the main characteristics of cellulose materials. Different products, such as paper, panel, and fuels, call for different length conditions of fibrocytes. Furthermore, during biomass refinery process, fibers are about to change through various physical or chemical treatments, which will affect the properties. Thus, it is necessary to analyze the cell length of fibrocytes in this part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li HP. Plant microtechnology. Beijing: Science Press; 2009.

    Google Scholar 

  2. Pulp and Paper Manual, Part 1: Cellulosic materials and chemical materials. Beijing: China Light Industry Press; 1987.

    Google Scholar 

  3. Shi SL, He FW. Analysis and testing of pulping and paper. Beijing: China Light Industry Press; 2003.

    Google Scholar 

  4. Xing S. Establishment of semi-quantitative electrophoresis technology and the application in functional proteomics of Aspergillusniger. Ji’nan: Shandong University; 2009.

    Google Scholar 

  5. Zeng M, Mosier NS, Huang CP, Sherman DM. Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis. Biotechnol Bioeng. 2007;97(2):265–78. doi:10.1002/bit.21298.

    Article  CAS  PubMed  Google Scholar 

  6. Wang JH. Characteristics and micrographia of pulping fibers. Beijing: China Light Industry Press; 1999.

    Google Scholar 

  7. Zhang XZ. Electronic micro-analysis. Beijing: Tsinghua University Press; 2006.

    Google Scholar 

  8. Ding SY, Himmel ME. The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem. 2006;54(3):597–606. doi:10.1021/jf051851z.

    Article  CAS  PubMed  Google Scholar 

  9. Himmel ME. Corn stover conversion to biofuels: DOE’s preparation for readiness in 2012. Cellulose. 2009;16(4):531–4. doi:10.1007/s10570-009-9335-8.

    Article  Google Scholar 

  10. Wang LS, Gao PJ, Shi DX. Quantitative analysis of natural cotton fiber surface ultrastructure and its changes—determination of surface roughness using atomic force microscopy. J Shandong Univ. 2007;41(6):132–139. No. 1671-9352(2006)06-0132-08.

    Google Scholar 

  11. Piao Z, Li YM, Ma S. Environmental scanning electron microscope observation of microorganisms invading straws during compost. J Ecol Rural Environ. 2011;5:98–100. No. 1673-4831(2011)05-0098-03.

    Google Scholar 

  12. Li ZG. Cellulose physicochemistry. Beijing: China financial economic publishing house; 1965.

    Google Scholar 

  13. Gao J, Tang HG. Cellulose Science. Beijing: Science Press; 1996.

    Google Scholar 

  14. Fan PC, Tian J, Huang JM. Determination methods of cellulose and lignin in peanut shell. J Chongqing Inst Technol. 2008;10(5):64–65. No. 1673-1980(2008)05-0064-02.

    Google Scholar 

  15. Van Soest P, Wine R. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. J Assoc Offic Anal Chem. 1967;50:50–5.

    Google Scholar 

  16. Xue HF, Meng QX. Comparison of determination methods of NDF, ADF and lignin contents in ruminant’s forage. Chin J Anim Sci. 2006;42(19):41–45. No. 0258-7033(2006)19-0041-05.

    Google Scholar 

  17. Chen WJ, Cheng X. Determination of lignin content in peanut shell using sulfuric acid method. J Minjiang Coll. 2002;23(2):72–73. No. 1009-7821(2002)02-0072-02.

    Google Scholar 

  18. Ren Q, Hu YJ, Li ZY. Lignin content and peroxidase activity in injured Pinusmassoniana. Acta Ecol Sin. 2007;27(11):4895–4899. No. 1000-0933(2007)11-4895-05.

    Google Scholar 

  19. Zhang XY, Wang LX, Liu B. Determination of trace lignin in flax fiber using nephelometry. Chem Adhes. 2004;6:368–369. No. 1001-0017(2004)06-0368-02.

    Google Scholar 

  20. Li GY, Huang AM, Wang G. Determination of Klason lignin content in moso bamboo using near infrared spectroscopy. Spectrosc Spect Anal. 2007;27(10):1977–1980. No. 1000-0593(2007)10-1977-04.

    Google Scholar 

  21. Wankheds DB, Tharanathan RN. Sasame (Sesamunindicum) carbohydrates. J Agric Food Chem. 1976;24(3):655–9. doi:10.1021/jf60205a065.

    Article  Google Scholar 

  22. Jing JH, Ding ZR. Biochemical analytical methods of plants. Beijing: Science Press; 1981.

    Google Scholar 

  23. Ren SX, Jiang GQ, Qu HJ. The chemical experiment tutorial of plants. Harbin: Northeast Forestry University Press; 2008.

    Google Scholar 

  24. Peng WX. Theory and application of wood extracts osmotic barrier. Guangzhou: South China Agricultural University; 2006.

    Google Scholar 

  25. Cao DJ, Huang XM. Study of plants’ pectin determination using AAS method. J Anhui Agric Univ. 2000;27(2):202–203. No. 1000-2197(2000)02-0202-02.

    Google Scholar 

  26. Xiao AP, Li W, Leng J. Study of the rapid determination of ramee pectin using near infrared spectroscopy. Plant Fiber Sci-China. 2009;31(4):238–241. No. 1673-7636(2009)04-0238-04.

    Google Scholar 

  27. Xiong CD, Li HY, Zeng QF. Determination of ramee pectin content using microwave-assisted method. Plant Fiber Sci-China. 2008;30(2):79–83. No. 1673-7636(2008)02-0079-06.

    Google Scholar 

  28. Cai SH, Zhou HP, Wang CX. Duty ratio and fractal dimension calculation of Particulate debris under different stacking conditions. GuizhouSci. 2007;25(1):9–12. No. 1003-6563(2007)01-0009-04.

    Google Scholar 

  29. Jia XH, Li XR, Zhang JG. Spatial variability analysis of the soil particle fractal dimension in the ammopiptanthusmongolicus brush land. ActaEcol Sin. 2006;26(9):2827–2833. No. 1000-0933(2006)09-2827-07.

    Google Scholar 

  30. Duan YY, Wang L, Chen HZ. Digital image analysis and fractal-based kinetic modelling for fungal biomass determination in solid-state fermentation. Biochem Eng J. 2012;67(15):60–7. doi:10.1016/j.bej.2012.04.020.

    Article  CAS  Google Scholar 

  31. Liu PS. Determination of specific surface area and pore morphology of porous materials. Rare Met Mater Eng. 2006;35(A02):25–29. No. 1002-185X(2006)S2-025-05.

    Google Scholar 

  32. http://course.tju.edu.cn/wlhx/pages/exec/jiemian/gn12.1.htm.

  33. Fu XC, Shen WX, Yao TY. Physical chemistry (volume 2). Beijing: Higher Education Press; 1990.

    Google Scholar 

  34. http://baike.baidu.com/view/637430.htm.

  35. Tavana H, Simon F, Grundke K. Interpretation of contact angle measurements on two different fluoropolymers for the determination of solid surface tension. J Colloid Interf Sci. 2005;291(2):497–506. doi:10.1016/j.jcis.2005.05.001.

    Article  CAS  Google Scholar 

  36. Chen XM, Wang G, Cheng HT. Determining the contact angles of several plant fibers using mechanics method. J Cent S For Uni Sci Technol. 2011;31(4):192–519. No. 1673-923X(2011)04-0192-04.

    Google Scholar 

  37. Saho XX. Research of the Lewis acids and bases of wood during contact angle analysis. Int Wood Ind. 2003;33(5):35.

    Google Scholar 

  38. Mao YA. Study of the carbon fiber surface acid-base property using contact angle determination method. Chin J Polym Mater Sci Eng. 1993;9(5):131–4.

    CAS  Google Scholar 

  39. Webb PA, Orr C. Analytical methods in fine particle technology. Norcross: Micromeritics; 1997.

    Google Scholar 

  40. Bei E, Li JS, Chen CX. Fluid dynamics of porous media. Beijing: China architecture and building Press; 1983.

    Google Scholar 

  41. Schroumldinger E, Scheideggcr A, Wang HX. Percolation physics in porous media. Beijing: Petroleum industry Press; 1982.

    Google Scholar 

  42. Xu YM. Wood science. Beijing: China forestry publishing; 2006.

    Google Scholar 

  43. Li JH, Yu SY. Water activity study of the shaft model solid state fermentation medium. Sci Technol Food Ind. 2007;27(2):77–9. doi:10.13386/j.issn1002-0306.2006.12.016.

    Google Scholar 

  44. Zheng YH, Hua ZL, Ma YZ. Determination of water activity in food. Mod Instrum. 2006;12(2):11–4.

    Google Scholar 

  45. Luo YR. Chemical bond energy of modern science and its application. Hefei: Press of University of Science and Technology of China; 2008.

    Google Scholar 

  46. Fu XC, Shen WX, Yao TY. Physical chemistry, vol. 1. Beijing: Higher Education Press; 2006.

    Google Scholar 

  47. Yu QS, Fang WJ. Liquid enthalpy determination of oil fraction obtained from Xinjiang crude oil. Petrol Proc Petrochem. 1995;26(8):55–8.

    CAS  Google Scholar 

  48. Lu L, Lu F, Luo YH. Heat conductivity determination of rice straw using probe method. J Shanghai Jiaotong Univ. 2009;9:1461–1464. No. 1006-2467(2009)09-1461-04+1468.

    Google Scholar 

  49. Lin JG, Chen RY, Yang QX. Determination of wood radial thermal conductivity using analogy method. J Biomath. 2005;20(2):251–255. No. 1001-9626(2005)02-0251-05.

    Google Scholar 

  50. Samaniuk J, Wang J, Root T. Rheology of concentrated biomass. Korea-AustRheol. 2011;J23(4):237–45. doi:10.1007/s13367-011-0029-z.

    Google Scholar 

  51. Ehrhardt MR. Rheology of biomass. 2008. University of Wisconsin, Master’s thesis.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhang Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht and Chemical Industry Press

About this chapter

Cite this chapter

Chen, H. (2015). Characterization and Research Methods of Gas-Exploded Materials. In: Gas Explosion Technology and Biomass Refinery. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7414-7_5

Download citation

Publish with us

Policies and ethics