Skip to main content

Cadherin-Based Cell-Cell Adhesions: Adhesion Structure, Signalling and Computational Modeling

  • Chapter
  • 683 Accesses

Abstract

Cadherins represent a large group (more than 100) of transmembrane cell surface glycoproteins that play central roles in tissue organization and morphogenesis by modulating cell-cell adhesions in a Ca++ dependent manner. In this chapter, we review the various types of cadherins, interacting partners of cadherins, the structure and assembly of cadherin-mediated cell-cell adhesions, force-sensitive nature of cadherin bonds, and the role of cadherins in cancer. Finally, we discuss about some of the different computational and mathematical approaches used to explore different aspects of cell-cell adhesions, and their relationship to cellular processes relevant to cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hulpiao P, Redies CM (2009) Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol 41:349–369

    Article  CAS  Google Scholar 

  2. Hirano S, Suzuki ST, Redies CM, Hirano S, Suzuki ST, Redies CM (2003) The cadherin superfamily in neural development: diversity, function and interaction with other molecules. Front Biosci 8:D306–D355

    Article  CAS  PubMed  Google Scholar 

  3. Tanaka H, Shan W, Phillips GR, Arndt K, Bozdagi O, Shapiro L, Huntley GW, Benson DL, Colman DR (2000) Molecular modification of N-cadherin in response to synaptic activity. Neuron 25(1):93–107

    Article  CAS  PubMed  Google Scholar 

  4. Hatta K, Takagi S, Fujisawa H, Takeichi M (1987) Spatial and temporal expression pat-tern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev Biol 120(1):215–227

    Article  CAS  PubMed  Google Scholar 

  5. Takeichi M (1990) Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem 59:237–252

    Article  CAS  PubMed  Google Scholar 

  6. Falagas ME, Zarkadoulia E a, Ioannidou EN, George P, Christos C, Rafailidis PI (2007) P-cadherin expression in breast cancer: a review. Breast Cancer Res 9(5):214

    Article  Google Scholar 

  7. Rezaei M, Katrin F, Ben W, Aleksandar K, Antje K-t (2012) Interplay between neural-cadherin and vascular endothelial-cadherin in breast cancer progression. Breast Cancer Res 14(6):R154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rubina K, Talovskaya E, Cherenkov V, Ivanov D, Stambolsky D, Storozhevykh T (2005) LDL induces intracellular signalling and cell migration via atypical LDL-binding protein T-cadherin. Mol Cell Biochem 273(1–2):33–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takuji T, Masatoshi T (2005) New insights into fat cadherins. J Cell Sci 118(11):2347–2353

    Article  CAS  Google Scholar 

  10. Yu JS, Koujak S, Nagase S, C-m L, Su T, Wang X, Keniry M, Memeo L (2008) PCDH8, the human homolog of PAPC, is a candidate tumor suppressor of breast cancer. Oncogene 27(34):4657–4665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu J, Cheng YY, Tao Q, Cheung KF, Lam CN, Geng H, Tian L-W, Wong YP, Tong JH, Ying J-M, Jin H, To KF, Chan F-c K, Sung JJ (2009) Methylation of protocadherin 10, a novel tumor suppressor, is associated with poor prognosis in patients with gastric cancer. Gastroenterology 136(2):640–651.e1

    Article  CAS  PubMed  Google Scholar 

  12. Courjean O, Guillaume C, Emilie P, Anne M, Sarah S, Noelle P, Jurgen¨ E, van Dorsselaer A, Hel´ene` F (2008) Modulation of E-cadherin monomer folding by cooperative binding of calcium ions. Biochemistry 47(8):2339–2349

    Article  CAS  PubMed  Google Scholar 

  13. Nose A, Tsuji K, Takeichi M (1990) Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61:147–155

    Article  CAS  PubMed  Google Scholar 

  14. Friedlander DR, Mge RM, Cunningham BA, Edelman GM (1989) Molecular evolution of the cadherin superfamily. Proc Natl Acad Sci U S A 86:7043–7047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Inuzuka H, Miyatani S, Takeichi M (1991) R-cadherin: a novel Ca(2+)-dependent cell-cell adhesion molecule expressed in the retina. Neuron 7(1):69–79

    Article  CAS  PubMed  Google Scholar 

  16. Katsamba P, Carroll K, Ahlsen G, Bahna F, Vendome J, Posy S, Rajebhosale M, Price S, Jessell TM, Ben-Shaul A, Shapiro L, Honig BH (2009) Linking molecular affinity and cellular specificity in cadherin-mediated adhesion. Proc Natl Acad Sci U S A 106(28):11594–11599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zaidel-Bar R (2013) Cadherin adhesome at a glance. J Cell Sci 126:373–378

    Article  CAS  PubMed  Google Scholar 

  18. Garrod DR, Merritt AJ, Nie Z (2002) Desmosomal cadherins. Curr Opin Cell Biol 14:537–545

    Article  CAS  PubMed  Google Scholar 

  19. Ratheesh A, Yap AS (2012) A bigger picture: classical cadherins and the dynamic actin cytoskeleton. Nat Rev Mol Cell Biol 13:673–679

    Article  CAS  PubMed  Google Scholar 

  20. Lee M-h, Piyush K, Jun Q, Andreadis ST (2009) JNK phosphorylates β-catenin and regulates adherens junctions. FASEB J 09(0023):3874–3883

    Article  CAS  Google Scholar 

  21. Reynolds AB, Agnes R-F (2004) Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene 23(48):7947–7956

    Article  CAS  PubMed  Google Scholar 

  22. Ireton RC, Davis M a, van Hengel J, Mariner DJ, Kirk B, Thoreson M a, Anastasiadis PZ, Linsey M, Bundy LM, Linda S, Barbara G, van Roy F, Reynolds AB (2002) A novel role for p120 catenin in E-cadherin function. J Cell Biol 159(3):465–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Davis M a, Ireton RC, Reynolds AB (2003) A core function for p120-catenin in cadherin turnover. J Cell Biol 163(3):525–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ohkubo T, Masayuki O (2004) The transcription factor Snail downregulates the tight junction components independently of E-cadherin downregulation. J Cell Sci 117(Pt 9):1675–1685

    Article  CAS  PubMed  Google Scholar 

  25. Bellovin DI, Bates RC, Alona M, Rimm DL, Mercurio AM (2005) Altered localization of p120-catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease. Cancer Res 65(23):10938–10945

    Article  CAS  PubMed  Google Scholar 

  26. Ramis-Conde I, Dirk D, Anderson AR, Chaplain MA (2008) Modeling the influence of the E-cadherin-β-catenin pathway in cancer cell invasion: a multi scale approach. Biophys J 95(1):155–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Akhtar N, Hotchin NA (2001) RAC1 regulates adherens junctions through endocytosis of E-cadherin. Mol Biol Cell 12(April):847–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Geiger B, Bershadsky AD, Pankov R, Yamada KM (2001) Transmembrane extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805

    Article  CAS  PubMed  Google Scholar 

  29. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143

    Article  CAS  PubMed  Google Scholar 

  30. Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10:21–33

    Article  CAS  PubMed  Google Scholar 

  31. Pelham RJ, Yu-Li W (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 94(25):13661–13665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peyton SR, Putnam AJ (2005) Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J Cell Physiol 204(1):198–209

    Article  CAS  PubMed  Google Scholar 

  33. Ulrich TA, de Juan-Pardo EM, Sanjay K (2009) The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res 69(10):4167–4174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  35. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    Article  CAS  PubMed  Google Scholar 

  36. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SFT, Fong SFT, Csiszar E, Giaccia A, Weninger W, Yamaguchi M, Gasser DL, Weaver VM (2009) Matrix cross linking forces tumor progression by enhancing integrin signaling. Cell 139:891–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ladoux B, Anon E, Lambert M, Rabodzey A, Hersen P, Buguin A, Silberzan P, Mge RM (2010) Strength dependence of cadherin-mediated adhesions. Biophys J 98(4):534–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miyake Y, Inoue N, Nishimura K, Kinoshita N, Hosoya H, Yonemura S (2006) Actomyosin tension is required for correct recruitment of adherens junction components and zonula occludens formation. Exp Cell Res 312(9):1637–1650

    Article  CAS  PubMed  Google Scholar 

  39. Smutny M, Cox HL, Leerberg JM, Kovacs EM, Conti MA, Ferguson C, Hamilton NA, Parton RG, Adelstein RS, Yap AS (2010) Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens. Nat Cell Biol 12(7):696–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM, Chen CS (2010) Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci U S A 107:9944–9949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. le Duc Q, Shi Q, Blonk I, Sonnenberg A, Wang N, Leckband D, de Rooij J (2010) Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J Cell Biol 189(7):1107–1115

    Article  PubMed  PubMed Central  Google Scholar 

  42. Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3(5):466–472

    Article  CAS  PubMed  Google Scholar 

  43. del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP (2009) Stretching single talin rod molecules activates vinculin binding. Science 323(5914):638–641

    Article  PubMed  CAS  Google Scholar 

  44. Watabe-Uchida M, Uchida N, Imamura Y, Nagafuchi A, Fujimoto K, Uemura T, Vermeulen S, van Roy F, Adamson ED, Takeichi M (1998) alpha-catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells. J Cell Biol 142(3):847–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huveneers HS, Oldenburg J, Spanjaard E, van der Krogt G, Grigoriev I, Akhmanova A, Rehmann H, de Rooij J (2012) Vinculin associates with endothelial VE-cadherin junctions to control force- dependent remodeling. J Cell Biol 196(5):641–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) alpha-catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12:533–542

    Article  CAS  PubMed  Google Scholar 

  47. Leerberg JM, Yap AS (2013) Vinculin, cadherin mechanotransduction and homeostasis of cell-cell junctions. Protoplasma 250(4):831

    Article  Google Scholar 

  48. Jeanes A, Gottardi CJ, Yap AS (2008) Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27:6920–6929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Berx G, van Roy F (2009) Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol 1(6):a003129

    Article  PubMed  PubMed Central  Google Scholar 

  50. van Roy F (2014) Beyond e-cadherin: roles of other cadherin superfamily members in cancer. Nat Rev Cancer 14:121–134

    Article  PubMed  CAS  Google Scholar 

  51. Oikawa T, Atsuko N, Nobuyuki O (2013) Acquired expression of NFATc1 downregulates E-cadherin and promotes cancer cell invasion. Cancer Res 73:5100–5109

    Article  CAS  PubMed  Google Scholar 

  52. Vleminckx K, Vakaet L, Mareel M, Fiers W, van Roy F (1991) Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66(1):107–119

    Article  CAS  PubMed  Google Scholar 

  53. Perl A-K, Wilgenbus P, Dahl U, Semb H, Christofori G (1998) A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392:190–193

    Article  CAS  PubMed  Google Scholar 

  54. Derksen PW, Liu X, Saridin F, van der Gulden H, Zevenhoven J, Evers B, van Beijnum JR, Griffioen AW, Vink J, Krimpenfort P, Peterse JL, Cardiff RD, Berns A, Jonkers J (2006) Somatic inactivation of e-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10(5):437–449

    Article  CAS  PubMed  Google Scholar 

  55. Christofori G, Semb H (1999) The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci 24(2):73–76

    Article  CAS  PubMed  Google Scholar 

  56. Tripathi V, Popescu NC, Zimonjic DB (2014) DLC1 induces expression of E-cadherin in prostate cancer cells through Rho pathway and suppresses invasion. Oncogene 33(6):724–733

    Article  CAS  PubMed  Google Scholar 

  57. Ximei W, Xiaolin T, Kyu Sang J, Hilton MJ, Williams D a, Fanxin L (2008) Rac1 activation controls nuclear localization of β-catenin during canonical Wnt signaling. Cell 133(2):340–353

    Article  CAS  Google Scholar 

  58. Crampton SP, Beibei W, Park EJ, Jai-Hyun K, Candice S, Waterman M-i L, Hughes CCW (2009) Integration of the β-catenin-dependent Wnt pathway with integrin signaling through the adaptor molecule Grb2. PLoS One 4(11):e7841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Heuberger J, Walter B (2010) Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol 2(2):a002915

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hanahan D, Weinberg R a (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  61. Kumar S, Alakesh D, Shamik S (2014) Extracellular matrix density promotes EMT by weakening cell-cell adhesion. Mol Biosyst 10(4):838–850

    Article  CAS  PubMed  Google Scholar 

  62. Koenig A, Mueller C, Hasel C, Adler G, Menke A (2006) Collagen type i induces disruption of E-cadherin-mediated cell-cell contacts and promotes proliferation of pancreatic carcinoma cells. Cancer Res 66(9):4662–4671

    Article  CAS  PubMed  Google Scholar 

  63. Liu WF, Nelson CM, Pirone DM, Chen CS (2006) E-cadherin engagement stimulates proliferation via Rac1. J Cell Biol 173(3):431–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen X, Mirna P-m, Gumbiner BM (2007) E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions. Mol Biol Cell 18(6):2013–2025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Hermiston ML, Wong MH, Gordon JI (1996) Forced expression of E-cadherin in the mouse intestinal epithelium slows cell migration and provides evidence for nonautonomous regulation of cell fate in a self-renewing system. Genes Dev 10(8):985–996

    Article  CAS  PubMed  Google Scholar 

  66. Tunggal JA, Helfrich I, Schmitz A, Schwarz H, Gnzel D, Fromm M, Kemler R, Krieg T, Niessen CM (2005) E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J 24(6):1146–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tiwari N, Gheldof A, Tatari M, Christofori G (2012) EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol 22(3):194–207

    Article  CAS  PubMed  Google Scholar 

  68. Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R (2005) DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24(14):2375–2385

    Article  CAS  PubMed  Google Scholar 

  69. Gumbiner BM (2000) Regulation of cadherin adhesive activity. J Cell Biol 148(3):399–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hirohashi S (1998) Inactivation of the E-cadherin-mediated cell. Am J Pathol 153(2):333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Libusova L, Stemmler MP, Hierholzer A, Schwarz H, Kemler R (2010) N-cadherin can structurally substitute for e-cadherin during intestinal development but leads to polyp formation. Development 137:2297–2305

    Article  CAS  PubMed  Google Scholar 

  72. Kotb AM, Hierholzer A, Kemler R (2011) Replacement of E-cadherin by n-cadherin in the mammary gland leads to fibrocystic changes and tumor formation. Breast Cancer Res 13:R104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lammens T, Swerts K, Derycke L, De Craemer A, De Brouwer S, De Preter K, Van R, Vandesompele J, Speleman F, Philipp J, Benoit Y, Beiske K, Bracke M, Laureys G (2012) N-cadherin in neuroblastoma disease: expression and clinical significance. PLoS One 7(2):e31206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rorth P (2009) Collective cell migration. Ann Rev Cell Dev Biol 25:407–419

    Article  CAS  Google Scholar 

  75. Friedl P, Locker J, Sahai E, Segall JE (2012) Classifying collective cancer cell invasion. Nat Cell Biol 14(8):777–783

    Article  PubMed  CAS  Google Scholar 

  76. Hegerfeldt Y, Tusch M, Brocker EB, Friedl P (2002) Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta1-integrin function, and migration strategies. Cancer Res 62:2125–2130

    CAS  PubMed  Google Scholar 

  77. Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457

    Article  CAS  PubMed  Google Scholar 

  78. Nabeshima K, Inoue T, Shimao Y, Okada Y, Itoh Y, Seiki M, Koono M (2000) Front-cell-specific expression of membrane-type 1 matrix metalloproteinase and gelatinase a during cohort migration of colon carcinoma cells induced by hepatocyte growth factor/scatter factor. Cancer Res 60(13):3364–3369

    CAS  PubMed  Google Scholar 

  79. Soulie P, Carrozzino F, Pepper MS, Strongin AY, Poupon MF, Montesano R (2005) Membrane-type–1 matrix metalloproteinase confers tumorigenicity on non malignant epithelial cells. Oncogene 24:1689–1697

    Article  CAS  PubMed  Google Scholar 

  80. Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C, Stack MS, Friedl P (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9(8):893–904

    Article  CAS  PubMed  Google Scholar 

  81. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K, Sahai E (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9(12):1392–1400

    Article  CAS  PubMed  Google Scholar 

  82. Macpherson IR, Hooper S, Serrels A, McGarry L, Ozanne BW, Harrington K, Frame MC, Sahai E, Brunton VG (2007) p120-catenin is required for the collective invasion of squamous cell carcinoma cells via a phosphorylation-independent mechanism. Oncogene 26(36):5214–5228

    Article  CAS  PubMed  Google Scholar 

  83. Burute M, Thery M (2012) Spatial segregation between cell-cell and cell-matrix adhesions. Curr Opin Cell Biol 24(5):628–636

    Article  CAS  PubMed  Google Scholar 

  84. Clara MR, Pincet F, Thiery JP, Dufour S (2010) Integrins stimulate E-cadherin-mediated intercellular adhesion by regulating Src-kinase activation and actomyosin contractility. J Cell Sci 123(5):712–722

    Article  CAS  Google Scholar 

  85. Tsai J, Kam L (2009) Rigidity-dependent crosstalk between integrin and cadherin signaling. Biophys J 96:39–41

    Article  CAS  Google Scholar 

  86. Ojakian GK, Radcliffe DR, Schwimmer R (2000) Integrin regulation of cell-cell adhesion during epithelial tubule formation. J Cell Sci 114:941–952

    Google Scholar 

  87. Mitra SK, Schlaepfer DD (2006) Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 18:516–523

    Article  CAS  PubMed  Google Scholar 

  88. Menke A, Philippi C, Vogelmann R, Seidel B, Lutz MP, Adler G, Wedlich D (2001) Down-regulation of E-cadherin gene expression by collagen type I and type III in pancreatic cancer cell lines. Cancer Res 61:3508–3517

    CAS  PubMed  Google Scholar 

  89. Li XY, Zhou X, Rowe RG, Hu Y, Schlaepfer DD, Ilic D, Dressler G, Park A, Guan L, Weiss SJ (2011) Snail1 controls epithelial–mesenchymal lineage commitment in focal adhesion kinase-null embryonic cells. J Cell Biol 195:729–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Calautti E, Cabodi S, Stein PL, Hatzfeld M, Kedersha N, Paolo Dotto G (1998) Tyrosine phosphorylation and src family kinases control keratinocyte cell-cell adhesion. J Cell Biol 141:1449–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Playford MP, Vadali K, Cai X, Burridge K, Schaller MD (2008) Focal adhesion kinase regulates cell-cell contact formation in epithelial cells via modulation of Rho. Exp Cell Res 314:3187–3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Avizienyte E, Fincham VJ, Brunton VG, Frame MC (2004) Src SH3/2 domain-mediated peripheral accumulation of Src and phospho-myosin is linked to deregulation of E-cadherin and the epithelial-mesenchymal transition. Mol Biol Cell 15:2794–2803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Palacios F, Tushir JS, Fujita Y, DSouza-Schorey C (2005) Lysosomal targeting of E-cadherin: a unique mechanism for the down-regulation of cell-cell adhesion during epithelial to mesenchymal transitions. Mol Biol Cell 25:389–402

    Article  CAS  Google Scholar 

  94. Oloumi A, McPhee T, Dedhar S (2004) Regulation of E-cadherin expression and beta-catenin/Tcf transcriptional activity by the integrin-linked kinase. Biochim Biophys Acta 1691:1–15

    Article  CAS  PubMed  Google Scholar 

  95. Menke A, Giehl K (2012) Regulation of adherens junctions by Rho GTPases and p120-catenin. Arch Biochem Biophys 524:48–55

    Article  CAS  PubMed  Google Scholar 

  96. Quaranta V, Weaver AM, Cummings PT, Alexander ARA (2005) Mathematical modeling of cancer: the future of prognosis and treatment. Clin Chim Acta 357(2):173–179

    Article  CAS  PubMed  Google Scholar 

  97. Byrne HM (2010) Dissecting cancer through mathematics: from the cell to the animal model. Nat Rev Cancer 10:221–230

    Article  CAS  PubMed  Google Scholar 

  98. Gammon K (2012) Mathematical modelling: forecasting cancer. Nature 491(7425):66–67

    Article  Google Scholar 

  99. Savage N (2012) Modelling: computing cancer. Nature 491(7425):S62–S63

    Article  PubMed  Google Scholar 

  100. Werner HMJ, Mills GB, Ram PT (2014) Cancer systems biology: a peek into the future of patient care? Nat Rev Clin Oncol 11(3):167–176

    Article  PubMed  PubMed Central  Google Scholar 

  101. Glazier JA, Balter A, Poplawski NJ (2007) Magnetization to morphogenesis: a brief history of the Glazier-graner-Hogeweg model. Single Cell Based Models Biol Med:79–106

    Google Scholar 

  102. Turner S, Sherratt JA (2002) Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. J Theor Biol 216(1):85–100

    Article  PubMed  Google Scholar 

  103. Rubenstein BM, Kaufman LJ (2008) The role of extracellular matrix in glioma invasion: a cellular Potts model approach. Biophys J 95(12):5661–5680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Maini PK, Olsen L, Sherratt JA (2002) Mathematical models for cell-matrix interactions during dermal wound healing. Int J Bifurcations Chaos 12(9):2021–2029

    Article  Google Scholar 

  105. Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two dimensional extended Potts model. Phys Rev Lett 69(13):2013–2017

    Article  CAS  PubMed  Google Scholar 

  106. Bauer AL, Jackson TL, Yi J (2007) A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys J 92(9):3105–3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Armstrong NJ, Painter KJ, Sherratt JA (2006) A continuum approach to modelling cell-cell adhesion. J Theor Biol 243(1):98–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Moreira J, Deutsch A (2002) Cellular automaton models of tumor development: a critical review. Adv Comp Syst 05(02n03):247–267

    Article  Google Scholar 

  109. Alarcon T, Byrne ´HM, Maini PK (2003) A cellular automaton model for tumour growth in inhomogeneous environment. J Theor Biol 225(2):257–274

    Article  CAS  PubMed  Google Scholar 

  110. Enderling H, Alexander NR, Clark ES, Branch KM, Lourdes E, Cornelia C, Jer´omeˆ J, Nichole L, Zaman MH, Guelcher SA, Anderson AR, Weaver AM (2008) Dependence of invadopodia function on collagen fiber spacing and cross-linking: computational modeling and experimental evidence. Biophys J 95(5):2203–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ninh AQ (2013) Two discrete stochastic cellular automata models of cancer stem cell proliferation. Int J Bios Bioch Bioinfo 3(5):5–8

    Google Scholar 

  112. Basanta D, Strand DW, Lukner RB, Franco OE, Cliffel DE, Ayala GE, Hayward SW, Anderson AR (2009) The role of transforming growth factor-beta-mediated tumor-stroma interactions in prostate cancer progression: an integrative approach. Cancer Res 69(17):7111–7120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kim E, Rebecca V, Fedorenko IV, Messina JL, Mathew R, Maria-Engler SS, Basanta D, Smalley KS, Anderson AR (2013) Senescent fibroblasts in melanoma initiation and progression: an integrated theoretical, experimental, and clinical approach. Cancer Res 73:6874–6885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vasioukhin V, Bauer C, Yin M, Fuchs E (2000) Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100(2):209–219

    Article  CAS  PubMed  Google Scholar 

  115. Vasioukhin V, Fuchs E (2001) Actin dynamics and cell-cell adhesion in epithelia. Curr Opin Cell Biol 13(1):76–84

    Article  CAS  PubMed  Google Scholar 

  116. Zhang J, Betson M, Erasmus J, Zeikos K, Bailly M, Cramer LP, Braga Vania MM (2005) Actin at cell-cell junctions is composed of two dynamic and functional populations. J Cell Sci 118(Pt 23):5549–5562

    Article  CAS  PubMed  Google Scholar 

  117. Pantaloni D, Hills TL, Carlier M-F, Korn ED (1985) A model for actin polymerization and the kinetic effects of ATP hydrolysis. Proc Natl Acad Sci U S A 82(21):7207–7211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cardelli L, Caron E, Phillips A (2008) A process model of actin polymerisation. Electron Notes Theory Comput Sci 1:127–144

    Google Scholar 

  119. Leckband D (2010) Design rules for biomolecular adhesion: lessons from force measurements. Annu Rev Chem Biomol Eng 1:365–389

    Article  CAS  PubMed  Google Scholar 

  120. Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, Ponomarev V, Gerald L, Blasberg R, Massague´ J (2005) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115(1):44–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C, Gomis RR, Manova-Todorova K, Massague´ J (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446(7137):765–770

    Article  CAS  PubMed  Google Scholar 

  122. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijver MJ, Gerald WL, Foekens JA, Massague´ J (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459(7249):1005–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nguyen DX, Bos PD, Massague´ J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamik Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kumar, S., Sen, S. (2015). Cadherin-Based Cell-Cell Adhesions: Adhesion Structure, Signalling and Computational Modeling. In: Kandouz, M. (eds) Intercellular Communication in Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7380-5_5

Download citation

Publish with us

Policies and ethics