Skip to main content

The Importance of Ectomycorrhizal Networks for Nutrient Retention and Carbon Sequestration in Forest Ecosystems

  • Chapter
  • First Online:
Mycorrhizal Networks

Part of the book series: Ecological Studies ((ECOLSTUD,volume 224))

Abstract

Extramatrical mycelium (EMM) of mycorrhizal fungi have a fundamental role in carbon (C) cycling in forest ecosystems. This carbon is used for building extensive mycelial networks in the soil as well as for metabolic activity related to nutrient uptake. Here we discuss the factors that regulate the production and turnover of EMM and its role in soil C dynamics and nitrogen retention. C availability seems to be the key factor determining EMM production and possibly its standing biomass in forests but direct effects of mineral nutrient availability on the EMM can also be important. There is great uncertainty about the rate of turnover of EMM, and the increasing evidence that residues of EM fungi play a major role in the formation of stable N and C in soil organic matter highlights the need to include mycorrhizal effects in models of global soil C stores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarnio T, Raty M, Martikainen PJ (2003) Long-term availability of nutrients in forest soil derived from fast and slow-release fertilizers. Plant Soil 252:227–239

    Article  CAS  Google Scholar 

  • Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems—hypotheses revisited. Bioscience 48:921–934

    Article  Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae—a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae. Mycol Prog 5:67–107

    Article  Google Scholar 

  • Akselsson C, Westling O, Alveteg M, Thelin G, Fransson A-M, Hellsten S (2006) The influence of N load and harvest intensity on the risk of P limitation in Swedish forest soils. Sci Total Environ 404:284–289

    Article  CAS  Google Scholar 

  • Arnebrant K (1994) Nitrogen amendments reduce the growth of ectramatrical mycelium. Mycorrhiza 5:7–15

    Article  CAS  Google Scholar 

  • Bahr A, Ellström M, Akselsson C, Ekblad A, Mikusinska A, Wallander H (2013) Growth of ectomycorrhizal fungal mycelium along a Norway spruce forest nitrogen deposition gradient and its effect on nitrogen leakage. Soil Biol Biochem 59:38–48

    Article  CAS  Google Scholar 

  • Bahr A, Ellström M, Bergh J, Wallander H (2015) Nitrogen leaching and ectomycorrhizal nitrogen retention capacity in a Norway spruce forest fertilized with nitrogen and phosphorus. Plant Soil 390:323–335

    Article  CAS  Google Scholar 

  • Bending GD, Read DJ (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytol 130:401–409

    Article  CAS  Google Scholar 

  • Berg B, Davey MP, De Marco A, Emmett B, Faituri M, Hobbie SE, Johansson MB, Liu C, McClaugherty Norell L, Rutigliano FA, Vesterdal L, De Santo AV (2010) Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochem 100:57–73

    Article  CAS  Google Scholar 

  • Berner C, Johansson T, Wallander H (2012) Long term effect of apatite on ectomycorrhizal growth and community structure. Mycorrhiza 22:615–621

    Article  CAS  PubMed  Google Scholar 

  • Berner C (2013) The effect of forest nutrient status on ectomycorrhzial growth and community structure in response to minerals. Dissertation, Lund University, Sweden

    Google Scholar 

  • Blanes CA, Emmett BA, Vingela B, Carreira JA (2012) Alleviation of P limitation makes tree roots competitiove for N against microbes in a N-saturated forest: a test through P fertilization and N-15 labelling. Soil Biol Biochem 48:51–59

    Article  CAS  Google Scholar 

  • Blum JD, Klaue A, Nezat CA, Driscoll CT, Johnson CE, Siccama TG, Eagar C, Fahey TJ, Likens GE (2002) Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 417:729–731

    Article  CAS  PubMed  Google Scholar 

  • Bödecker ITM, Nygren CMR, Taylor AFS, Olsson Å, Lindahl B (2009) Class II peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhial fungi. ISME J 3:1387–1395

    Article  CAS  Google Scholar 

  • Boström B, Comstedt D, Ekblad A (2007) Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153:89–98

    Article  PubMed  Google Scholar 

  • Cairney JWG (2012) Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biol Biochem 47:198–208

    Article  CAS  Google Scholar 

  • Cakmak I, Kirkby EA (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant 133:692–704

    Article  CAS  PubMed  Google Scholar 

  • Chapela IH, Osher LJ, Horton TR, Henn MR (2001) Ectomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletion. Soil Biol Biocehm 33:1733–1740

    Article  CAS  Google Scholar 

  • Clemmensen K, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay R, Wardle D, Lindahl B (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618

    Article  CAS  PubMed  Google Scholar 

  • Clemmensen K, Finlay R, Dahlberg A, Stenlid J, Wardle D, Lindahl B (2015) Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol 205:1525–1536

    Article  CAS  PubMed  Google Scholar 

  • Colpaert JV, van Tichelen KK, van Assche JA JA (1999) Short-term phosphorus uptake rates in mycorrhizal and non-mycorrhizal roots of intact Pinus sylvestris seedling. New Phytol 143:589–597

    Article  CAS  Google Scholar 

  • Courty P-E, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault M-P, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698

    Article  CAS  Google Scholar 

  • Coutts MP, Nicoll BC (1990) Growth and survival of shoots, roots, and mycorrhizal mycelium in clonal Sitka spruce during the first growing season after planting. Can J For Res 20:861–868

    Article  Google Scholar 

  • Dahlberg A (2001) Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field. New Phytol 150:555–562

    Article  Google Scholar 

  • Dahlberg A, Jonsson L, Nylund J-E (1997) Species diversity and distribution of biomass abobe and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Can J Bot 75:1323–1335

    Article  Google Scholar 

  • Dawes MA, Hagedorn F, Handa IT, Streit K, Ekblad A, Rixen C, Körner C, Hättenschwiler S (2013) An alpine treeline in a carbon dioxide-rich world: synthesis of a nine-year free-air carbon dioxide enrichment study. Oecologia 171:623–637

    Article  PubMed  Google Scholar 

  • De la Varga H, Águeda B, Ágreda T, Martínez-Peña F, Parladé J, Pera J (2013) Seasonal dynamics of Boletus edulis and Lactarius deliciosus extraradical mycelium in pine forests of central Spain. Mycorrhiza 23:391–402

    Article  PubMed  Google Scholar 

  • Del Vecchio TA, Gehring CA, Cobb NS, Whitham TG (1993) Negative effects of scale insect herbivory on the ectomycorrhizae of juvenile pinyon pine. Ecology 74:2297–2302

    Article  Google Scholar 

  • Dijkstra FA, Cheng W (2007) Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecol Lett 10:1046–1053

    Article  PubMed  Google Scholar 

  • Ekblad A, Wallander H, Carlsson R, Huss-Danell K (1995) Fungal biomass in roots and extramatrical mycelium in relation to macronutrients and plant biomass of ectomycorrhizal Pinus sylvestris and Alnus incana. New Phytol 131:443–451

    Article  Google Scholar 

  • Ekblad A, Wallander H, Godbold DL, Johnson D, Baldrian P, Björk RG, Cruz C, Epron D, Kieliszewska-Rokicka B, Kjöller R, Kraigher H, Matzner E, Neumann J, Plassard C (2013) The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant Soil 366:1–27

    Article  CAS  Google Scholar 

  • Emmett BA (2007) Nitrogen saturation of terrestrial ecosystems: some recent findings and their implications for our conceptual framework. Wat Air Soil Pollut Focus 7:99–109

    Article  CAS  Google Scholar 

  • Ericsson T (1995) Growth and shoot:root ratio of seedlings in relation to nutrient availability. Plant Soil 168–169:205–214

    Article  Google Scholar 

  • Fernandez CW, Koide RT (2012) The role of chitin in decomposition of ectomycorrhizal fungal litter. Ecology 93:24–28

    Article  PubMed  Google Scholar 

  • Fernandez CW, McCormack ML, Hill JM, Pritchard SG, Koide RT (2013) On the persistence of Cenococcum geophilum ectomycorrhizas and its implications for forest carbon and nutrient cycles. Soil Biol Biochem 65:141–143

    Article  CAS  Google Scholar 

  • Fernandez CW, Kennedy PG (2015) Moving beyond the black-box: fungal traits, community structure, and carbon sequestartion in forest soil. New Phytol 205:1378–1380

    Article  CAS  PubMed  Google Scholar 

  • Finlay R, Wallander H, Smits M, Holmstrom S, van Hees P, Lian B, Rosling A (2009) The role of fungi in biogenic weathering in boreal forest soils. Fungal Biol Rev 23:101–106

    Article  Google Scholar 

  • Franklin O, Högberg P, Ekblad A, Ågren G (2003) Pine forest floor carbon accumulation in response to N and PK additions: bomb 14C modelling and respiration studies. Ecosystems 6:644–658

    Article  CAS  Google Scholar 

  • Franklin O, Näsholm T, Högberg P, Högberg MN (2014) Forest trapped in nitrogen limitation—an ecological market perspective on ectomycorrhizal symbisois. New Phytol 203:657–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fransson PMA, Anderson IC, Alexander IJ (2007) Ectomycorrhizal fungi in culture respond differently to increased carbon availability. FEMS Microbiol Ecol 61:246–257

    Article  CAS  PubMed  Google Scholar 

  • Fransson P (2012) Elevated CO2 impacts ectomycorrhiza-mediated forest soil carbon flow: fungal biomass production, respiration and exudation. Fungal Ecol 5:85–98

    Article  Google Scholar 

  • Futter MN, Ring E, Högbom L, Entenmann S, Bishop K (2010) Consequences of nitrate leaching following stem-only harvesting of Swedish forests are dependent on spatial scale. Environ Pollut 158:3552–3559

    Article  CAS  PubMed  Google Scholar 

  • Gafur A, Schutzendubel A, Langenfeld-Heyser R, Fritz E, Polle A (2004) Compatible and incompetent Paxillus involutus isolates for ectomycorrhiza formation in vitro with poplar (Populus x canescens) differ in H2O2 production. Plant Biol 6:91–99

    Article  CAS  PubMed  Google Scholar 

  • Godbold DL, Hoosbeek MR, Lukac M, Cotrufo MF, Janssens IA, Ceulemans R, Polle A, Velthorst EJ, Scarascia-Mugnozza G, De Angelis P, Miglietta F, Peressotti A (2006) Mycorrhizal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281:15–24

    Article  CAS  Google Scholar 

  • Gorissen A, Kuyper TW (2000) Fungal species-specific responses of ectomycorrhizal scots pine (Pinus sylvestris) to elevated CO2. New Phytol 146:163–168

    Article  CAS  Google Scholar 

  • Gress SE, Nichols TD, Northcraft CC, Peterjohn WT (2007) Nutrient limitation in soils exhibiting differing nitrogen availabilities: what lies beyond nitrogen saturation. Ecology 88:110–130

    Article  Google Scholar 

  • Gruffman L, Ishida T, Nordin A, Näsholm T (2012) Cultivation of Norway spruce and scots pine on organic nitrogen improves seedling morphology and field performance. For Ecol Manage 276:118–124

    Article  Google Scholar 

  • Gundersen P, Callesen I, De Vries W (1998) Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environ Pollut 102:403–407

    Article  CAS  Google Scholar 

  • Hagerberg D, Thelin G, Wallander H (2003) The production of ectomycorrhizal mycelium in forests: relation between forest nutrient status and local mineral sources. Plant Soil 252:279–290

    Article  CAS  Google Scholar 

  • Hendricks JJ, Mitchell RJ, Kuehn KA, Pecot SD, Sims SE (2006) Measuring external mycelia production of ectomycorrhizal fungi in the field: the soil matrix matters. New Phytol 171:179–186

    Article  CAS  PubMed  Google Scholar 

  • Hobbie EA, Sanchez FS, Rygiewicz PT (2012) Control of isotopic patterns in saprophytic and ectomycorrhizal fungi. Soil Biol Biochem 48:60–68

    Article  CAS  Google Scholar 

  • Hobbie EA, Ouimette EG, Schuur D, Kierstead J, Trappe K, Bendiksen Ohenoja E (2013) Radiocarbon evidence for the mining of organic nitrogen from soil by mycorrhizal fungi. Biogeochem 114:381–389

    CAS  Google Scholar 

  • Hoffland E, Kuyper TW, Wallander H, Plassard C, Gorbushina A, Haselwandter K, Holmström S, Landeweert R, Lundström U, Rosl ing A, Sen R, Smits M, van Hees P, van Breemen N (2004) The role of fungi in weathering. Front Ecol Environ 2:258–264

    Google Scholar 

  • Högberg P, Johannisson C, Yarwood S, Callesen I, Näsholm T, Myrold DD, Högberg M (2011) Recovery of ectomycorrhiza after ‘nitrogen saturation’ of a conifer forest. New Phytol 189:515–525

    Article  PubMed  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  • Högberg P, Plamboeck AH, Taylor AFS, Fransson PMA (1999) Natural 13C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests. PNAS 96:8534–8539

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyvönen R, Ågren G, Linder S, Persson T, Cotrufo F, Ekblad A, Freeman M, Grelle A, Janssens I, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby R, Oren R, Pilegaard K, Ryan M, Sigurdsson B, Strömgren M, van Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480

    Article  PubMed  CAS  Google Scholar 

  • Ingham ER, Griffiths RP, Cromack K, Entry JA (1991) Comparison of direct vs fumigation incubation microbial biomass estimates from ectomycorrhizal mat and non-mat soils. Soil Biol Biochem 23:465–471

    Article  Google Scholar 

  • Jonard M, Legout A, Nicolas M, Dambrine E, Nys C, Ulrich E, van der Perre R, Ponette Q (2012) Deterioration of Norway spruce vitality despite a sharp decline in acid deposition: a long-term integrated perspective. Glob Change Biol 18:711–725

    Article  Google Scholar 

  • Kalliokoski T, Pennanen T, Nygren P, Sievänen R, Helmisaari H-S (2010) Belowground interspecific competition in mixed boreal forests: fine root and ectomycorrhiza characteristics along stand developmental stage and soil fertility gradients. Plant Soil 330:73–89

    Article  CAS  Google Scholar 

  • Kårén O, Nylund J-E (1997) Effects of ammonium sulphate on the community structure and biomass of ectomycorrhizal fungi in a Norway spruce stand in southwestern Sweden. Can J Bot 75:1628–1642

    Article  Google Scholar 

  • Kimmins JP (2004) Forest ecology, a foundation for sustainable forest management and environmental ethics in forestry. Prentice Hall, New Jersey

    Google Scholar 

  • Kjøller R, Nilsson L-O, Hansen K, Schmidt IK, Vesterdal L, Gundersen P (2012) Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient. New Phytol 194:278–286

    Article  PubMed  CAS  Google Scholar 

  • Kluber LA, Tinnesand KM, Caldwell BA, Dunham SM, Yarwood RR, Bottomley PJ, Myrold DD (2010) Ectomycorrhizal mats alter forest soil biogeochemistry. Soil Biol Biogeochem 42:1607–1613

    Article  CAS  Google Scholar 

  • Koide RT, Fernandez CW, Peoples MS (2011) Can ectomycorrhizal colonization of Pinus resinosa roots affect their decomposition? New Phytol 191:508–514

    Google Scholar 

  • Koide RT, Malcolm GM (2009) N concentration controls decomposition rates of different strains of ectomycorrhizal fungi. Fungal Ecol 2:197–202

    Article  Google Scholar 

  • Korkama T, Fritze H, Pakkanen A, Pennanen T (2007) Interactions between extraradical ectomycorrhizal mycelia, microbes associated with the mycelia and growth rate of Norway spruce (Picea abies) clones. New Phytol 173:798–807

    Article  CAS  PubMed  Google Scholar 

  • Kuikka K, Harma E, Markkola A, Rautio P, Roitto M, Saikkonen K, Ahonen-Jonnart U, Finlay R, Tuomia J (2003) Severe defoliation of scots pine reduces reproductive investment by ectomycorrhizal symbionts. Ecology 84:2051–2061

    Article  Google Scholar 

  • Langley JA, Hungate BA (2003) Mycorrhizal controls on belowground litter quality. Ecology 84:2302–2312

    Article  Google Scholar 

  • Lilleskov EA, Fahey TJ, Horton TR, Lovett GM (2002) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115

    Article  Google Scholar 

  • Lilleskov EA, Hobbie EA, Horton TR (2011) Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol 4:174–183

    Article  Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620

    Article  CAS  PubMed  Google Scholar 

  • Lindahl BD, Tunlid A (2015) Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytol 205:1443–1447

    Article  CAS  PubMed  Google Scholar 

  • Mikusinska A, Tryggve P, Taylor AFS, Ekblad A (2013) Effects of ingrowth bag-size and presence of soil animals on ectomycorrhizal extraradical mycelia production and isotopic composition in a Norway spruce forest. Soil Biol Biochem 66:154–162

    Article  CAS  Google Scholar 

  • Mejstrik V (1989) Ectomycorrhizas and forest decline. Agric Ecosyst Environ 28:325–337

    Article  Google Scholar 

  • Näsholm T, Högberg P, Franklin O, Metcalfe D, Keel SG, Campbell C, Hurry V, Linder S, Högberg M (2013) Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forest? New Phytol 198:214–221

    Article  PubMed  CAS  Google Scholar 

  • Nilsson LO, Wallander H (2003) The production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytol 158:409–416

    Article  Google Scholar 

  • Nilsson LO, Bååth E, Falkengren-Grerup U, Wallander H (2007) Growth of ectomycorrhizal mycelia and composition of soil microbial communities in oak forest soils along a nitrogen deposition gradient. Oecologia 153:375–384

    Article  PubMed  Google Scholar 

  • Nilsson LO, Wallander H, Gundersen P (2012) Changes in microbial activities and biomasses over a forest floor gradient in C-to-N ratio. Plant Soil 355:75–86

    Article  CAS  Google Scholar 

  • Nohrstedt HÖ, Arnebrant K, Bååth E, Söderström B (1989) Changes in carbon content, respiration rate, ATP content, and microbial biomass in nitrogen-fertilized pine forest soil in Sweden. Can J For Res 19:323–328

    Article  Google Scholar 

  • Parrent JL, Vilgalys R (2007) Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO2 and nitrogen fertilization. New Phytol 176:164–174

    Article  PubMed  Google Scholar 

  • Perez-Moreno J, Read DJ (2001) Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytol 145:301–309

    Article  Google Scholar 

  • Peter M, Ayer F, Egli S (2001) Nitrogen addition in a Norway spruce stand altered macromycete sporocarp production and below-ground ectomycorrhizal species composition. New Phytol 149:311–325

    Article  Google Scholar 

  • Pritchard SG, Strand AE, McCormack ML, Davis MA, Oren R (2008) Mycorrhizal and rhizomorph dynamics in a loblolly pine forest during 5 years of free-air-CO2-enrichment. Glob Change Biol 14:1–13

    Google Scholar 

  • Read DJ (1992) The mycorrhizal mycelium. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, London, pp 102–133

    Google Scholar 

  • Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263

    Article  CAS  Google Scholar 

  • Rineau F, Roth D, Shah F, Smits M, Johansson T, Canbäck B, Bjarke Olsson P, Persson P, Nedergard Grell M, Lindquist E, Grioriev IV, Lange L, Tunlid A (2012) The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving fenton chemistry. Environ Microbiol 14:1477–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouhier H, Read DJ (1998) Plant and fungal responses to elevated atmospheric carbon dioxide in mycorrhizal seedlings of Pinus sylvestris. Environ Exp Bot 40:237–246

    Article  Google Scholar 

  • Schmalholz M, Hylander K (2009) Succession of bryophyte assemblages following clear-cut logging in boreal southern-central Sweden—does retrogressive succession occur? Can J For Res 39:1871–1880

    Article  Google Scholar 

  • Sims SE, Hendricks JJ, Mitchell RJ, Kuehn KA, Pecot SD (2007) Nitrogen decreases and precipitation increases ectomycorrhizal extramatrical mycelia production in a longleaf pine forest. Mycorrhiza 17:299–309

    Article  CAS  PubMed  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knaber I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  CAS  PubMed  Google Scholar 

  • Schulze ED (1989) Air pollution and forest decline in a spruce (Picea abies). Science 244:776–783

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Stevens PA, Harrison AF, Jones HE, Williams TG, Hughes S (1993) Nitrate leaching from a Sitka spruce plantation and the effect of fertilization with phosphorus and potassium. For Ecol Manag 58:233–247

    Article  Google Scholar 

  • Söderström B, Read DJ (1987) Respiratory activity of intact and excised ectomycorrhizal mycelial systems growing in unsterilized soil. Soil Biol Biochem 19:231–236

    Article  Google Scholar 

  • Sollins P, Kramer MG, Swanston C, Lajtha K, Filley T, Aufdenkampe AK, Wagai R, Bowden RD (2009) Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization. Biogeochem 96:209–231

    Article  CAS  Google Scholar 

  • Talbot JM, Allison SD, Treseder KK (2008) Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol 22:955–963

    Article  Google Scholar 

  • Taylor AFS, Martin F, Read DJ (2000) Fungal diversity in ectomycorrhizal communities of Norway spruce (Picea abies (L.) Karst.) and beech (Fagus sylvatica L.) along north-south transects in Europe. Ecol Stud 142:343–365

    Article  CAS  Google Scholar 

  • Taylor AFS, Fransson PM, Högberg P, Högberg MN, Plamboeck AH (2003) Species level patterns in 13C and 15N abundance of ectomycorrhizal and saprotrophic fungal sporocarps. New Phytol 159:757–774

    Article  CAS  Google Scholar 

  • Thelin G, Sverdrup H, Holmqvist J, Rosengren U, Lindén M (2002) Assessment of nutrient sustainability in Norway spruce and mixed Norway spruce-oak stands at Jämjö. In: Sverdrup H, Stjernquist I (eds) Developing principles for sustainable forestry in Southern Sweden, Kluwer Academic Publishers, Dordrecht, pp 337–354

    Google Scholar 

  • Treseder KK, Allen MF, Ruess RW, Pregitzer KS, Hendrick RL (2005) Lifespans of fungal rhizomorphs under nitrogen fertilization in a pinyon-juniper woodland. Plant Soil 270:249–255

    Article  CAS  Google Scholar 

  • Treseder KK, Torn MS, Masiello CA (2006) An ecosystem-scale radiocarbon tracer to test use of litter carbon by ectomycorrhizal fungi. Soil Biol Biochem 38:1077–1082

    Article  CAS  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Wallander H (1995) A new hypothesis to explain allocation of dry-matter between mycorrhizal fungi and pine seedlings in relation to nutrient supply. Plant Soil 168:243–248

    Google Scholar 

  • Wallander H, Ekblad A, Bergh J (2011) Growth and carbon sequestration by ectomycorrhizal fungi in intensively fertilized Norway spruce forests. For Ecol Manag 262:999–1007

    Article  Google Scholar 

  • Wallander H, Ekblad A, Godbold DL, Johnson D, Bahr A, Baldrian P, Björk RG, Kieliszewska-Rokicka B, Kjøller R, Kraigher H, Plassard C, Rudawska M (2013) Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils—a review. Soil Biol Biochem 57:1034–1047

    Google Scholar 

  • Wallander H, Göransson H, Rosengren U (2004) Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia 139:89–97

    Article  PubMed  Google Scholar 

  • Wallander H, Johansson U, Sterkenburg E, Brandström M, Lindahl B (2010) Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests. New Phytol 187:1124–1134

    Article  CAS  PubMed  Google Scholar 

  • Wallander H, Nilsson LO, Hagerberg D, Bååth E (2001) Estimation of the biomass and production of external mycelium of ectomycorrhizal fungi in the field. New Phytol 151:753–760

    Article  CAS  Google Scholar 

  • Wallander H, Nilsson L-O, Hagerberg D, Rosengren U (2003) Direct estimates of C:N ratios of ectomycorrhizal mycelia collected from Norway spruce forest soils. Soil Biol Biochem 35:997–999

    Article  CAS  Google Scholar 

  • Wallander H, Nylund J-E (1992) Effects of excess nitrogen and phosphorus starvation on the extramatrical mycelium of ectomycorrhizas of Pinus sylverstris L. New Phytol 120:495–503

    Article  CAS  Google Scholar 

  • Wallander H, Thelin G (2008) The stimulating effect of apatite on ectomycorrhizal growth diminishes after PK fertilization. Soil Biol Biochem 40:2517–2522

    Article  CAS  Google Scholar 

  • Wallenda T, Kottke I (1998) Nitrogen deposition and ectomycorrhizas. New Phytol 139:169–187

    Article  CAS  Google Scholar 

  • Weigt R, Raidl S, Verma R, Agerer R (2012a) Erratum to: exploration type-specific standard values of extramatrical mycelium—a step towards quantifying ectomycorrhizal space occupation and biomass in natural soil. Mycol Prog 11:349–350

    Article  Google Scholar 

  • Weigt R, Raidl S, Verma R, Agerer R (2012b) Exploration type-specific standard values of extramatrical mycelium—a step towards quantifying ectomycorrhizal space occupation and biomass in natural soil. Mycol Prog 11:287–297

    Article  Google Scholar 

  • Weigt RB, Raidl S, Verma R, Rodenkirchen H, Göttlein A, Agerer R (2011) Effects of twice-ambient carbon dioxide and nitrogen amendment on biomass, nutrient contents and carbon costs of Norway spruce seedlings as influenced by mycorrhization with Piloderma croceum and Tomentellopsis submollis. Mycorrhiza 21:375–391

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank COST (European Cooperation in Science and Technology) for financial and coordinative support to the Cost Action FP0803: Belowground carbon turnover in European forests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Håkan Wallander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wallander, H., Ekblad, A. (2015). The Importance of Ectomycorrhizal Networks for Nutrient Retention and Carbon Sequestration in Forest Ecosystems. In: Horton, T. (eds) Mycorrhizal Networks. Ecological Studies, vol 224. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7395-9_3

Download citation

Publish with us

Policies and ethics