Skip to main content

Network Models of Neural Information Processing

  • Chapter
  • First Online:
An Introduction to Neural Information Processing
  • 1262 Accesses

Abstract

Neurons and synapses are the basic building units of the brain. They form neural circuits of various structures and hence implement different functions. Understanding how neural networks achieve brain functions is at the core of modeling studies. In this chapter, we will introduce some network models, including classical Hopfield model, continuous attractor neural network, and reservoir network. We will also discuss the studies on how short-term plasticity of neuronal synapses affects the dynamics and computations of a neural network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LF, Regehr WG. Synaptic computation. Nature. 2004;431(7010):796–803.

    Article  CAS  PubMed  Google Scholar 

  • Amari S. Dynamics of pattern formation in lateral–Inhibition type neural fields. Biol Cybern. 1977;27:77–87.

    Article  CAS  PubMed  Google Scholar 

  • Amit DJ, Gutfreund H, Sompolinsky H. Storing infinite numbers of patterns in a spin-glass model of neural networks. Phys Rev Lett. 1985;55(14):1530.

    Article  CAS  PubMed  Google Scholar 

  • Amit DJ, Gutfreund H, Sompolinsky H. Information storage in neural networks with low levels of activity. Phys Rev A. 1987;35(5):2293.

    Article  CAS  Google Scholar 

  • Benda J, Herz AVM. A universal model for spike-frequency adaptation. Neural Comput. 2003;15:2523–64.

    Article  PubMed  Google Scholar 

  • Ben-Yishai R, Bar-Or RL, Sompolinsky H. Theory of orientation tuning in visual cortex. Proc Natl Acad Sci. 1995;92:3844–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry MJ, Brivanlou IH, Jordan TA, Meister M. Anticipation of moving stimuli by the retina. Nature. 1999;398:334–8.

    Article  CAS  PubMed  Google Scholar 

  • Blair HT, Sharp PE. Anticipatory head direction signals in anterior thalamus: evidence for a thalamocortical circuit that integrates angular head motion to compute head direction. J Neurosci. 1995;15:6260–70.

    CAS  PubMed  Google Scholar 

  • Buonomano DV, Maass W. State-dependent computations: spatiotemporal processing in cortical networks. Nat Rev Neurosci. 2009;10(2):113–25.

    Article  CAS  PubMed  Google Scholar 

  • Fung CC, Wong KYM, Wu S. A moving bump in a continuous manifold: a comprehensive study of the tracking dynamics of continuous attractor neural networks. Neural Comput. 2010;22:752–92.

    Article  PubMed  Google Scholar 

  • Fung CA, Wong KM, Wang H, Wu S. Dynamical synapses enhance neural information processing: gracefulness, accuracy, and mobility. Neural Comput. 2012;24(5):1147–85.

    Article  PubMed  Google Scholar 

  • Gold JI, Shadlen MN. The neural basis of decision making. Annu Rev Neurosci. 2007;30:535–74.

    Article  CAS  PubMed  Google Scholar 

  • Goodridge JP, Touretzky DS. Modelling attractor deformation in the rodent head-direction system. J Neurophysiol. 2000;83:3402–10.

    CAS  PubMed  Google Scholar 

  • Gutkin B, Zeldenrust F. Spike frequency adaptation. Scholarpedia. 2014;9(2):30643.

    Article  Google Scholar 

  • Heeger DJ. Normalization of cell responses in cat striate cortex. Vis Neurosci. 1992;9:181–97.

    Article  CAS  PubMed  Google Scholar 

  • Hertz JA, Krogh A, Palmer RG. Introduction to the theory of neural computation, volume 1 of Santa Fe institute studies in the sciences of complexity: lecture notes. 1991.

    Google Scholar 

  • Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci. 1982;79(8):2554–8.

    Google Scholar 

  • Kanter I, Sompolinsky H. Associative recall of memory without errors. Phys Rev A. 1987;35(1):380.

    Article  CAS  Google Scholar 

  • Maass W, Natschläger T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 2002;14(11):2531–60.

    Article  PubMed  Google Scholar 

  • Mi Y, Liao X, Huang X, Zhang L, Gu W, Hu G, Wu S. Long-period rhythmic synchronous firing in a scale-free network. Proc Natl Acad Sci. 2013;110(50):E4931–6.

    Google Scholar 

  • Samsonovich A, McNaughton BL BL. Path integration and cognitive mapping in a continuous attractor neural network model. J Neurosci. 1997;17:5900–20.

    CAS  PubMed  Google Scholar 

  • Sato TK, Nauhaus I, Carandini M. Travelling waves in visual cortex. Neuron. 2012;75:218–29.

    Article  CAS  PubMed  Google Scholar 

  • Sussillo D, Abbott LF. Generating coherent patterns of activity from chaotic neural networks. Neuron. 2009;63(4):544–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsodyks M, Wu S. Short-term synaptic plasticity. Scholarpedia. 2013;8(10):3153.

    Article  Google Scholar 

  • Uchida N, Kepecs A, Mainen ZF. Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision making. Nat Rev Neurosci. 2006;7(6):485–91.

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ. Probabilistic decision making by slow reverberation in cortical circuits. Neuron. 2002;36(5):955–68.

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ. Decision making in recurrent neuronal circuits. Neuron. 2008;60(2):215–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuanyuan Mi, Alan Fung CC, Michael Wong KY, Si Wu. Spike frequency adaptation implements anticipative tracking in neural systems. Adv Neural Info Process Syst. 2013.

    Google Scholar 

  • Zhang K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J Neurosci. 1996;16:2112–26.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liang, P., Wu, S., Gu, F. (2016). Network Models of Neural Information Processing. In: An Introduction to Neural Information Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7393-5_6

Download citation

Publish with us

Policies and ethics