Skip to main content

Functional Significance of Anastomosis in Arbuscular Mycorrhizal Networks

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 224))

Abstract

Arbuscular mycorrhizal fungi (AMF) are obligate biotrophs (Glomeromycota), which live symbiotically in the roots of most land plants and facilitate mineral nutrition of their hosts. Their spores are able to germinate in the absence of host-derived signals, but are unable to complete the life cycle without establishing a functional symbiosis with a host plant. Such behaviour did not represent a selective disadvantage, as a result of diverse survival strategies allowing them to compensate for the lack of host-regulated germination and to overcome their obligate biotrophic state. The ability to form hyphal fusions (anastomoses) between compatible mycelia may represent an important mechanism evolved by AMF to increase their chances of survival, since fungal germlings can plug into pre-existing extraradical mycelial networks, thus gaining immediate access to plant-derived carbon before asymbiotic growth arrest. In fusions between hyphae of the same or different individual germlings of the same isolate, perfect anastomoses occur with the highest frequency and are characterized by protoplasm continuity and complete fusion of hyphal walls. High anastomosis frequencies are also detected between extraradical mycelial networks produced by the same isolate, spreading from plants of different species, genera and families. Pre- and post-fusion incompatibility are often observed in hyphal interactions between asymbiotic and symbiotic mycelium and between genetically different germlings belonging to the same isolate, while pre-fusion incompatible responses, hindering hyphal fusions, occur between germlings of geographically different isolates. The analysis of vegetative compatibility/incompatibility during hyphal fusions represents a valuable tool for genetic studies of AMF, which are recalcitrant to axenic cultivation. Molecular analyses of the progeny of mycelium derived from nonself vegetative fusions of genetically different germlings of R. irregularis showed that genetic exchange occurs, despite low anastomosis frequencies and post-fusion incompatible responses, suggesting that anastomosis between genetically different mycelia may represent a recombination mechanism in the absence of an evident sexual cycle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aanen DK, Debets AJ, de Visser JA, Hoekstra RF (2008) The social evolution of somatic fusion. BioEssays 30:1193–1203

    Article  CAS  PubMed  Google Scholar 

  • Achatz M, Morris EK, Müller F, Hilker M, Rillig MC (2013) Soil hypha mediated movement of allelochemicals: arbuscular mycorrhizae extend the bioactive zone of juglone. Funct Ecol. doi:10.1111/1365-2435.12208

    Google Scholar 

  • Ainsworth AM, Rayner ADM (1986) Responses of living hyphae associated with self and non-self fusions in the basidiomycete Phanerochaete velutina. J Gen Microbiol 132:191–201

    Google Scholar 

  • Ästrom H, Giovannetti M, Raudaskoski M (1994) Cytoskeletal components in the arbuscular mycorrhizal fungus Glomus mosseae. Mol Plant Microbe Interact 7:309–312

    Article  Google Scholar 

  • Avio L, Pellegrino E, Bonari E, Giovannetti M (2006) Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks. New Phytol 172:347–357

    Article  PubMed  Google Scholar 

  • Babikova Z, Gilbert L, Bruce TJ, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson D (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16:835–843

    Article  PubMed  CAS  Google Scholar 

  • Bago B, Azcon-Aguilar C, Piché Y (1998a) Architecture and developmental dynamics of the external mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown under monoxenic conditions. Mycologia 90:52–62

    Article  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Chamberland H, Lafontaine JG, Webb WW, Piché Y (1998b) In vivo studies on the nuclear behavior of the arbuscular mycorrhizal fungus Gigaspora rosea grown under axenic conditions. Protoplasma 203:1–15

    Article  Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barreto de Novais C, Sbrana C, Saggin OJ Jr, Siqueira JO, Giovannetti M (2013) Vegetative compatibility and anastomosis formation within and among individual germlings of tropical isolates of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:325–331

    Article  CAS  Google Scholar 

  • Barto EK, Hilker M, Muller F, Mohney BK, Weidenhamer JD, Rillig MC (2011) The fungal fast lane: common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS ONE 6:e27195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaudet D, Nadimi M, Iffis B, Hijri M (2013) Rapid mitochondrial genome evolution through invasion of mobile elements in two closely related species of arbuscular mycorrhizal fungi. PLoS ONE 8:e60768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaudet D, de la Providencia IE, Labridy M, Roy-Bolduc A, Daubois L, Hijri M (2015) Intra-isolate mitochondrial genetic polymorphism and gene variants coexpression in arbuscular mycorrhizal fungi. Genome Biol Evol 7:218–227

    Article  CAS  Google Scholar 

  • Bécard G, Piché Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325

    PubMed  PubMed Central  Google Scholar 

  • Beilby JP, Kidby DK (1980) Biochemistry of ungerminated and germinated spores of the vesicular-arbuscular mycorrhizal fungus, Glomus caledonius. Lipids 15:375–378

    Article  CAS  Google Scholar 

  • Bethlenfalvay GJ, Ames RN (1987) Comparison of two methods for quantifying extraradical mycelium of vesicular-arbuscular mycorrhizal fungi. Soil Sci Soc Am J 51:834–837

    Article  Google Scholar 

  • Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD, Dominguez L, Sersic A, Leake JR, Read DJ (2002) Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 419:389–392

    Article  CAS  PubMed  Google Scholar 

  • Biella S, Smith ML, Aist JR, Cortesi P, Milgroom MG (2002) Programmed cell death correlates with virus transmission in a filamentous fungus. Proc Roy Soc Lond B 269:2269–2276

    Article  Google Scholar 

  • Bistis GN (1981) Chemotropic interactions between trichogynes and conidia of opposite mating-type in Neurospora crassa. Mycologia 73:959–975

    Article  Google Scholar 

  • Blair JE (2009) Fungi. In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University of Press, Oxford, pp 215–219

    Google Scholar 

  • Boon E, Halary S, Bapteste E, Hijri M (2015) Studying genome heterogeneity within the arbuscular mycorrhizal fungal cytoplasm. Genome Biol Evol 7:505–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buller AHR (1933) Researches on fungi. Longmans, Green & Co., London, pp 33–49

    Google Scholar 

  • Carey EV, Marler MJ, Callaway RM (2004) Mycorrhiza transfer carbon from a native grass to an invasive weed: evidence from stable isotopes and physiology. Plant Ecol 172:133–141

    Article  Google Scholar 

  • Cárdenas-Flores A, Draye X, Bivort C, Cranenbrouck S, Declerck S (2010) Impact of multispores in vitro subcultivation of Glomus sp. MUCL 43194 (DAOM 197198) on vegetative compatibility and genetic diversity detected by AFLP. Mycorrhiza 20:415–425

    Article  PubMed  Google Scholar 

  • Cárdenas-Flores A, Cranenbrouck S, Draye X, Guillet A, Govaerts B, Declerck S (2011) The sterol biosynthesis inhibitor molecule fenhexamid impacts the vegetative compatibility of Glomus clarum. Mycorrhiza 21:443–449

    Article  PubMed  CAS  Google Scholar 

  • Carlile MJ (1995) The success of the hypha and mycelium. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman & Hall, London

    Google Scholar 

  • Casieri L, Lahmidi NA, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, Courty P-E, Garcia K, Charbonnier M, Delteil A, Brun A, Zimmermann S, Plassard C, Wipf D (2013) Biotrophic transportome in mutualistic plant–fungal interactions. Mycorrhiza 23:597–625

    Article  CAS  PubMed  Google Scholar 

  • Chiariello N, Hickman JC, Mooney HA (1982) Endomycorrhizal role for interspecific transfer of phosphorus in a community of annual plants. Science 217:941–943

    Article  CAS  PubMed  Google Scholar 

  • Croll D, Giovannetti M, Koch AM, Sbrana C, Ehinger M, Lammers PJ, Sanders IR (2009) Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 181:924–937

    Article  CAS  PubMed  Google Scholar 

  • de la Providencia IE, Fernandez F, Declerck S (2007) Hyphal healing mechanism in the arbuscular mycorrhizal fungi Scutellospora reticulata and Glomus clarum differs in response to severe physical stress. FEMS Microbiol Lett 268:120–125

    Article  PubMed  CAS  Google Scholar 

  • de la Providencia IE, de Souza FA, Fernandez F, Séjalon-Delmas N, Declerck S (2005) Arbuscular mycorrhizal fungi exhibit distinct pattern of anastomoses formation and hyphal healing mechanism between different phylogenic groups. New Phytol 165:261–271

    Article  PubMed  Google Scholar 

  • de la Providencia IE, Nadimi M, Beaudet D, Rodriguez Morales G, Hijri M (2013) Detection of a transient mitochondrial DNA heteroplasmy in the progeny of crossed genetically divergent isolates of arbuscular mycorrhizal fungi. New Phytol 200:211–221

    Article  PubMed  CAS  Google Scholar 

  • de Souza FA, Decleck S (2003) Mycelium development and architecture, and spore production of Scutellospora reticulata in monoxenic culture with Ri T-DNA transformed carrot roots. Mycologia 95:1004–1012

    Article  PubMed  Google Scholar 

  • den Bakker HC, Van Kuren NW, Morton JB, Pawlowska TE (2010) Clonality and recombination in the life history of an asexual arbuscular mycorrhizal fungus. Mol Biol Evol 27:2474–2486

    Article  CAS  Google Scholar 

  • Eason WR, Newman EI, Chuba PN (1991) Specificity of interplant cycling of phosphorus: the role of mycorrhizas. Plant Soil 137:267–274

    Article  CAS  Google Scholar 

  • Egerton-Warburton LM, Querejeta JI, Allen MF (2007) Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J Exp Bot 58:1473–1483

    Article  CAS  PubMed  Google Scholar 

  • Fellbaum CR, Mensah JA, Cloos AJ, Strahan GE, Pfeffer PE, Kiers ET, Bücking H (2014) Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol 203:646–656

    Article  CAS  PubMed  Google Scholar 

  • Fitter AH, Graves JD, Watkins NK, Robinson D, Scrimgeour C (1998) Carbon transfer between plants and its control in networks of arbuscular mycorrhizas. Funct Ecol 12:406–412

    Article  Google Scholar 

  • Fortuna P, Avio L, Morini S, Giovannetti M (2012) Fungal biomass production in response to elevated atmospheric CO2 in a Glomus mosseae–Prunus cerasifera model system. Mycol Progress 11:17–26

    Article  Google Scholar 

  • Francis R, Finlay RD, Read DJ (1986) Vesicular-arbuscular mycorrhiza in natural vegetation systems IV. Transfer of nutrients in inter- and intra-specific combinations of host plants. New Phytol 102:103–111

    Article  Google Scholar 

  • Francis R, Read DJ (1984) Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature 307:53–56

    Article  CAS  Google Scholar 

  • Frey B, Vilarino A, Schuepp H, Arines J (1994) Chitin and ergosterol content of extraradical and intraradical mycelium of the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. Soil Biol Biochem 26:711–717

    Article  CAS  Google Scholar 

  • Frey B, Schüepp H (1992) Transfer of symbiotically fixed nitrogen from berseem (Trifolium alexandrinum L.) to maize via vesicular-arbuscular mycorrhizal hyphae. New Phytol 122:447–454

    Article  CAS  Google Scholar 

  • Friese C, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83:409–418

    Article  Google Scholar 

  • Gerdemann JW (1955) Wound-healing of hyphae in a phycomycetous mycorrhizal fungus. Mycologia 47:916–918

    Article  Google Scholar 

  • Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255

    CAS  Google Scholar 

  • Giovannetti M, Avio L, Sbrana C, Citernesi AS (1993) Factors affecting appressorium development in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe. New Phytol 123:115–122

    Article  Google Scholar 

  • Giovannetti M, Avio L (2002) Biotechnology of arbuscular mycorrhizas. In: Khachatourians GG, Arora DK (eds) Applied mycology and biotechnology: agriculture and food production, vol 2. Elsevier, Amsterdam, pp 275–310

    Chapter  Google Scholar 

  • Giovannetti M, Azzolini D, Citernesi AS (1999) Anastomosis and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:5571–5575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannetti M, Fortuna P, Citernesi AS, Morini S, Nuti MP (2001) The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytol 151:717–724

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Strani P (2004) Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal mycorrhizal networks. New Phytol 164:175–181

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinaudo V, Avio L (2003) Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Appl Environ Microbiol 69:616–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass NL, Dementhon K (2006) Non-self recognition and programmed cell death in filamentous fungi. Curr Opin Microbiol 9:553–558

    Article  CAS  PubMed  Google Scholar 

  • Glass NL, Jacobson DJ, Shiu PKT (2000) The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annu Rev Genetics 34:165–186

    Article  CAS  Google Scholar 

  • Glass NL, Rasmussen C, Roca MG, Read ND (2004) Hyphal homing, fusion and mycelial interconnectedness. Trends Microbiol 12:135–141

    Article  CAS  PubMed  Google Scholar 

  • Glass L, Kaneko I (2003) Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot Cell 2:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass NL, Kuldau GA (1992) Mating type and vegetative incompatibility in filamentous ascomycetes. Annu Rev Phytopathol 30:201–224

    Article  CAS  PubMed  Google Scholar 

  • Godfrey RM (1957) Studies on British species of endogone. III. Germination of spores. Trans Br Mycol Soc 40:203–210

    Article  Google Scholar 

  • Gooday GW (1990) The ecology of chitin degradation. Adv Microb Ecol 11:387–430

    Article  CAS  Google Scholar 

  • Grava S, Keller M, Voegeli S, Seger S, Lang C, Philippsen P (2011) Clustering of nuclei in multinucleated hyphae is prevented by dynein-driven bidirectional nuclear movements and microtubule growth control in Ashbya gossypii. Eukaryot Cell 10:902–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graves JD, Watkins NK, Fitter AH, Robinson D, Scrimgeour C (1997) Intraspecific transfer of carbon between plants linked by a common mycorrhizal network. Plant Soil 192:153–159

    Article  CAS  Google Scholar 

  • Gregory PH (1984) The fungal mycelium: an historical perspective. Trans Br Mycol Soc 82:1–11

    Article  Google Scholar 

  • Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosm. Nature 328:420–422

    Article  Google Scholar 

  • Halary S, Malik S-B, Lildhar L, Slamovits CH, Hijri M, Corradi N (2011) Conserved meiotic machinery in Glomus spp., a putatively ancient asexual fungal lineage. Genome Biol Evol 3:950–958

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629

    Article  CAS  PubMed  Google Scholar 

  • Haystead A, Malajczuk N, Grove TS (1988) Underground transfer of nitrogen between pasture plants infected with vesicular arbuscular mycorrhizal fungi. New Phytol 108:417–423

    Article  Google Scholar 

  • Hepper CM (1983) Limited independent growth of a vesicular-arbuscular mycorrhizal fungus in vitro. New Phytol 93:537–542

    Article  Google Scholar 

  • Hickey PC, Jacobson DJ, Read ND, Glass NL (2002) Live-cell imaging of vegetative hyphal fusion in Neurospora crassa. Fungal Genet Biol 37:109–119

    Article  PubMed  Google Scholar 

  • Hirrel MC, Gerdemann JW (1979) Enhanced carbon transfer between onions infected with a vesicular–arbuscular mycorrhizal fungus. New Phytol 83:731–738

    Article  CAS  Google Scholar 

  • Idnurm A, Walton FJ, Floyd A, Heitman J (2008) Identification of the sex genes in an early diverged fungus. Nature 451:193–196

    Article  CAS  PubMed  Google Scholar 

  • Ikram A, Jensen ES, Jakobsen I (1994) No significant transfer of N and P from Pueraria Phaseoloides to Hevea Brasiliensis via hyphal links of arbuscular mycorrhiza. Soil Biol Biochem 26:1541–1547

    Article  CAS  Google Scholar 

  • Jakobsen I, Rosendahl S (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83

    Article  Google Scholar 

  • Jany JL, Pawlowska TE (2010) Multinucleate spores contribute to evolutionary longevity of asexual Glomeromycota. Am Nat 175:424–435

    Article  PubMed  Google Scholar 

  • Johansen A, Jensen ES (1996) Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biol Biochem 28:73–81

    Article  CAS  Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29

    Article  CAS  PubMed  Google Scholar 

  • Koske RE (1981) Multiple germination by spores of Gigaspora gigantea. Trans Br Mycol Soc 76:320–330

    Google Scholar 

  • Lang C, Grava S, van den Hoorn T, Trimble R, Philippsen P, Jaspersen SL (2010) Mobility, microtubule nucleation and structure of microtubule-organizing centers in multinucleated hyphae of Ashbya gossypii. Mol Biol Cell 21:18–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lekberg Y, Hammer EC, Olsson PA (2010) Plants as resource islands and storage units: adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiol Ecol 74:336–345

    Article  CAS  PubMed  Google Scholar 

  • Lerat S, Gauci R, Catford JG, Vierheilig H, Piché Y, Lapointe L (2002) C-14 transfer between the spring ephemeral Erythronium americanum and sugar maple saplings via arbuscular mycorrhizal fungi in natural stands. Oecologia 132:181–187

    Article  PubMed  Google Scholar 

  • Leslie JF (1993) Fungal vegetative compatibility. Annu Rev Phytopathol 31:27–150

    Article  Google Scholar 

  • Lin K, Limpens E, Zhang Z, Ivanov S, Saunders DGO, Mu D, Pang E, Cao H, Cha H, Lin T, Zhou Q, Shang Y, Li Y, Sharma T, van Velzen R, de Ruijter N, Aanen DK, Win J, Kamoun S, Bisseling T, Geurts R, Huang S (2014) Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus. PLoS Genet 10:e1004078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Logi C, Sbrana C, Giovannetti M (1998) Cellular events involved in survival of individual arbuscular mycorrhizal symbionts growing in the absence of the host. Appl Environ Microbiol 64:3473–3479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extraradical mycelilum of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant Microbe Interact 14:1140–1148

    Article  CAS  PubMed  Google Scholar 

  • Malik M, Vilgalys R (1999) Somatic incomapatibility in fungi. In: Worrall JJ (ed) Structure and dynamics of fungal populations. Kluwer Academic Publishers, Dodrecht

    Google Scholar 

  • Martins MA (1993) The role of the external mycelium of arbuscular mycorrhizal fungi in the carbon transfer process between plants. Mycol Res 97:807–810

    Article  Google Scholar 

  • Martins MA, Cruz AF (1998) The role of the external mycelial network of arbuscular mycorrhizal fungi: III. A study of nitrogen transfer between plants interconnected by common mycelium. Microbiol Rev 29:289–294

    Article  Google Scholar 

  • Meding SM, Zasoski RJ (2008) Hyphal-mediated transfer of nitrate, arsenic, cesium, rubidium, and strontium between arbuscular mycorrhizal forbs and grasses from a California oak woodland. Soil Biol Biochem 40:126–134

    Article  CAS  Google Scholar 

  • Mikkelsen BL, Rosendahl S, Jakobsen I (2008) Underground resource allocation between individual networks of mycorrhizal fungi. New Phytol 180:890–898

    Article  PubMed  Google Scholar 

  • Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphal production of vesicular arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17–23

    Article  CAS  PubMed  Google Scholar 

  • Mosse B (1959) The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing vesicular arbuscular mycorrhiza. Trans Br Mycol Soc 42:273–286

    Article  Google Scholar 

  • Morris NR, Enos AP (1992) Mitotic gold in a mold: Aspergillus genetics and the biology of mitosis. Trends Genet 8:32–37

    Article  CAS  PubMed  Google Scholar 

  • Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18:243–270

    Article  Google Scholar 

  • Newman EI, Eason WR (1989) Cycling of nutrients from dying roots to living plants, including the role of mycorrhizas. Plant Soil 115:211–215

    Article  Google Scholar 

  • Newman EI, Eason WR (1993) Rates of phosphorus transfer within and between ryegrass (Lolium perenne) plants. Funct Ecol 7:242–248

    Article  Google Scholar 

  • Newman EI, Ritz K (1986) Evidence on the pathways of phosphorus transfer between vesicular–arbuscular mycorrhizal plants. New Phytol 104:77–87

    Article  CAS  Google Scholar 

  • Pfeffer PE, Douds DD Jr, Bucking H, Schwartz DP, Shachar-Hill Y (2004) The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis. New Phytol 163:617–627

    Article  Google Scholar 

  • Phipps CJ, Taylor TN (1996) Mixed arbuscular mycorrhizae from the Triassic of Antarctica. Mycologia 88:707–714

    Article  Google Scholar 

  • Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. BioSystems 6:153–164

    Article  CAS  PubMed  Google Scholar 

  • Pontecorvo G (1956) The parasexual cycle in fungi. Annu Rev Microbiol 10:393–400

    Article  CAS  PubMed  Google Scholar 

  • Purin S, Morton JB (2011) In situ analysis of anastomosis in representative genera of arbuscular mycorrhizal fungi. Mycorrhiza 21:505–514

    Article  PubMed  Google Scholar 

  • Purin S, Morton JB (2013) Anastomosis behaviour differs between asymbiotic and symbiotic hyphae of Rhizophagus clarus. Mycologia 12:589–602

    Article  CAS  Google Scholar 

  • Rayner ADM (1996) Interconnectedness and individualism in fungal mycelia. In: Sutton BC (ed) A century of mycology. University of Cambridge Press, Cambridge, pp 193–232

    Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  CAS  PubMed  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richard F, Glass NL, Pringle A (2012) Cooperation among germinating spores facilitates the growth of the fungus Neurospora crassa. Biol Lett 8:419–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers JB, Laidlaw AS, Christie P (2001) The role of arbuscular mycorrhizal fungi in the transfer of nutrients between white clover and perennial ryegrass. Chemosphere 42:153–159

    Article  CAS  PubMed  Google Scholar 

  • Saupe SJ (2000) Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol Mol Biol Rev 64:489–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sbrana C, Fortuna P, Giovannetti M (2011) Plugging into the network: belowground connections between germlings and extraradical mycelium of arbuscular mycorrhizal fungi. Mycologia 103:307–316

    Article  PubMed  Google Scholar 

  • Schardl CL, Leuchtmann A, Tsai HF, Collett MA, Watt DM, Scott DB (1994) Origin of a fungal symbiont of perennial ryegrass by interspecific hybridization of a mutualist with the ryegrass choke pathogen, Epichloë typhina. Genetics 136:1307–1317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snetselaar KM, Boelker M, Kahmann R (1996) Ustilago maydis mating hyphae orient their growth toward pheromone sources. Fungal Genet Biol 20:299–312

    Article  CAS  PubMed  Google Scholar 

  • Song YY, Zeng RS, Xu JF, Li J, Shen X, Woldemariam Gebrehiwot Y (2010) Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS ONE 5:e13324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tisserant E et al (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193:755–769

    Article  CAS  PubMed  Google Scholar 

  • Tommerup IC (1984) Persistence of infectivity by germinated spores of vesicular-arbuscular mycorrhizal fungi in soil. Trans Br Mycol Soc 82:275–282

    Article  Google Scholar 

  • Tommerup IC (1988) The vesicular-arbuscular mycorrhizas. Adv Plant Pathol 6:81–91

    Article  Google Scholar 

  • Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147:189–200

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Vandenkoornhuyse P, Leyval C, Bonnin I (2001) High genetic diversity in arbuscular mycorrhizal fungi: evidence for recombination events. Heredity (Edinb) 87:243–253

    Article  CAS  Google Scholar 

  • Voets L, de la Providencia IE, Declerck S (2006) Glomeraceae and Gigasporaceae differ in their ability to form mycelium networks. New Phytol 172:185–188

    Article  PubMed  Google Scholar 

  • Voets L, Goubau I, Olsson PA, Merckx R, Declerck S (2008) Absence of carbon transfer between Medicago truncatula plants linked by a mycorrhizal network, demonstrated in an experimental microcosm. FEMS Microbiol Ecol 65:350–360

    Article  CAS  PubMed  Google Scholar 

  • Walder F, Brulé D, Koegel S, Wiemken A, Boller T, Courty P-E (2015) Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytol 205:1632–1645

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) How belowground biota drives the aboveground subsystem. Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Watkins NK, Fitter AH, Graves JD, Robinson D (1996) Carbon transfer between C3 and C4 plants linked by a common mycorrhizal network, quantified using stable carbon isotopes. Soil Biol Biochem 28:471–477

    Article  CAS  Google Scholar 

  • Weichert M, Fleißner A (2015) Anastomosis and heterokaryon formation. In: Genetic transformation systems in fungi, vol 2. Springer, Berlin, pp 3–21

    Google Scholar 

  • Whittingham J, Read DJ (1982) Vesicular arbuscular mycorrhiza in natural vegetation systems. II. Nutrient transfer between plants with mycorrhizal interconnections. New Phytol 90:277–284

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support by the University of Pisa (Fondi di Ateneo) and by CNR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Giovannetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Giovannetti, M., Avio, L., Sbrana, C. (2015). Functional Significance of Anastomosis in Arbuscular Mycorrhizal Networks. In: Horton, T. (eds) Mycorrhizal Networks. Ecological Studies, vol 224. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7395-9_2

Download citation

Publish with us

Policies and ethics