Skip to main content

Mycorrhiza Specificity: Its Role in the Development and Function of Common Mycelial Networks

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 224))

Abstract

The establishment of common mycelial networks by mycorrhizal fungi shared between host plants depends on the ability of neighboring plants to enter into mycorrhizal associations with compatible fungal species. Such compatibility is governed by the potential mycorrhiza specificities of the symbionts. Mycorrhiza specificities exist along a continuum from low specificity (association with multiple partners) to high specificity (association with one or few partners). Although the ability of symbionts to form mycorrhizas may be largely governed by host-fungus gene interactions as influenced by co-evolutionary events, mycorrhizal associations in natural ecosystems can also be influenced by environmental factors (e.g. soil) and biological factors (e.g. different neighboring host species), phenomena referred to as “ecological specificity.” For example, in natural settings, mycorrhizal fungi often express “host preference” wherein fungi may be more common on a particular host in mixed-host settings than would be expected by random species assemblage within the fungal and plant communities. Mycorrhiza specificity phenomena significantly influence plant community dynamics, particularly plant succession. Early seral plants can positively affect the establishment of later-seral plants by maintaining commonly shared mycorrhizal fungi, and thus affecting the function of common mycelial networks over time. Such knowledge provides guidance for ecosystem managers to maintain “legacy” early -seral plants that benefit later-seral plants via shared mycorrhizal fungus species. Understanding specificity phenomena is also crucial for predicting the successful migration of plants and compatible mycorrhizal fungi during climate change. We review mycorrhiza specificity terminology and types of specificity phenomena, and suggest use of common terms to provide consistency in addressing this research topic. We also provide extensive examples from diverse ecosystems on the ability (or inability) of neighboring plants to develop common mycelial networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander I, Ahad N, See LS (1992) The role of mycorrhiza in the regeneration of some Malaysian forest trees. Phil Trans R Soc Lond B 335:379–388

    Article  Google Scholar 

  • Allen TR, Millar T, Berch SM, Berbee ML (2003) Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol 160:255–272

    Article  CAS  Google Scholar 

  • Amaranthus MP, Perry DA (1989) Interaction effects of vegetation type and Pacific madrone soil inocula on survival, growth, and mycorrhiza formation of Douglas-fir. Can J For Res 19:550–556

    Article  Google Scholar 

  • Aponte C, García LV, Marañón Gardes M (2010) Indirect host effect on ectomycorrhizal fungi: leaf fall and litter quality explain changes in fungal communities on the roots of co-occurring Mediterranean oaks. Soil Biol Biochem 42:788–796

    Article  CAS  Google Scholar 

  • Baar J, de Vries FW (1995) Effects of manipulation of litter and humus layers on ectomycorrhizal colonization potential in Scots pine stands of different age. Mycorrhiza 5:267–272

    Article  Google Scholar 

  • Bahram M, Kõljalg Kohout P, Mirshahvaladi S, Tederso L (2013) Ectomycorrhizal fungi of exotic pine plantations in relation to native host trees in Iran: evidence of host range expansion by local symbionts to distantly related host taxa. Mycorrhiza 23:11–19

    Article  PubMed  Google Scholar 

  • Bent E, Kiekel P, Brenton R, Taylor DL (2011) Root-associated ectomycorrhizal fungi shared by various boreal forest seedling naturally regenerating after a fire in interior Alaska and correlation of different fungi with host growth responses. Appl Environ Microb 77:3351–3359

    Article  CAS  Google Scholar 

  • Berbee ML, Taylor JW (1993) Dating of the evolutionary radiations of the true fungi. Can J Bot 71:1114–1127

    Article  Google Scholar 

  • Bergero R, Perotto S, Girlanda M, Vidano G, Luppi AM (2000) Ericoid mycorrhizal fungi are common root associates of a Mediterranean ectomycorrhizal plant (Quercus ilex). Mol Ecol 9:1639–1649

    Article  CAS  PubMed  Google Scholar 

  • Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M (2009) Preferential allocation to beneficial symbionts with spatial structure maintains mycorrhizal mutualism. Ecol Lett 12:13–21

    Article  PubMed  Google Scholar 

  • Bidartondo I (2005) The evolutionary ecology of myco-heterotrophy. New Phytol 167:335–352

    Article  PubMed  Google Scholar 

  • Bidartondo BI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B 271

    Google Scholar 

  • Borchers SL, Perry DA (1990) Growth and ectomycorrhiza formation of Douglas-fir seedlings grown in soils collected at different distances from pioneering hardwoods in southwest Oregon clear-cuts. Can J For Res 20:712–721

    Article  Google Scholar 

  • Brundrett M (2004) Diverstiy and classification of mycorrhizal associations. Biol Rev 79:473–495

    Article  PubMed  Google Scholar 

  • Bruns TD, Szaro TM, Gardes M, Cullings KW, Pan JJ, Taylor DL, Horton TR, Kretzer A, Garbelotto M, Li Y (1998) A sequence database for the identification of ectomycorrhizal Basidiomycetes by phylogenetic analysis. Mol Ecol 7:257–272

    Article  CAS  Google Scholar 

  • Cairney JWG, Rees BJ, Allaway WG, Ashford AE (1994) A basidiomycete isolated from a Pisonia mycorrhiza forms sheathing mycorrhizas with transfer cells on Pisonia grandis R. Br. New Phytol 126:91–98

    Article  Google Scholar 

  • Cavender-Bares J, Izzo A, Robinson R, Lovelock CE (2009) Changes in ectomycorrhizal community structure on two containerized oak hosts across an experimental hydrologic gradient. Mycorrhiza 19:133–142

    Article  CAS  PubMed  Google Scholar 

  • Cázares E, Smith JE (1995) Occurrence of vesicular-arbuscular mycorrhizae in Pseudotsuga menziesii and Tsuga heterophylla seedlings grown in Oregon Coast Range soils. Mycorrhiza 6:65–67

    Article  Google Scholar 

  • Chambers SM, Hitchcock CJ, Cairney JW (2005) Ectomycorrhizal mycobionts of Pisonia grandis on coral cays I the Capricorn-Bunker group Great Barrier Reef, Australia. Mycol Res 109:1105–1111

    Article  PubMed  Google Scholar 

  • Chambers SM, Curlevski NJA, Cairney JWG (2008) Ericoid mycorrhizal fungi are common root inhabitants of non-Ericaceae plants in a south-eastern Australian sclerophyll forest. FEMS Microbiol Ecol 65:263–270

    Article  CAS  PubMed  Google Scholar 

  • Chu-Chou M, Grace LJ (1985) Comparative efficiency of the mycorrhizal fungi Laccaria laccata, Hebeloma crustuliniforme and Rhizopogon species on growth of radiata pine seedlings. New Zeal J Bot 23:417–424

    Article  Google Scholar 

  • Conn C, Dighton J (2000) Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biol Biochem 32:489–496

    Article  CAS  Google Scholar 

  • Croll D, Wille L, Gamper HA, Mathimaran N, Lammers PJ, Corradi N, Sanders IR (2008) Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 178:672–687

    Article  CAS  PubMed  Google Scholar 

  • Cullings KW, Vogler DR, Parker VT, Finley SK (2000) Ectomycorrhizal specificity patterns in a mixed Pinus contorta and Picea englmannii forest in Yellowstone National Park. Appl Environ Microbiol 66:4988–4991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullings KW, New MH, Makihija S, Parker VT (2003) Effects of litter addition on ectomycorrhizal associates of a lodgepole pine (Pinus contorta) stand in Yellowstone National Park. Appl Environ Microbiol 69:3772–3776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danielson RM (1984) Ectomycorrhizal association in jack pine stands in northeastern Alberta. Can J Bot 62:932–939

    Article  Google Scholar 

  • Davidson J, Öpik M, Daniell TJ, Moora M, Zobel M (2011) Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS Microbiol Ecol 78:102–115

    Google Scholar 

  • DeBellis T, Kernaghan G, Bradley R, Widden P (2006) Relationships between stand composition and ectomycorerhizal community structure in boreal mixed-wood forests. Microbiol Ecol 52:114–126

    Article  CAS  Google Scholar 

  • den Bakker HC, Zucarello GC, Kuyper ThW, Noordeloos ME (2004) Evolution and host specificity in the ectomycorrhizal genus Leccinum. New Phytol 163:201–215

    Article  Google Scholar 

  • Dickie IA (2007) Host preference, niches and fungal diversity. New Phytol 174:230–233

    Article  PubMed  Google Scholar 

  • Dickie IA, Moyerson B (2008) Towards a global view of ectomycorrhizal ecology. New Phytol 180:263–265

    Article  CAS  PubMed  Google Scholar 

  • Dickie IA, Guza RC, Krazewski SE, Reich PB (2004) Shared ectomycorrhizal fungi between a herbaceous perennial (Helianthemum bicknellii) and oak (Quercus) seedlings. New Phytol 164:375–382

    Article  Google Scholar 

  • Dickie IA, Bolstridge N, Cooper JA, Peltzer DA (2010) Co-invasion by Pinus and its mycorrhizal fungi. New Phytol 187:475–484

    Article  PubMed  Google Scholar 

  • Diédhiou AG, Selosse MA, Galiana A, Biabaté Dreyfus B, Bâ AM, de Faria SM, Béna G (2010) Multi-hist ectomycorrhizal fungi are predominant in a Guinean tropical rainforest and shared between canopy trees and seedlings. Environ Microbiol 12:2219–2232

    PubMed  Google Scholar 

  • Dighton J, Bonilla ASM, Jiminez-Nunez RA, Martinez N (2000) Determinants of leaf litter patchiness in mixed species New Jersey pine barrens forest and it possible influence on soil and soil biota. Biol Fert Soils 31:288–293

    Article  Google Scholar 

  • Dosskey MG, Linderman RG, Boersma L (1990) Carbon-sink stimulation of photosynthesis in Douglas fir seedlings by some ectomycorrhizas. New Phytol 115:269–274

    Article  CAS  Google Scholar 

  • Douhan GW, Huryn KL, Douhan LI (2007) Significant diversity and potential problems associated with inferring population structure within the Cenococcum geophilum species complex. Mycologia 99:812–819

    Article  CAS  PubMed  Google Scholar 

  • Dulmer KM, LeDuc SD, Horton TR (2014) Ectomycorrhizal inoculum potential of northeastern US forest soils for American chestnut restoration: results from field and laboratory bioassays. Mycorrhiza 24:65–74

    Article  PubMed  Google Scholar 

  • Frederikke M, Bjorbaekmo M, Carlsen T, Brysting A, Vralstad T, Hoiland K, Ugland KI, Geml J, Schmacher T, Kauserud H (2010) High diversity of root associated fungi in both alpine and arctic Dryas octopetala. BMC Plant Biol 10:244–255

    Article  Google Scholar 

  • Fujimura KE, Egger KN (2012) Host plant and environment influence community assembly of high arctic root-associated fungal communities. Fungal Ecol 5:409–418

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Geml J, Tulloss RE, Laursen GA, Sazanova NA, Taylor DL (2008) Evidence for strong inter-and intracontinental phylogeographic structure in Amanita muscaria, a wind-dispersed ectomycorrhizal basidiomycete. Mol Phylogenet Evol 48:694–701

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1983) The physiology of vesicular-arbuscular mycorrhizal roots. Plant Soil 71:197–209

    Article  CAS  Google Scholar 

  • Gorissen A, Kuyper TW (2000) Fungal species-specific responses of ectomycorrhizal Scots pine (Pinus sylvestris) to elevated [CO2]. New Phytol 146:163–168

    Article  CAS  Google Scholar 

  • Grelet GA, Johnson D, Paterson E, Anderson IC, Alexander IJ (2009) Reciprocal carbon and nitrogen transfer between an ericaceous dwarf shrub and fungi isolated from Piceirhiza bicolorata ectomycorrhizas. New Phytol 182:359–366

    Article  CAS  PubMed  Google Scholar 

  • Grelet GA, Johnson D, Vrålstad T, Alexander IJ, Anderson IC (2010) New insights into the mycorrhizal Rhizoscyphus ericae aggregate: spatial structure and co-colonization of ectomycorrhizal and ericoid roots. New Phytol 188:210–222

    Article  CAS  PubMed  Google Scholar 

  • Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I. (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 42(1):D699–704

    Google Scholar 

  • Hagerman SM, Sakakibara SM, Durall DM (2001) The potential for wood understory plants to provide refuge for ectomycorrhizal inoculum at an interior Douglas-fir forest after clear-cut logging. Can J For Res 31:711–721

    Article  Google Scholar 

  • Halling RE (2001) Ectomycorrhizae: co-evolution, significance, and biogeography. Ann Missouri Bot Gard 88:5–13

    Article  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Harrington TJ (2003) Relationships between macrofungi and vegetation in the Burren. Biol Environ Proc Roy Irish Acad 103B:147–159

    Article  Google Scholar 

  • Harrington TJ, Mitchel DT (2002) Characterization of Dryas octopetala ectomycorrhizas form limestone karst vegetation western Ireland. Can J Bot 80:970–982

    Article  Google Scholar 

  • Harrington TJ, Mitchel DT (2005a) Ectomycorrhizas associated with a relic population of Dryas octopetala in the Burren, western Ireland I. Distribution of ectomycorrhizas in relation to vegetation and soil characteristics. Mycorrhiza 15:425–433

    Article  PubMed  Google Scholar 

  • Harrington TJ, Mitchel DT (2005b) Ectomycorrhizas associated with a relic population of Dryas octopetala in the Burren, western Ireland II. Composition, structure and temporal variation in the ectomycorrhizal community. Mycorrhiza 15:435–445

    Article  PubMed  Google Scholar 

  • Hart MM, Klironomos JN (2002) Diversity of arbuscular mycorrhizal fungi and ecosystem functioning. In: van der Heijden MGA, Sanders I (eds) Mycorrhizal ecology. Ecological studies, vol 157. Springer, Berlin, pp 225–242

    Chapter  Google Scholar 

  • Hart MM, Reader RJ, Klironomos JN (2003) Plant coexistence mediated by arbuscular mycorrhizal fungi. TREE 18:418–423

    Google Scholar 

  • Hausmann NT, Hawkes CV (2009) Plant neighborhood control of arbuscular mycorrhizal community composition. New Phytol 183:1188–1200

    Article  PubMed  Google Scholar 

  • Hausmann NT, Hawkes CV (2010) Order of plant host establishment alters the composition of arbuscular mycorrhizal communities. Ecology 91:2333–2343

    Article  PubMed  Google Scholar 

  • Hayward JA, Horton TR (2012) Edaphic factors do not govern the ectomycorrhizal specificity of Pisonia grandis (Nyctaginaceae). Mycorrhiza 22:647–652

    Article  PubMed  Google Scholar 

  • Hayward J, Horton TR, Nuñez M (2015a) Ectomycorrhizal communities coinvading with Pinaceae species in Argentina: Gringos bajo el bosque. New Phytol. doi:10.1111/nph.13453

  • Hayward J, Horton TR, Pauchard A, Nuñez MA (2015b) A single ectomycorrhizal fungal species can enable a Pinus invasion. Ecology 96:1438–1444

    Article  PubMed  Google Scholar 

  • Hazard C, Lilleskov EA, Horton TR (2012) Is rarity of pinedrops (Pterospora andromeda) in eastern North America linked to rarity of its unique mycorrhizal host? Mycorrhiza 22:393–402

    Article  PubMed  Google Scholar 

  • Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J Ecol 90:371–384

    Article  Google Scholar 

  • Helgason T, Merryweather JW, Young JPW, Fitter AH (2007) Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community. J Ecol 95:623–630

    Article  CAS  Google Scholar 

  • Hibbett DS, Matheny PB (2009) The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses. BMC Biol 7:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Hobbie EA, Jumpponen A, Trappe J (2005) Foliar and fungal 15N:14N ratios reflect development of mycorrhizae and nitrogen supply during primary succession: testing analytical models. Oecologia 146:258–268

    Article  PubMed  Google Scholar 

  • Horton TR, Bruns TD (1998) Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytol 139:331–339

    Article  Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871

    Article  CAS  PubMed  Google Scholar 

  • Horton TR, van der Heijden MGA (2008) The role of symbiosis in seedling establishment and survival. In: Leck M, Parker VT, Simpson B (eds) Seedling ecology and evolution. Cambridge University Press, Cambridge, pp 150–171

    Google Scholar 

  • Horton TR, Bruns TD, Parker VT (1999) Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can J Bot 77:93–102

    Google Scholar 

  • Horton TR, Molina R, Hood K (2005) Douglas-fir ectomycorrhizae in 40- and 400-year-old stands: mycobiont availability to late successional western hemlock. Mycorrhiza 15:393–403

    Article  CAS  PubMed  Google Scholar 

  • Horton TR, Hayward J, Tourtellot SG, Taylor DL (2013) Uncommon ectomycorrhizal networks: richness and distribution of Alnus-associating ectomycorrhizal fungal communities. New Phytol 198(4):978–980

    Article  PubMed  Google Scholar 

  • Hynson NA, Bruns TD (2009) Evidence of a myco-heterotroph in the plant family Ericaceae that lacks mycorrhizal specificity. Proc R Soc Lond B Biol Sci 276:4053–4059

    Google Scholar 

  • Hynson NA, Merckx VSFT, Perry BA, Treseder KK (2013) Identities and distributions of the co-invading ectomycorrhizal fungal symbionts of exotic pines in the Hawaiian Islands. Biol Invasions 15:2373–2385

    Article  Google Scholar 

  • Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol 174:430–440

    Article  CAS  PubMed  Google Scholar 

  • Jacobson Jr GL, Webb III T, Grimm EC (1987) Patterns and rates of vegetation change during the deglaciation of eastern North America. The geology of North America. Geological Society of America. Boulder Co, USA, pp 277–288

    Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, et al. (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 433:818–822

    Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–586

    Article  Google Scholar 

  • Jones MD, Durall DM, Harniman SMK, Classen DC, Simard SW (1997) Ectomycorrhizal diversity on Betula papyrifera and Pseudotsuga menziesii seedlings grown in the greenhouse or outplanted in single-species and mixed plots in southern British Columbia. Can J For Res 27:1872–1889

    Article  Google Scholar 

  • Karst J, Morgan RJ, Gehring CA (2014) Consequences for ectomycorrhizal fungi of the selective loss or gain of pine across landscapes. Botany 92:855–865

    Article  CAS  Google Scholar 

  • Kennedy PG, Hill LT (2010) A molecular and phylogenetic analysis of the structure and specificity of Alnus rubra ectomycorrhizal assemblages. Fungal Ecol 3:195–204

    Article  Google Scholar 

  • Kennedy PG, Izzo AD, Bruns TD (2003) There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J Ecol 91:1071–1080

    Article  Google Scholar 

  • Kennedy PG, Smith DP, Horton TR, Molina RJ (2012) Arbutus menziesii (Ericaceae) facilitates regeneration dynamics in mixed evergreen forest by promoting mycorrhizal fungal diversity and host connectivity. Amer J Bot 99:1–11

    Article  Google Scholar 

  • Kernaghan G (2005) Mycorrhizal diversity: cause and effect. Pedobiologia 49:511–520

    Article  Google Scholar 

  • Kernaghan G, Widden P, Bergeron Y, Légaré S, Paré D (2003) Biotic and abiotic factors affecting ectomycorrhizal diversity in boreal mixed-woods. Oikos 102:497–504

    Article  Google Scholar 

  • Kiers ET, van der Heiden MGA (2006) Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary stability. Ecology 87:1627–1636

    Article  PubMed  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  • Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21:1204–1209

    Google Scholar 

  • Kohler A, Kuo A, Nagy LG et al (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet doi:10.1038/ng.3223

  • Kohout P, Sykorová Bahram, Hadincová V, Albrechtová J, Tedersoo L, Vohník M (2011) Ericaceous dwarf shrubs affect ectomycorrhizal fungal community of the invasive Pinus strobus and native Pinus sylvestres in a pot experiment. Mycorrhiza 21:403–412

    Article  PubMed  Google Scholar 

  • Koide RT, Suomi L, Stevens CM, McCormick L (1998) Interactions between needles of Pinus resinosa and ectomycorrhizal fungi. New Phytol 140:539–547

    Article  Google Scholar 

  • Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AF, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277

    Article  PubMed  CAS  Google Scholar 

  • Koske RE, Gemma JN, Englander L (1990) Vesicular-arbuscular mycorrhizae in Hawaiian Ericales. Amer J Bot 77:64–68

    Article  Google Scholar 

  • Kranabetter JM, Hayden S, Wright EF (1999) A comparison of ectomycorrhiza communities from three conifer species planted on forest gap edges. Can J Bot 77:1193–1198

    Google Scholar 

  • Kretzer A, Li Y, Szaro T, Bruns TD (1996) Internal transcribed spacer sequences from 38 recognized species of Suillus sensu lato: phylogenetic and taxonomic implications. Mycologia 88:776–785

    Article  CAS  Google Scholar 

  • Krpata D, Mühlmann O, Kuhnert R, Ladurner H, Friederike Göbl, Peintner U (2007) High diversity of ectomycorrhizal fungi associated with Arctostaphlos uva-ursi in subalpine and alpine zones: potential inoculum for afforestation. For Ecol Manag 250:167–175

    Article  Google Scholar 

  • Martin F, Díez J, Dell B, Delaruelle C (2002) Phylogeography of the ectomycorrhizal Pisolithus species as inferred from nuclear ribosomal DNA ITS sequences. New Phytol 153:345–357

    Article  CAS  Google Scholar 

  • Martin F, Aerts A, Ahren D, Brun A, Danchin EGJ, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R et al (2010) Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464(7291):1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Martin-Pinto P, Vaquerizo H, Peñalver F, Olaizola J, Oria-de-Rueda JA (2006) Early effects of wildfire on the diversity and production of fungal communities in Mediterranean vegetation types dominated by Cistus ladanifer and Pinus pinaster in Spain. For Ecol Manag 225:296–305

    Article  Google Scholar 

  • Massicotte HB, Molina R, Luoma DL, Smith JE (1994) Biology of the ectomycorrhizal genus Rhizopogon. II. Patterns of host-fungus specificity following spore inoculation of diverse hosts grown in mono- and dual cultures. New Phytol 126:677–690

    Article  Google Scholar 

  • Massicotte HB, Molina R, Tackaberry LE, Smith JE, Amaranthus MP (1999) Diversity and host specificity of ectomycorrhizal fungi retrieved from three adjacent forest sites by five host species. Can J Bot 77:1053–1076

    Google Scholar 

  • Massicotte HB, Melville LH, Tackaberry LE, Rl Peterson (2008) A comparative study of mycorrhiza in several genera of Pyroleae (Ericaceae) from western Canada. Botany 86:610–622

    Article  Google Scholar 

  • Melin E (1922) Untersuchungen über die Larix mycorrhiza I. Synthese der mycorrhiza in reinkulture. Svensk Bot Tidskrift 17:161–196

    Google Scholar 

  • Melin E (1923) Experimentelle Untersuchungen über die Birkin un Espenmycorrhizen und ihre Pilzsymbionten. Svensk Bot Tidskrift 17:479–520

    Google Scholar 

  • Molina R (1981) Ectomycorrhizal specificity in the genus Alnus. Can J Bot 59:325–334

    Article  Google Scholar 

  • Molina R, Trappe JM (1982) Lack of mycorrhizal specificity by the ericaceous host Arbutus menziesii and Artoctaphylos uva-ursi. New Phytol 90:495–509

    Article  Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 357–423

    Google Scholar 

  • Molina R, Smith JE, Mckay D, Melville LH (1997) Biology of the ectomycorrhizal genus Rhizopogon. III. Influence of co-cultured species on mycorrhizal specificity with the arbutoid host Arctostaphylos uva-ursi and Arbutus menziesii. New Phytol 137:519–528

    Article  Google Scholar 

  • Molina R, Trappe JM, Grubisha LC, Spatafora JW (1999) Rhizopogon. In: Cairney JWG, Chambers SM (eds) Ectomycorrhizal fungi: key genera in profile. Springer, Berlin, pp 129–161

    Chapter  Google Scholar 

  • Morris MH, Smith ME, Rizzo DM, Rejmánek M, Bledsoe CS (2008) Contrasting ectomycorrhizal fungal communities on the roots of co-occurring oaks (Quercus spp.) in a California woodland. New Phytol 178:167–176

    Article  PubMed  Google Scholar 

  • Morris MH, Pérez-Pérez A, Smith ME, Bledsoe CA (2009) Influence of host species on ectomycorrhizal communities associated with two co-occurring oaks (Quercus spp.) in a tropical cloud forest. FEMS Microb Ecol 69:274–287

    Article  CAS  Google Scholar 

  • Mühlmann O, Göbl F (2006) Mycorrhiza of the host-specific Lactarius deterrimus on the roots of Picea abies and Arctostaphylos uva-ursi. Mycorrhiza 16:245–250

    Article  PubMed  Google Scholar 

  • Nara K (2006a) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169:169–178

    Article  CAS  PubMed  Google Scholar 

  • Nara K (2006b) Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol 171:187–197

    Article  PubMed  Google Scholar 

  • Nara K (2008) Community developmental patterns and ecological functions of ectomycorrhizal fungi: implications from primary succession. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer, Berlin, pp 581–599

    Chapter  Google Scholar 

  • Nara K, Hogetsu T (2004) Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85:1700–1707

    Article  Google Scholar 

  • Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18:243–270

    Article  Google Scholar 

  • Newton AC (1991) Mineral nutrition and mycorrhizal infection of seedling oak and birch. III. Epidemiological aspects of ectomycorrhizal infection, and the relationship to seedling growth. New Phytol 117:53–60

    Article  Google Scholar 

  • Newton AC, Haigh JM (1998) Diversity of ectomycorrhizal fungi in Britain: a test of the species-area relationship, and the role of host specificity. New Phytol 138:619–627

    Article  Google Scholar 

  • Nuñez MTA, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90:2352–2359

    Article  PubMed  Google Scholar 

  • Ohsowski BM, Zaitsoff PD, Öpik M, Hart MM (2014) Where the wild things are: looking for uncultured Glomeromycota. New Phytol 204:171–179

    Article  PubMed  Google Scholar 

  • Onguene NA, Kuyper TW (2002) Importance of the ectomycorrhizal network for seedling survival and ectomycorrhiza formation in rain forest of south Cameroon. Mycorrhiza 12:13–17

    Article  CAS  PubMed  Google Scholar 

  • Öpik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I, Jairus T, Kalwij JM, Koorem K, Leal ME (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430

    Article  PubMed  Google Scholar 

  • Parke JL, Linderman RG, Black CH (1983) The role of ectomycorrhizas in drought tolerance of Douglas-fir seedlings. New Phytol 95:83–95

    Article  Google Scholar 

  • Peay KG, Kennedy PG, Bruns TD (2008) Fungal community ecology: a hybrid beast with a molecular master. Bioscience 58:799–810

    Article  Google Scholar 

  • Perry DA, Amaranthus MP, Borchers JG, Borchers SL, Brainerd RE (1989) Bootstrapping in ecosystems. Bioscience 39:230–237

    Article  Google Scholar 

  • Perry DA, Borchers JG, Borchers SL, Amaranthus MP (1990) Species migrations and ecosystem stability during climate change: the belowground connection. Cons Biol 4:266–274

    Article  Google Scholar 

  • Peterson RL, Massicotte HB, Melville LH (2004) Mycorrhizas: anatomy and cell biology. NRC Research Press, Canada

    Google Scholar 

  • Plett JM, Martin F (2011) Blurred boundaries: lifestyle lessons from ectomycorrhizal fungal genomes. Trends Genet 27:14–22

    Article  CAS  PubMed  Google Scholar 

  • Plett JM, Daguerre Y, Wittulsky S, et al (2014) Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. PNAS 111:8299–8304. doi:10.1073/pnas.1322671111

  • Polme S, Bahram M, Yamanaka T, Nara K, Dai YC, Grebenc T, Kraigher H, Toivonen M, Wang P-H, Matsuda Y, Naadel T, Kennedy PG, Kõljalg U, Tedersoo L (2013) Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol 198:1239–1249

    Article  CAS  PubMed  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  CAS  PubMed  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. PNAS 9:11841–11843

    Article  Google Scholar 

  • Richard F, Millot S, Gardes M, Selosse MA (2005) Diversity and specificity of ectomycorrhizal fungi retrieved from an old-growth Mediterranean forest dominated by Quercus ilex. New Phytol 166:1011–1023

    Article  CAS  PubMed  Google Scholar 

  • Richard F, Selosse MA, Gardes M (2009) Facilitated establishment of Quercus ilex in shrub-dominated communities within a Mediterranean ecosystem: do mycorrhizal partners matter? FEMS Microbio Ecol 68:14–24

    Article  CAS  Google Scholar 

  • Roy M, Rochet J, Manzi S, Jargeat P, Gryta H, Moreau P-A, Gardes M (2013) What determines Alnus-associated ectomycorrhizal community diversity and specificity? A comparison of host and habitat effects at a regional scale. New Phytol 198:1228–1238

    Article  CAS  PubMed  Google Scholar 

  • Ryberg M, Larsson E, Molau U (2009) Ectomycorrhizal diversity on Dryas octopetala and Salix reticulata in an alpine cliff ecosystem. Arct Antarct Alp Res 41:506–514

    Article  Google Scholar 

  • Ryberg M, Andreasen M, Björk RG (2011) Weak habitat specificity I ectomycorrhizal communities associated with Salix herbacea and Salix polaris in alpine tundra. Mycorrhiza 21:289–296

    Article  PubMed  Google Scholar 

  • Schüssler A (2015) Glomeromycota: species list (WWW document) http://schuessler.userweb.mwn.de/amphylo

  • Selosse MA, Bauer R, Moyersoen B (2002a) Basal hymenomycetes belonging to the Sebacinaceae are ectomycorrhizal on temperate deciduous trees. New Phytol 155:183–195

    Article  CAS  Google Scholar 

  • Selosse MA, Weiss M, Jany JL, Tillier A (2002b) Communities and populations of sebacinoid basidiomycetes associated with the achlorophylos orchid Neottia nidus-avis (L.) L.C.M. Rich and neighboring tree ectomycorrhizae. Mol Ecol 11:1831–1844

    Article  CAS  PubMed  Google Scholar 

  • Selosse M-A, Richard R, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses. TREE 21:621–628

    PubMed  Google Scholar 

  • Setaro S, Weiss M, Oberwinkler F, Kottke I (2006) Sebacinales form ectendomycorrhizas with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador. New Phytol 169:355–365

    Article  CAS  PubMed  Google Scholar 

  • Simard SW, Austin ME (2010) The role of mycorrhizas in forest soil stability with climate change. Clim Change Variability 275–302

    Google Scholar 

  • Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function, and importance. Can J Bot 82:1140–1165

    Article  CAS  Google Scholar 

  • Simard SW, Molina R, Smith JE, Perry DA, Jones MD (1997a) Shared compatibility of ectomycorrhizae on Pseudotsuga menziesii and Betula papyrifera seedlings grown in mixture in soils from southern British Columbia. Can J For Res 27:331–342

    Article  Google Scholar 

  • Simard SW, Perry DA, Jones MD, Myrold D, Durral DM, Molina R (1997b) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–582

    Article  CAS  Google Scholar 

  • Simard SW, Durall D, Jones M (2002) Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 33–74

    Google Scholar 

  • Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modeling. Fungal Biol 26:39–60

    Article  Google Scholar 

  • Smith SE, Read D (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Smith JE, Molina R, Perry DA (1995) Occurrence of ectomycorrhizas on ericaceous and coniferous seedlings grown in soils for the Oregon Coast Range. New Phytol 129:73–81

    Article  Google Scholar 

  • Smith ME, Douhan GW, Fremier AK, Rizzo DM (2009) Are true multihost fungi the exception or the rule? Dominant ectomycorrhizal fungi on Pinus sabiniana differ from those on co-occurring Quercus species. New Phytol 182:295–299

    Article  PubMed  Google Scholar 

  • Smith ME, Henkel TW, Aime MC, Fremier AK, Vigalys R (2011) Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. New Phytol 192:699–712

    Article  PubMed  Google Scholar 

  • Smith ME, Henkel TW, Uehling JK, Fremier AK, Clarke HD, Vilgalys R (2013) The ectomycorrhizal fungal community in a neotropical forest dominated by the endemic dipterocarp Pakarimaea dipterocarpacea. PLoS 1(8):e55160

    Article  CAS  Google Scholar 

  • Stanley MR, Koide RT, Shumway DL (1993) Mycorrhizal symbiosis increases growth, reproduction and recruitment of Abutilon theophrasti Medic. in the field. Oecologia 94:30–35

    Article  PubMed  Google Scholar 

  • Suvi T, Tedersoo L, Abarenkov K, Beaver K, Gerlach J, Köljalg U (2010) Mycorrhizal symbionts of Pisonia grandis and P. sechellarum in Seychelles: identification of mycorrhizal fungi and description of new Tomentella species. Mycologia 102:522–533

    Article  PubMed  Google Scholar 

  • Tansley AG (1935) The use and abuse of vegetational concepts and terms. Ecology 16:284–307

    Article  Google Scholar 

  • Taschen E, Sauve M, Taudiere A, Parlarde J, Selosse MA, Richard F (2015) Whose truffle is this? Distribution patterns of ectomycorrhizal fungal diversity in Tuber meloanosporum brûlés developed in multi-host Mediterranean plant communities. Environ Microb doi:10.1111/1462-2920.12741

  • Taylor AFS (2002) Fungal diversity in ectomycorrhizal communities: sampling effort and species detection. Plant Soil 244:19–28

    Article  CAS  Google Scholar 

  • Taylor DL, Bruns DD, Leake JR, Read DJ (2002) Mycorrhizal specificity and function in myco-heterotrophic plants. In: van der Heijden MGA, Sanders I (eds) Mycorrhizal ecology Ecological studies, vol 157. Springer, Berlin, pp 375–413

    Chapter  Google Scholar 

  • Taylor AFS, Fransson PM, Högberg P, Högberg MN, Plamboeck Ah (2003) Species level patterns in C-13 and N-15 abundance of ectomycorrhizal and saprotrophic fungal sporocarps. New Phytol 159:757–774

    Article  CAS  Google Scholar 

  • Tedersoo L, Pellet P, Kõljalg U, Selosse MA (2007a) Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia 151:206–217

    Article  PubMed  Google Scholar 

  • Tedersoo L, Suvi T, Beaver K, Kõljalg U (2007b) Ectomycorrhizal fungi of the Seychelles: diversity patterns and host shifts from the native Vateriopsis seychellarum (Dipterocarpaceae) and Intsia bijuga (Caesalpinaiaceae) to the introduced Eucalyptus robusta (Myrtaceae), but not to Pinus caribea (Pinaceae). New Phytol 175:321–333

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suv T, Saar I, Kõljalg U (2008a) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180:479–490

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Suvi T, Jairus T, Kõljalg U (2008b) Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula. Environ Microbiol 10:1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Suvi T, Jairus T, Ostonen I, Põlme S (2009) Revisiting ectomycorrhizal fungi of the genus Alnus: differential host specificity, diversity and determinants of the fungal community. New Phytol 182:727–735

    Article  PubMed  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010a) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Tedersoo L, Sadam A, Zambrano M, Valencia R, Bahram M (2010b) Low diversity and high host preference of ectomycorrhizal fungi in Western Amazonia, a neotropical biodiversity hotspot. ISME J 4:465–471

    Article  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Jairus T, Bechem E, Chinoya S, Mpumba SR, Leal M, Randrianjohany E, Razafimandimbison S, Sadam A, Naadel T, Kõljalg U (2011) Spatial structure and the effects of host and soil environments on communities of ectomycorrhizal fungi in wooded savannas and rain forest of Continental Africa and Madagascar. Mol Ecol 20:3071–3080

    Article  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Toots M, Diédhiou AG, Henkel TW, KjollerKjøller Morris MH, Nara K, Nouhra E, Peay KG, Põlme S, Rybert M, Smith ME, Kõljalg U (2012) Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol 21:4160–4170

    Article  PubMed  Google Scholar 

  • Tedersoo L, Smith ME (2013) Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol Rev 27:83–99. doi:10.1016/j.fbr.2013.09.001

  • Tedersoo L, Bahram M, Põlme S et al (2014) Global diversity and geography of soil fungi. Science 346 (6213). doi:10.1126/science.1256688

  • Timling I, Taylor DL (2012) Peeking through a frosty window: molecular insights into the ecology of Arctic soil fungi. Fungal Ecol 5:419–429

    Article  Google Scholar 

  • Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Croll D, Da Silva C, Gomez SK, Koul R et al (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193(3):755–769

    Article  CAS  PubMed  Google Scholar 

  • Trappe JM (1962) Fungus associates of ectotrophic mycorrhizae. Bot Rev 28:538–606

    Article  Google Scholar 

  • Trappe JM (1977) Selection of fungi for ectomycorrhizal inoculation in nurseries. Ann Rev Phytopath 15:203–222

    Article  Google Scholar 

  • Trappe JM (2005) AB Frank and mycorrhizae: the challenge to evolutionary and ecological theory. Mycorrhiza 15:277–281

    Article  PubMed  Google Scholar 

  • Twieg BD, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176:437–447

    Article  PubMed  Google Scholar 

  • Upson R, Read DJ, Newsham KK (2007) Widespread association between the ericoid mycorrhizal fungus Rhizoscyphus ericae and a leafy liverwort in the maritime and sub-Antartic. New Phytol 176:460–471

    Article  CAS  PubMed  Google Scholar 

  • Urban A, WEIß M, Bauer R (2003) Ectomycorrhizas involving sebacinoid mycobionts. Mycol Res 107:3–14

    Article  PubMed  Google Scholar 

  • van der Heijden MGA, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97:1139–1150

    Article  Google Scholar 

  • van der Heijden MGA, Martin FM, Selosse M-A, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  CAS  Google Scholar 

  • Vellinga EC, Wolfe BE, Pringle A (2009) Global patterns of ectomycorrhizal introductions. New Phytol 181:960–973

    Article  PubMed  Google Scholar 

  • Villarreal-Ruiz L, Anderson IC, Alexander IJ (2004) Interaction between an isolate from the Hymenoscyphus ericae aggregate and roots of Pinus and Vaccinium. New Phytol 164:183–192

    Article  CAS  Google Scholar 

  • Visser S (1995) Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol 129:389–401

    Article  Google Scholar 

  • Vrålstad T (2004) Are ericoid and ectomycorrhizal fungi part of a common guild? New Phytol 164:7–10

    Article  Google Scholar 

  • Wilson AW, Binder M, Hibbet DS (2012) Diversity and evolution of ectomycorerhizal host associations in the Sclerodermatineae (Boletales, Basidiomycota). New Phytol 104:951–961

    Google Scholar 

  • Wolfe BE, Pringle A (2011) Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus. ISME J 6:745–755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zak B (1976a) Pure culture synthesis of bearberry mycorrhizae. Can J Bot 54:1297–1305

    Article  Google Scholar 

  • Zak B (1976b) Pure culture synthesis of Pacific madrone ectendomycorrhizae. Mycologia 68:362–369

    Article  Google Scholar 

  • Zimmer K, Hynson NA, Gebauer G, Allen EB, Allen MF, Read DJ (2007) Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotoropoids (Ericaceae) and in orchids. New Phytol 175:166–175

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. James Trappe and Dr. Jeremy Hayward for their thoughtful discussions on specificity phenomena and comments on earlier drafts of this chapter. Financial support was provided to T.R.H. by and the US Forest Service, PNW Research Station, National Research Initiative award no. 99-35107-7843 from the USDA Cooperative State Research Education and Extension Service, and National Science Foundation awards, DEB 0614384 and 949175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Horton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Molina, R., Horton, T.R. (2015). Mycorrhiza Specificity: Its Role in the Development and Function of Common Mycelial Networks. In: Horton, T. (eds) Mycorrhizal Networks. Ecological Studies, vol 224. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7395-9_1

Download citation

Publish with us

Policies and ethics