Skip to main content

Gas Explosion Technique Principles and Biomass Refining Pandect

  • Chapter
  • First Online:
Gas Explosion Technology and Biomass Refinery
  • 519 Accesses

Abstract

Biomass refining uses lignocellulose biorenewable resources as the main raw materials. To achieve high efficiency and value of biomass conversion, pretreatments are needed to destruct compact complex structures for structural separation. Among them, gas explosion technique has been developing a biomass feedstock pretreatment method in recent years. The main components of lignocellulosic materials are cellulose, hemicellulose, and lignin. The gas explosion is to deal with fiber raw materials by the use of high-temperature and pressure steam or other vapor media. In the physical and chemical effects, hemicellulose is hydrolyzed partially and the softening lignin becomes readily biodegradable, so that the timber lateral coupling strength decreases. The pores of cells are filled with high-pressure gas becoming soft and plastic. During sudden decompression, the rapid expansion of gas in the cavity produces an explosion, bursting into fine wood fiber bundles, in order to achieve separation of components and structural changes in the feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen HZ, Liu LY. Principle and applications of steam explosion technology. Beijing: Chemical Industry Press; 2007.

    Google Scholar 

  2. Chen HZ. Process engineering in plant-based procucts. New York: Nova Science Publishers; 2009.

    Google Scholar 

  3. Zhang YZ, Fu XG, Chen HZ. Pretreatment based on two-step steam explosion combined with an intermediate separation of fiber cells-optimization of fermentation of corn straw hydrolysates. Bioresour Technol. 2012;121:100–4.

    Article  CAS  PubMed  Google Scholar 

  4. Chen GZ, Chen HZ. Extraction and deglycosylation of flavonoids from sumac fruits using steam explosion. Food Chem. 2011;126(4):1934–8.

    Article  CAS  PubMed  Google Scholar 

  5. Chen HZ, Peng XW. A steam explosion and biological coupling method to convert resveratrol glucoside into resveratrol; 2010. China patent, 201010128286.3.

    Google Scholar 

  6. DeLong E. Method of rendering lignin separable from cellulose and hemicellulose in lignocellulosic material and the product produced; 1981. Canadian patent, 1096374.

    Google Scholar 

  7. Marchessault R, Malhotra S, Jones A. The wood explosion process: characterization and uses of lignin/cellulose products. In: Wood and agricultural residues. New York: Academic Press; 1983.

    Google Scholar 

  8. DeLong EA. Method of rendering lignin separable from cellulose and hemicellulose in lignocellulosic material and the product produced; 1983. Canadian patent, 1141376.

    Google Scholar 

  9. Foody P. Method for increasing the accessibility of cellulose in lignocellulosic materials, particularly hardwoods agricultural residues and the like; 1984. US Patents, 4461648.

    Google Scholar 

  10. Foody P. Method for obtaining superior yields of accessible cellulose and hemicellulose from lignocellulosic materials; 1984. CA patent CA1,163,058.

    Google Scholar 

  11. Chen HZ, Zhang YZ. Insitu steam explosion and its equipments; 2011. China patent, 201110068899.7.

    Google Scholar 

  12. Chen HZ, Zhang YZ. Steam explosion equipments at laboratory scales; 2011. Chinese patent, 201110069290.1.

    Google Scholar 

  13. Araque E, Parra C, Freer J, Contreras D, Rodríguez J, Mendonça R, Baeza J. Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzyme Microb Technol. 2008;43(2):214–9.

    Article  CAS  Google Scholar 

  14. Xu F, Sun JX, Sun RC, Fowler P. Comparative study of organosolv lignins from wheat straw. Ind Crops Prod. 2006;23(2):180–93.

    Article  CAS  Google Scholar 

  15. Sannigrahi P, Miller SJ, Ragauskas AJ. Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydr Res. 2010;345(7):965–70.

    Article  CAS  PubMed  Google Scholar 

  16. Chen HZ, Liu LY. Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresour Technol. 2007;98(3):666–76.

    Article  Google Scholar 

  17. Chen HZ, Li ZH. Studies on ethanol extraction of steam exploded wheat straw. Chem Ind For Prod. 2000;20(3):33–9.

    CAS  Google Scholar 

  18. Rodríguez A, Serrano L, Moral A. Pulping of rice straw with high-boiling point organosolv solvents. Biochem Eng J. 2008;42(3):243–7.

    Article  Google Scholar 

  19. Rodríguez A, Serrano L, Moral A. Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches. Bioresour Technol. 2008;99(6):1743–9.

    Article  PubMed  Google Scholar 

  20. Sun FB, Chen HZ. Evaluation of enzymatic hydrolysis of wheat straw pretreated by atmospheric glycerol autocatalysis. J Chem Technol Biotechnol. 2007;82(11):1039–44.

    Article  CAS  Google Scholar 

  21. Sun FB, Chen HZ. Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerol pretreatment. Bioresour Technol. 2008;99(14):6156–61.

    Article  CAS  PubMed  Google Scholar 

  22. Sun FB, Chen HZ. Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw. Bioresour Technol. 2008;99(13):5474–9.

    Article  CAS  PubMed  Google Scholar 

  23. Sun FB, Chen HZ. Comparison of atmospheric aqueous glycerol and steam explosion pretreatments of wheat straw for enhanced enzymatic hydrolysis. J Chem Technol Biotechnol. 2008;83(5):707–14.

    Article  CAS  Google Scholar 

  24. Hayes DJ. An examination of biorefining processes, catalysts and challenges. Catal Today. 2009;145(1):138–51.

    Article  CAS  Google Scholar 

  25. Swatloski RP, Spear SK, Holbrey JD. Dissolution of cellose with ionic liquids. J Am Chem Soc. 2002;124(18):4974–5.

    Article  CAS  PubMed  Google Scholar 

  26. Liu LY, Chen HZ. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM] Cl. Chin Sci Bull. 2006;51(20):2432–6.

    Article  CAS  Google Scholar 

  27. Saha BC, Cotta MA. Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol Prog. 2006;22(2):449–53.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao X, Peng F, Cheng K. Enhancement of the enzymatic digestibility of sugarcane bagasse by alkali-peracetic acid pretreatment. Enzyme Microb Technol. 2009;44(1):17–23.

    Article  CAS  Google Scholar 

  29. Chen HZ, Han YJ, Xu J. Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide. Process Biochem. 2008;43(12):1462–6.

    Article  CAS  Google Scholar 

  30. Yamashita Y, Shono M, Sasaki C. Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohydr Polym. 2010;79(4):914–20.

    Article  CAS  Google Scholar 

  31. Yao X, Zhang Q, Yang X. Pretreatment process for lignocellulose by alkaline H2O2. Chem Eng. 2009;26(003):34–7.

    CAS  Google Scholar 

  32. Jin SY, Chen HZ. Fractionation of fibrous fraction from steam-exploded rice straw. Process Biochem. 2007;42(2):188–92.

    Article  CAS  Google Scholar 

  33. Chen HZ, Liu LY, Jin SY, Zhai W. Components fractionation of crop straw; 2006. China patent, 200610075690.2.

    Google Scholar 

  34. Oliva JM, Sáez F, Ballesteros I. Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Appl Biochem Biotechnol. 2003;105(1):141–53.

    Article  PubMed  Google Scholar 

  35. Luo C, Brink DL, Blanch HW. Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioenergy. 2002;22(2):125–38.

    Article  CAS  Google Scholar 

  36. Martinez A, Rodriguez ME, Wells ML. Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog. 2001;17(2):287–93.

    Article  CAS  PubMed  Google Scholar 

  37. Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74(1):25–33.

    Article  CAS  Google Scholar 

  38. Klinke HB, Thomsen A, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 2004;66(1):10–26.

    Article  CAS  PubMed  Google Scholar 

  39. Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol. 2000;74(1):17–24.

    Article  CAS  Google Scholar 

  40. Mussatto SI, Roberto IC. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol. 2004;93(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  41. Almeida JRM, Bertilsson M, Gorwa-Grauslund MF. Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol. 2009;82(4):625–38.

    Article  CAS  PubMed  Google Scholar 

  42. Liu ZL, Slininger PJ, Gorsich SW. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol. 2005;121:451–60.

    Article  PubMed  Google Scholar 

  43. Li H, Zhang X, Shen Y. Inhititors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulsoe—a review. Chin J Biotech. 2009;25(9):1321–8.

    CAS  Google Scholar 

  44. Chen HZ. Cellulose biotechnology. Beijing: Chemical Industrial Press; 2005.

    Google Scholar 

  45. Chen HZ, Li ZH. No-contaminative steam explosion and its application. J Cellul Sci Technol. 2002;10(3):47–52.

    CAS  Google Scholar 

  46. Xu FJ, Chen HZ. New developments of solid state fermentation in the applied aspects of resource and environment. Chin Biotechnol Bull. 2002;3:27–30.

    Google Scholar 

  47. Yang S, Ding WY, Chen HZ. Enzymatic hydrolysis of steam explosion rice straw in membrane bioreactor. Environ Sci. 2005;26(5):161–3.

    CAS  Google Scholar 

  48. Zhai W, Chen HZ, Ma RY. Structure characteristics of cellulose after dissolution and regeneration from the ionic liquid [bmim] Cl. J Beijing Univ Chem Technol. 2007;34(2):138–41.

    CAS  Google Scholar 

  49. Chen HZ, Li ZH. Bioreactor engineering. Adv Bio-eng. 1998;18(4):46–9.

    Google Scholar 

  50. Chen HZ, Qiu WH. The crucial problems and recent advance on producing fuel alcohol by fermentation of straw. Prog Chem. 2007;19(7):1116–21.

    CAS  Google Scholar 

  51. Qu Y. Lignocellulose enzymatic hydrolysis and biorefinery. Beijing: Chemial Industry Press; 2011.

    Google Scholar 

  52. Ding SY, Himmel ME. The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem. 2006;54(3):597–606.

    Article  CAS  PubMed  Google Scholar 

  53. Wyman CE, Dale BE, Elander RT. Coordinated development of leading biomass pretreatment technologies. Bioresour Technol. 2005;96(18):1959–66.

    Article  CAS  PubMed  Google Scholar 

  54. Chandra R, Bura R, Mabee W. Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Biofuels. 2007;108:67–93.

    Article  CAS  Google Scholar 

  55. Galbe M, Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol production. Biofuels. 2007;108:41–65.

    Article  CAS  Google Scholar 

  56. Chen HZ, Li ZH. Lignocellulose fractionation. J Cellul Sci Technol. 2003;11(4):31–40.

    CAS  Google Scholar 

  57. Alvira P, Tomás-Pejó E, Ballesteros M. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol. 2010;101(13):4851–61.

    Article  CAS  PubMed  Google Scholar 

  58. Mosier N, Wyman C, Dale B. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96(6):673–86.

    Article  CAS  PubMed  Google Scholar 

  59. Yang B, Wyman CE. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioprod Biorefin. 2008;2(1):26–40.

    Article  CAS  Google Scholar 

  60. Saddler J, Ramos L, Breuil C. Steam pretreatment of lignocellulosic residues. Oxford: Oxford University Press; 1993.

    Google Scholar 

  61. Wang L, Zhang Z, Qu Y. Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Beijing: Chemical Industrial Press; 2012.

    Google Scholar 

  62. Chen HZ, Wang L. Research progress on key process and integrated eco-industrial chains of biobased products-proposal of biobased product process engineeing. Chin J Process Eng. 2008;8(4):676–81.

    CAS  Google Scholar 

  63. Jin SY, Chen HZ. Structural properties and enzymatic hydrolysis of rice straw. Process Biochem. 2006;41(6):1261–4.

    Article  CAS  Google Scholar 

  64. He L. Straw super molecular characterization. North China Electric Power University; 2009.

    Google Scholar 

  65. Song P, Hu M, Yao J. Process equipment and control engineering and process engineering. High Educ Chem Eng. 2004;2:79–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhang Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht and Chemical Industry Press

About this chapter

Cite this chapter

Chen, H. (2015). Gas Explosion Technique Principles and Biomass Refining Pandect. In: Gas Explosion Technology and Biomass Refinery. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7414-7_1

Download citation

Publish with us

Policies and ethics