Skip to main content

Contact Normalization or Escape from the Matrix

  • Chapter
Intercellular Communication in Cancer

Abstract

Cancer is a complex process that involves interactions between numerous cell types. In many cases, tumor cell expansion is prevented by other cells in the microenvironment. The growth and morphology of genetically transformed cells can be normalized by junctional communication with surrounding nontransformed cells. Tumor cells need to overcome this process, called “contact normalization”, before they can realize their malignant and metastatic potential. Here, we describe some fundamental aspects that underlie contact normalization, and how this information can be used to develop innovative ways to detect and treat many forms of cancer.

Supported in part by funding from the New Jersey Health Foundation, the SOM Graduate School of Biomedical Sciences, and the Northarvest Bean Growers Association.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2013) GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11. http://globocan.iarc.fr

  2. Bray F, Guerra Yi M, Parkin DM (2003) The comprehensive cancer monitoring programme in Europe. Eur J Public Health 13(3 Suppl):61–66

    Article  CAS  PubMed  Google Scholar 

  3. Klein CA (2011) Framework models of tumor dormancy from patient-derived observations. Curr Opin Genet Dev 21(1):42–49. doi:10.1016/j.gde.2010.10.011

    Article  CAS  PubMed  Google Scholar 

  4. Bray F, Ren JS, Masuyer E, Ferlay J (2013) Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer 132(5):1133–1145. doi:10.1002/ijc.27711

    Article  CAS  PubMed  Google Scholar 

  5. Keleg S, Buchler P, Ludwig R, Buchler MW, Friess H (2003) Invasion and metastasis in pancreatic cancer. Mol Cancer 2:14

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  7. Aligayer H, Boyd DD, Heiss MM, Abdalla EK, Curley SA, Gallick GE (2002) Activation of Src kinase in primary colorectal carcinoma: an indicator of poor clinical prognosis. Cancer 94(2):344–351. doi:10.1002/cncr.10221

    Article  PubMed  CAS  Google Scholar 

  8. Irby RB, Mao W, Coppola D, Kang J, Loubeau JM, Trudeau W, Karl R, Fujita DJ, Jove R, Yeatman TJ (1999) Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet 21(2):187–190. doi:10.1038/5971

    Article  CAS  PubMed  Google Scholar 

  9. Irby RB, Yeatman TJ (2000) Role of Src expression and activation in human cancer. Oncogene 19(49):5636–5642

    Article  CAS  PubMed  Google Scholar 

  10. Dang CV (2012) MYC on the path to cancer. Cell 149(1):22–35. doi:10.1016/j.cell.2012.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Singhi AD, Cimino-Mathews A, Jenkins RB, Lan F, Fink SR, Nassar H, Vang R, Fetting JH, Hicks J, Sukumar S, De Marzo AM, Argani P (2012) MYC gene amplification is often acquired in lethal distant breast cancer metastases of unamplified primary tumors. Mod Pathol 25(3):378–387. doi:10.1038/modpathol.2011.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vita M, Henriksson M (2006) The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 16(4):318–330. doi:10.1016/j.semcancer.2006.07.015

    Article  CAS  PubMed  Google Scholar 

  13. Fernandez-Medarde A, Santos E (2011) Ras in cancer and developmental diseases. Genes Cancer 2(3):344–358. doi:10.1177/1947601911411084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in cancer. Cancer Res 72(10):2457–2467. doi:10.1158/0008-5472.CAN-11-2612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shen Y, Chen CS, Ichikawa H, Goldberg GS (2010) SRC induces podoplanin expression to promote cell migration. J Biol Chem 285(13):9649–9656. doi:10.1074/jbc.M109.047696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954. doi:10.1038/nature00766

    Article  CAS  PubMed  Google Scholar 

  17. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63(7):1454–1457

    CAS  PubMed  Google Scholar 

  18. Krishnan H, Ochoa-Alvarez JA, Shen Y, Nevel E, Lakshminarayanan M, Williams MC, Ramirez MI, Miller WT, Goldberg GS (2013) Serines in the intracellular tail of podoplanin (PDPN) regulate cell motility. J Biol Chem 288(17):12215–12221. doi:10.1074/jbc.C112.446823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kumar R, Angelini S, Czene K, Sauroja I, Hahka-Kemppinen M, Pyrhonen S, Hemminki K (2003) BRAF mutations in metastatic melanoma: a possible association with clinical outcome. Clin Cancer Res 9(9):3362–3368

    CAS  PubMed  Google Scholar 

  20. Maria Pérez-Caro IS-G (2007) BCR-ABL and human cancer. In: Srivastava R (ed) Apoptosis, cell signaling, and human diseases, vol I. Humana Press, pp 3–34. doi:10.1007/978-1-59745-200-7_1

  21. Grande E, Bolos MV, Arriola E (2011) Targeting oncogenic ALK: a promising strategy for cancer treatment. Mol Cancer Ther 10(4):569–579. doi:10.1158/1535-7163.MCT-10-0615

    Article  CAS  PubMed  Google Scholar 

  22. Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24(50):7455–7464. doi:10.1038/sj.onc.1209085

    Article  CAS  PubMed  Google Scholar 

  23. Krishnan H, Miller WT, Goldberg GS (2012) SRC points the way to biomarkers and chemotherapeutic targets. Genes Cancer 3(5–6):426–435. doi:10.1177/1947601912458583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lennartsson J, Ronnstrand L (2012) Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev 92(4):1619–1649. doi:10.1152/physrev.00046.2011

    Article  CAS  PubMed  Google Scholar 

  25. Karakas B, Bachman KE, Park BH (2006) Mutation of the PIK3CA oncogene in human cancers. Br J Cancer 94(4):455–459. doi:10.1038/sj.bjc.6602970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27(41):5497–5510. doi:10.1038/onc.2008.245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13(1):11–26. doi:10.1038/nrc3419

    Article  CAS  PubMed  Google Scholar 

  28. Benhaj K, Akcali KC, Ozturk M (2006) Redundant expression of canonical Wnt ligands in human breast cancer cell lines. Oncol Rep 15(3):701–707

    CAS  PubMed  Google Scholar 

  29. Park JK, Song JH, He TC, Nam SW, Lee JY, Park WS (2009) Overexpression of Wnt-2 in colorectal cancers. Neoplasma 56(2):119–123

    Article  CAS  PubMed  Google Scholar 

  30. Morin PJ (1999) beta-catenin signaling and cancer. Bioessays 21(12):1021–1030, doi:10.1002/(SICI)1521-1878(199912)22:1<1021::AID-BIES6>3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  31. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14(15):1837–1851

    CAS  PubMed  Google Scholar 

  32. Polakis P (2012) Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4(5). doi:10.1101/cshperspect.a008052

  33. Diehl JA (2002) Cycling to cancer with cyclin D1. Cancer Biol Ther 1(3):226–231

    Article  CAS  PubMed  Google Scholar 

  34. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL (2011) Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 11(8):558–572. doi:10.1038/nrc3090

    Article  CAS  PubMed  Google Scholar 

  35. Tai W, Mahato R, Cheng K (2010) The role of HER2 in cancer therapy and targeted drug delivery. J Control Release 146(3):264–275. doi:10.1016/j.jconrel.2010.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Iqbal J, Neppalli VT, Wright G, Dave BJ, Horsman DE, Rosenwald A, Lynch J, Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Campo E, Ott G, Muller-Hermelink HK, Delabie J, Jaffe ES, Grogan TM, Connors JM, Vose JM, Armitage JO, Staudt LM, Chan WC (2006) BCL2 expression is a prognostic marker for the activated B-cell-like type of diffuse large B-cell lymphoma. J Clin Oncol 24(6):961–968. doi:10.1200/JCO.2005.03.4264

    Article  CAS  PubMed  Google Scholar 

  37. Kirkin V, Joos S, Zornig M (2004) The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta 1644(2–3):229–249. doi:10.1016/j.bbamcr.2003.08.009

    Article  CAS  PubMed  Google Scholar 

  38. Koch U, Radtke F (2010) Notch signaling in solid tumors. Curr Top Dev Biol 92:411–455. doi:10.1016/S0070-2153(10)92013-9

    Article  CAS  PubMed  Google Scholar 

  39. Palomero T, Ferrando A (2008) Oncogenic NOTCH1 control of MYC and PI3K: challenges and opportunities for anti-NOTCH1 therapy in T-cell acute lymphoblastic leukemias and lymphomas. Clin Cancer Res 14(17):5314–5317. doi:10.1158/1078-0432.CCR-07-4864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gordon GM, Du W (2011) Targeting Rb inactivation in cancers by synthetic lethality. Am J Cancer Res 1(6):773–786

    PubMed  PubMed Central  Google Scholar 

  41. Sharma A, Yeow WS, Ertel A, Coleman I, Clegg N, Thangavel C, Morrissey C, Zhang X, Comstock CE, Witkiewicz AK, Gomella L, Knudsen ES, Nelson PS, Knudsen KE (2010) The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J Clin Invest 120(12):4478–4492. doi:10.1172/JCI44239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gonzalez KD, Noltner KA, Buzin CH, Gu D, Wen-Fong CY, Nguyen VQ, Han JH, Lowstuter K, Longmate J, Sommer SS, Weitzel JN (2009) Beyond Li Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol 27(8):1250–1256. doi:10.1200/JCO.2008.16.6959

    Article  CAS  PubMed  Google Scholar 

  43. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, Leiserson MD, Miller CA, Welch JS, Walter MJ, Wendl MC, Ley TJ, Wilson RK, Raphael BJ, Ding L (2013) Mutational landscape and significance across 12 major cancer types. Nature 502(7471):333–339. doi:10.1038/nature12634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Muller PA, Vousden KH (2014) Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 25(3):304–317. doi:10.1016/j.ccr.2014.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Georgescu MM (2010) PTEN tumor suppressor network in PI3K-Akt pathway control. Genes Cancer 1(12):1170–1177. doi:10.1177/1947601911407325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Petrucelli N, Daly MB, Feldman GL (1993) BRCA1 and BRCA2 hereditary breast and ovarian cancer. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews. University of Washington, Seattle

    Google Scholar 

  47. Fearnhead NS, Britton MP, Bodmer WF (2001) The ABC of APC. Hum Mol Genet 10(7):721–733

    Article  CAS  PubMed  Google Scholar 

  48. Fodde R (2002) The APC gene in colorectal cancer. Eur J Cancer 38(7):867–871

    Article  CAS  PubMed  Google Scholar 

  49. Cremona CA, Behrens A (2014) ATM signalling and cancer. Oncogene 33(26):3351–3360. doi:10.1038/onc.2013.275

    Article  CAS  PubMed  Google Scholar 

  50. Banham AH, Beasley N, Campo E, Fernandez PL, Fidler C, Gatter K, Jones M, Mason DY, Prime JE, Trougouboff P, Wood K, Cordell JL (2001) The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p. Cancer Res 61(24):8820–8829

    CAS  PubMed  Google Scholar 

  51. Koon HB, Ippolito GC, Banham AH, Tucker PW (2007) FOXP1: a potential therapeutic target in cancer. Expert Opin Ther Targets 11(7):955–965. doi:10.1517/14728222.11.7.955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Krohn A, Seidel A, Burkhardt L, Bachmann F, Mader M, Grupp K, Eichenauer T, Becker A, Adam M, Graefen M, Huland H, Kurtz S, Steurer S, Tsourlakis MC, Minner S, Michl U, Schlomm T, Sauter G, Simon R, Sirma H (2013) Recurrent deletion of 3p13 targets multiple tumour suppressor genes and defines a distinct subgroup of aggressive ERG fusion-positive prostate cancers. J Pathol 231(1):130–141. doi:10.1002/path.4223

    Article  CAS  PubMed  Google Scholar 

  53. Li M, Zhao H, Zhang X, Wood LD, Anders RA, Choti MA, Pawlik TM, Daniel HD, Kannangai R, Offerhaus GJ, Velculescu VE, Wang L, Zhou S, Vogelstein B, Hruban RH, Papadopoulos N, Cai J, Torbenson MS, Kinzler KW (2011) Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat Genet 43(9):828–829. doi:10.1038/ng.903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang X, Haswell JR, Roberts CW (2014) Molecular pathways: SWI/SNF (BAF) complexes are frequently mutated in cancer – mechanisms and potential therapeutic insights. Clin Cancer Res 20(1):21–27. doi:10.1158/1078-0432.CCR-13-0280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, Senz J, McConechy MK, Anglesio MS, Kalloger SE, Yang W, Heravi-Moussavi A, Giuliany R, Chow C, Fee J, Zayed A, Prentice L, Melnyk N, Turashvili G, Delaney AD, Madore J, Yip S, McPherson AW, Ha G, Bell L, Fereday S, Tam A, Galletta L, Tonin PN, Provencher D, Miller D, Jones SJ, Moore RA, Morin GB, Oloumi A, Boyd N, Aparicio SA, Shih IM, Mes-Masson AM, Bowtell DD, Hirst M, Gilks B, Marra MA, Huntsman DG (2010) ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 363(16):1532–1543. doi:10.1056/NEJMoa1008433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goldstein AM, Tucker MA (2001) Genetic epidemiology of cutaneous melanoma: a global perspective. Arch Dermatol 137(11):1493–1496

    Article  CAS  PubMed  Google Scholar 

  57. McWilliams RR, Wieben ED, Rabe KG, Pedersen KS, Wu Y, Sicotte H, Petersen GM (2011) Prevalence of CDKN2A mutations in pancreatic cancer patients: implications for genetic counseling. Eur J Hum Genet 19(4):472–478. doi:10.1038/ejhg.2010.198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kaelin WG Jr (2004) The von Hippel-Lindau tumor suppressor gene and kidney cancer. Clin Cancer Res 10(18 Pt 2):6290S–6295S. doi:10.1158/1078-0432.CCR-sup-040025

    Article  CAS  PubMed  Google Scholar 

  59. Kim WY, Kaelin WG (2004) Role of VHL gene mutation in human cancer. J Clin Oncol 22(24):4991–5004. doi:10.1200/JCO.2004.05.061

    Article  CAS  PubMed  Google Scholar 

  60. Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14(13):1553–1577

    CAS  PubMed  Google Scholar 

  61. Iyer NG, Ozdag H, Caldas C (2004) p300/CBP and cancer. Oncogene 23(24):4225–4231. doi:10.1038/sj.onc.1207118

    Article  CAS  PubMed  Google Scholar 

  62. Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner D, Phillips LA, Heatley SL, Holmfeldt L, Collins-Underwood JR, Ma J, Buetow KH, Pui CH, Baker SD, Brindle PK, Downing JR (2011) CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471(7337):235–239. doi:10.1038/nature09727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Korsse SE, Peppelenbosch MP, van Veelen W (2013) Targeting LKB1 signaling in cancer. Biochim Biophys Acta 1835(2):194–210. doi:10.1016/j.bbcan.2012.12.006

    CAS  PubMed  Google Scholar 

  64. Shackelford DB, Abt E, Gerken L, Vasquez DS, Seki A, Leblanc M, Wei L, Fishbein MC, Czernin J, Mischel PS, Shaw RJ (2013) LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 23(2):143–158. doi:10.1016/j.ccr.2012.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Holzel M, Huang S, Koster J, Ora I, Lakeman A, Caron H, Nijkamp W, Xie J, Callens T, Asgharzadeh S, Seeger RC, Messiaen L, Versteeg R, Bernards R (2010) NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome. Cell 142(2):218–229. doi:10.1016/j.cell.2010.06.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Korf BR (2000) Malignancy in neurofibromatosis type 1. Oncologist 5(6):477–485

    Article  CAS  PubMed  Google Scholar 

  67. Gutmann DH, Sherman L, Seftor L, Haipek C, Hoang Lu K, Hendrix M (1999) Increased expression of the NF2 tumor suppressor gene product, merlin, impairs cell motility, adhesion and spreading. Hum Mol Genet 8(2):267–275

    Article  CAS  PubMed  Google Scholar 

  68. Xiao GH, Gallagher R, Shetler J, Skele K, Altomare DA, Pestell RG, Jhanwar S, Testa JR (2005) The NF2 tumor suppressor gene product, merlin, inhibits cell proliferation and cell cycle progression by repressing cyclin D1 expression. Mol Cell Biol 25(6):2384–2394. doi:10.1128/MCB.25.6.2384-2394.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lefort K, Mandinova A, Ostano P, Kolev V, Calpini V, Kolfschoten I, Devgan V, Lieb J, Raffoul W, Hohl D, Neel V, Garlick J, Chiorino G, Dotto GP (2007) Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes Dev 21(5):562–577. doi:10.1101/gad.1484707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lobry C, Oh P, Aifantis I (2011) Oncogenic and tumor suppressor functions of Notch in cancer: it’s NOTCH what you think. J Exp Med 208(10):1931–1935. doi:10.1084/jem.20111855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wade M, Wahl GM (2006) c-Myc, genome instability, and tumorigenesis: the devil is in the details. Curr Top Microbiol Immunol 302:169–203

    CAS  PubMed  Google Scholar 

  72. Kwon MJ, Shin YK (2011) Epigenetic regulation of cancer-associated genes in ovarian cancer. Int J Mol Sci 12(2):983–1008. doi:10.3390/ijms12020983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Han NM, Curley SA, Gallick GE (1996) Differential activation of pp 60(c-src) and pp62(c-yes) in human colorectal carcinoma liver metastases. Clin Cancer Res 2(8):1397–1404

    CAS  PubMed  Google Scholar 

  74. Suzuki K, Oneyama C, Kimura H, Tajima S, Okada M (2011) Down-regulation of the tumor suppressor C-terminal Src kinase (Csk)-binding protein (Cbp)/PAG1 is mediated by epigenetic histone modifications via the mitogen-activated protein kinase (MAPK)/phosphatidylinositol 3-kinase (PI3K) pathway. J Biol Chem 286(18):15698–15706. doi:10.1074/jbc.M110.195362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Herschkowitz JI, He X, Fan C, Perou CM (2008) The functional loss of the retinoblastoma tumour suppressor is a common event in basal-like and luminal B breast carcinomas. Breast Cancer Res 10(5):R75. doi:10.1186/bcr2142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2(1):a001008. doi:10.1101/cshperspect.a001008

  77. Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, Forni G, Eils R, Fehm T, Riethmuller G, Klein CA (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13(1):58–68. doi:10.1016/j.ccr.2007.12.003

    Article  PubMed  CAS  Google Scholar 

  78. Schardt JA, Meyer M, Hartmann CH, Schubert F, Schmidt-Kittler O, Fuhrmann C, Polzer B, Petronio M, Eils R, Klein CA (2005) Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 8(3):227–239. doi:10.1016/j.ccr.2005.08.003

    Article  CAS  PubMed  Google Scholar 

  79. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458. doi:10.1038/nrc1098

    Article  CAS  PubMed  Google Scholar 

  80. Giugliano FM, Alberti D, Guida G, Palma GD, Iadanza L, Mormile M, Cammarota F, Montanino A, Fulciniti F, Ravo V, Muto P (2013) Non small-cell lung cancer with metastasis to thigh muscle and mandible: two case reports. J Med Case Rep 7(1):98. doi:10.1186/1752-1947-7-98

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lee YT, Geer DA (1987) Primary liver cancer: pattern of metastasis. J Surg Oncol 36(1):26–31

    Article  CAS  PubMed  Google Scholar 

  82. Leong SP, Cady B, Jablons DM, Garcia-Aguilar J, Reintgen D, Jakub J, Pendas S, Duhaime L, Cassell R, Gardner M, Giuliano R, Archie V, Calvin D, Mensha L, Shivers S, Cox C, Werner JA, Kitagawa Y, Kitajima M (2006) Clinical patterns of metastasis. Cancer Metastasis Rev 25(2):221–232. doi:10.1007/s10555-006-8502-8

    Article  PubMed  Google Scholar 

  83. Berman AT, Thukral AD, Hwang WT, Solin LJ, Vapiwala N (2013) Incidence and patterns of distant metastases for patients with early-stage breast cancer after breast conservation treatment. Clin Breast Cancer 13(2):88–94. doi:10.1016/j.clbc.2012.11.001

    Article  PubMed  Google Scholar 

  84. Betka J (2001) Distant metastases from lip and oral cavity cancer. ORL J Otorhinolaryngol Relat Spec 63(4):217–221. doi:10.1159/000055744

  85. Noguti J, De Moura CF, De Jesus GP, Da Silva VH, Hossaka TA, Oshima CT, Ribeiro DA (2012) Metastasis from oral cancer: an overview. Cancer Genomics Proteomics 9(5):329–335

    CAS  PubMed  Google Scholar 

  86. Colombo N, Preti E, Landoni F, Carinelli S, Colombo A, Marini C, Sessa C (2013) Endometrial cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 24(Suppl 6):vi33–vi38. doi:10.1093/annonc/mdt353

  87. Yachida S, Iacobuzio-Donahue CA (2009) The pathology and genetics of metastatic pancreatic cancer. Arch Pathol Lab Med 133(3):413–422. doi:10.1043/1543-2165-133.3.413

    PubMed  Google Scholar 

  88. Bubendorf L, Schopfer A, Wagner U, Sauter G, Moch H, Willi N, Gasser TC, Mihatsch MJ (2000) Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 31(5):578–583

    Article  CAS  PubMed  Google Scholar 

  89. Viadana E, Bross ID, Pickren JW (1978) An autopsy study of the metastatic patterns of human leukemias. Oncology (Williston Park) 35(2):87–96

    Article  CAS  Google Scholar 

  90. Shinagare AB, Ramaiya NH, Jagannathan JP, Fennessy FM, Taplin ME, Van den Abbeele AD (2011) Metastatic pattern of bladder cancer: correlation with the characteristics of the primary tumor. AJR Am J Roentgenol 196(1):117–122. doi:10.2214/AJR.10.5036

    Article  PubMed  Google Scholar 

  91. Lengyel E (2010) Ovarian cancer development and metastasis. Am J Pathol 177(3):1053–1064. doi:10.2353/ajpath.2010.100105

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ramadan S, Ugas MA, Berwick RJ, Notay M, Cho H, Jerjes W, Giannoudis PV (2012) Spinal metastasis in thyroid cancer. Head Neck Oncol 4:39. doi:10.1186/1758-3284-4-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bhatia S, Tykodi SS, Thompson JA (2009) Treatment of metastatic melanoma: an overview. Oncology (Williston Park) 23(6):488–496

    Google Scholar 

  94. Thompson Coon J, Hoyle M, Green C, Liu Z, Welch K, Moxham T, Stein K (2010) Bevacizumab, sorafenib tosylate, sunitinib and temsirolimus for renal cell carcinoma: a systematic review and economic evaluation. Health Technol Assess 14(2):1–184, iii-iv. doi:10.3310/hta14020

    Article  CAS  PubMed  Google Scholar 

  95. Brooks SA, Lomax-Browne HJ, Carter TM, Kinch CE, Hall DM (2010) Molecular interactions in cancer cell metastasis. Acta Histochem 112(1):3–25. doi:10.1016/j.acthis.2008.11.022

    Article  CAS  PubMed  Google Scholar 

  96. Bockhorn M, Jain RK, Munn LL (2007) Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? Lancet Oncol 8(5):444–448. doi:10.1016/S1470-2045(07)70140-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Takagi S, Sato S, Oh-hara T, Takami M, Koike S, Mishima Y, Hatake K, Fujita N (2013) Platelets promote tumor growth and metastasis via direct interaction between Aggrus/podoplanin and CLEC-2. PLoS One 8(8), e73609. doi:10.1371/journal.pone.0073609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gout S, Tremblay PL, Huot J (2008) Selectins and selectin ligands in extravasation of cancer cells and organ selectivity of metastasis. Clin Exp Metastasis 25(4):335–344. doi:10.1007/s10585-007-9096-4

    Article  CAS  PubMed  Google Scholar 

  99. Krishnan H, Miller WT, Goldberg GS (2012) SRC points the way to biomarkers and chemotherapeutic targets. Genes Cancer 3(5–6):426–435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Jhon Alberto Ochoa-Alvarez CG, Krishnan H, Xiaoxuan Wu, Goldberg GS (2011) Contact normalization: mechanisms and pathways to biomarkers and chemotherapeutic targets. In: Extracellular and intracellular signaling. RSC Publishing, Cambridge. doi:10.1039/9781849733434-00105

    Google Scholar 

  101. Rubin H (2006) What keeps cells in tissues behaving normally in the face of myriad mutations? Bioessays 28(5):515–524. doi:10.1002/bies.20403

    Article  CAS  PubMed  Google Scholar 

  102. Rubin H (2008) Contact interactions between cells that suppress neoplastic development: can they also explain metastatic dormancy? Adv Cancer Res 100:159–202. doi:10.1016/S0065-230X(08)00006-7

    Article  PubMed  Google Scholar 

  103. Albertsen PC (2007) Commentary: occult prostate cancer – imposter or the real deal? Int J Epidemiol 36(2):281–282. doi:10.1093/ije/dym051

    Article  PubMed  Google Scholar 

  104. Nielsen M, Thomsen JL, Primdahl S, Dyreborg U, Andersen JA (1987) Breast cancer and atypia among young and middle-aged women: a study of 110 medicolegal autopsies. Br J Cancer 56(6):814–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Klein G (2012) Tumor resistance. Oncoimmunology 1(8):1355–1359. doi:10.4161/onci.22194

    Article  PubMed  PubMed Central  Google Scholar 

  106. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7(11):834–846. doi:10.1038/nrc2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Barkan D, Chambers AF (2011) beta1-integrin: a potential therapeutic target in the battle against cancer recurrence. Clin Cancer Res 17(23):7219–7223. doi:10.1158/1078-0432.CCR-11-0642

    Article  CAS  PubMed  Google Scholar 

  108. Aguirre-Ghiso JA, Liu D, Mignatti A, Kovalski K, Ossowski L (2001) Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell 12(4):863–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Allgayer H, Aguirre-Ghiso JA (2008) The urokinase receptor (u-PAR)--a link between tumor cell dormancy and minimal residual disease in bone marrow? APMIS 116(7–8):602–614. doi:10.1111/j.1600-0463.2008.00997.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Giancotti FG (2013) Mechanisms governing metastatic dormancy and reactivation. Cell 155(4):750–764. doi:10.1016/j.cell.2013.10.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Naumov GN, Bender E, Zurakowski D, Kang SY, Sampson D, Flynn E, Watnick RS, Straume O, Akslen LA, Folkman J, Almog N (2006) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98(5):316–325. doi:10.1093/jnci/djj068

    Article  PubMed  Google Scholar 

  112. Paez D, Labonte MJ, Bohanes P, Zhang W, Benhanim L, Ning Y, Wakatsuki T, Loupakis F, Lenz HJ (2012) Cancer dormancy: a model of early dissemination and late cancer recurrence. Clin Cancer Res 18(3):645–653. doi:10.1158/1078-0432.CCR-11-2186

    Article  PubMed  Google Scholar 

  113. Swann JB, Smyth MJ (2007) Immune surveillance of tumors. J Clin Invest 117(5):1137–1146. doi:10.1172/JCI31405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kleffel S, Schatton T (2013) Tumor dormancy and cancer stem cells: two sides of the same coin? Adv Exp Med Biol 734:145–179. doi:10.1007/978-1-4614-1445-2_8

    Article  CAS  PubMed  Google Scholar 

  115. Horak CE, Lee JH, Marshall JC, Shreeve SM, Steeg PS (2008) The role of metastasis suppressor genes in metastatic dormancy. APMIS 116(7–8):586–601. doi:10.1111/j.1600-0463.2008.01213.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nash KT, Phadke PA, Navenot JM, Hurst DR, Accavitti-Loper MA, Sztul E, Vaidya KS, Frost AR, Kappes JC, Peiper SC, Welch DR (2007) Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. J Natl Cancer Inst 99(4):309–321. doi:10.1093/jnci/djk053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schewe DM, Aguirre-Ghiso JA (2009) Inhibition of eIF2alpha dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer Res 69(4):1545–1552. doi:10.1158/0008-5472.CAN-08-3858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hogan C (2012) Impact of interactions between normal and transformed epithelial cells and the relevance to cancer. Cell Mol Life Sci 69(2):203–213. doi:10.1007/s00018-011-0806-3

    Article  CAS  PubMed  Google Scholar 

  119. Alt-Holland A, Zhang W, Margulis A, Garlick JA (2005) Microenvironmental control of premalignant disease: the role of intercellular adhesion in the progression of squamous cell carcinoma. Semin Cancer Biol 15(2):84–96. doi:10.1016/j.semcancer.2004.08.007

    Article  CAS  PubMed  Google Scholar 

  120. Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17(3):320–329. doi:10.1038/nm.2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Soto AM, Sonnenschein C (2011) The tissue organization field theory of cancer: a testable replacement for the somatic mutation theory. Bioessays 33(5):332–340. doi:10.1002/bies.201100025

    Article  PubMed  PubMed Central  Google Scholar 

  122. Hennings H, Robinson VA, Michael DM, Pettit GR, Jung R, Yuspa SH (1990) Development of an in vitro analogue of initiated mouse epidermis to study tumor promoters and antipromoters. Cancer Res 50(15):4794–4800

    CAS  PubMed  Google Scholar 

  123. Mehta PP, Bertram JS, Loewenstein WR (1986) Growth inhibition of transformed cells correlates with their junctional communication with normal cells. Cell 44(1):187–196

    Article  CAS  PubMed  Google Scholar 

  124. Booth BW, Boulanger CA, Anderson LH, Smith GH (2011) The normal mammary microenvironment suppresses the tumorigenic phenotype of mouse mammary tumor virus-neu-transformed mammary tumor cells. Oncogene 30(6):679–689. doi:10.1038/onc.2010.439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Stoker MG (1967) Transfer of growth inhibition between normal and virus-transformed cells: autoradiographic studies using marked cells. J Cell Sci 2(3):293–304

    CAS  PubMed  Google Scholar 

  126. Alexander DB, Ichikawa H, Bechberger JF, Valiunas V, Ohki M, Naus CC, Kunimoto T, Tsuda H, Miller WT, Goldberg GS (2004) Normal cells control the growth of neighboring transformed cells independent of gap junctional communication and SRC activity. Cancer Res 64(4):1347–1358

    Article  CAS  PubMed  Google Scholar 

  127. Martin W, Zempel G, Hulser D, Willecke K (1991) Growth inhibition of oncogene-transformed rat fibroblasts by cocultured normal cells: relevance of metabolic cooperation mediated by gap junctions. Cancer Res 51(19):5348–5351

    CAS  PubMed  Google Scholar 

  128. Rubin H (1960) The suppression of morphological alterations in cells infected with Rous sarcoma virus. Virology 12:14–31

    Article  CAS  PubMed  Google Scholar 

  129. Stoker M (1964) Regulation of growth and orientation in hamster cells transformed by polyoma virus. Virology 24:165–174

    Article  CAS  PubMed  Google Scholar 

  130. Stoker MG, Shearer M, O’Neill C (1966) Growth inhibition of polyoma-transformed cells by contact with static normal fibroblasts. J Cell Sci 1(3):297–310

    CAS  PubMed  Google Scholar 

  131. Hogan C, Kajita M, Lawrenson K, Fujita Y (2011) Interactions between normal and transformed epithelial cells: their contributions to tumourigenesis. Int J Biochem Cell Biol 43(4):496–503. doi:10.1016/j.biocel.2010.12.019

    Article  CAS  PubMed  Google Scholar 

  132. Moreno E (2008) Is cell competition relevant to cancer? Nat Rev Cancer 8(2):141–147. doi:10.1038/nrc2252

    Article  CAS  PubMed  Google Scholar 

  133. Hogan C, Dupre-Crochet S, Norman M, Kajita M, Zimmermann C, Pelling AE, Piddini E, Baena-Lopez LA, Vincent JP, Itoh Y, Hosoya H, Pichaud F, Fujita Y (2009) Characterization of the interface between normal and transformed epithelial cells. Nat Cell Biol 11(4):460–467. doi:10.1038/ncb1853

    Article  CAS  PubMed  Google Scholar 

  134. Kajita M, Hogan C, Harris AR, Dupre-Crochet S, Itasaki N, Kawakami K, Charras G, Tada M, Fujita Y (2010) Interaction with surrounding normal epithelial cells influences signalling pathways and behaviour of Src-transformed cells. J Cell Sci 123(Pt 2):171–180. doi:10.1242/jcs.057976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Vidal M, Larson DE, Cagan RL (2006) Csk-deficient boundary cells are eliminated from normal Drosophila epithelia by exclusion, migration, and apoptosis. Dev Cell 10(1):33–44. doi:10.1016/j.devcel.2005.11.007

    Article  CAS  PubMed  Google Scholar 

  136. Brinster RL (1974) The effect of cells transferred into the mouse blastocyst on subsequent development. J Exp Med 140(4):1049–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci U S A 72(9):3585–3589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6(8):622–634. doi:10.1038/nrm1699

    Article  CAS  PubMed  Google Scholar 

  139. Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A (1994) p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 8(1):9–22

    Article  CAS  PubMed  Google Scholar 

  140. Grazia Lampugnani M, Zanetti A, Corada M, Takahashi T, Balconi G, Breviario F, Orsenigo F, Cattelino A, Kemler R, Daniel TO, Dejana E (2003) Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J Cell Biol 161(4):793–804. doi:10.1083/jcb.200209019

    Article  PubMed  CAS  Google Scholar 

  141. Jeanes A, Gottardi CJ, Yap AS (2008) Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27(55):6920–6929. doi:10.1038/onc.2008.343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dejana E, Orsenigo F, Lampugnani MG (2008) The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 121(Pt 13):2115–2122. doi:10.1242/jcs.017897

    Article  CAS  PubMed  Google Scholar 

  143. Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L (2011) Signal transduction by vascular endothelial growth factor receptors. Biochem J 437(2):169–183. doi:10.1042/BJ20110301

    Article  CAS  PubMed  Google Scholar 

  144. Simoneau B, Houle F, Huot J (2012) Regulation of endothelial permeability and transendothelial migration of cancer cells by tropomyosin-1 phosphorylation. Vasc Cell 4(1):18. doi:10.1186/2045-824X-4-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Goodenough DA, Goliger JA, Paul DL (1996) Connexins, connexons, and intercellular communication. Annu Rev Biochem 65:475–502

    Article  CAS  PubMed  Google Scholar 

  146. Hirschi KK, Xu CE, Tsukamoto T, Sager R (1996) Gap junction genes Cx26 and Cx43 individually suppress the cancer phenotype of human mammary carcinoma cells and restore differentiation potential. Cell Growth Differ 7(7):861–870

    CAS  PubMed  Google Scholar 

  147. Huang RP, Fan Y, Hossain MZ, Peng A, Zeng ZL, Boynton AL (1998) Reversion of the neoplastic phenotype of human glioblastoma cells by connexin 43 (cx43). Cancer Res 58(22):5089–5096

    CAS  PubMed  Google Scholar 

  148. Goldberg GS, Martyn KD, Lau AF (1994) A connexin 43 antisense vector reduces the ability of normal cells to inhibit the foci formation of transformed cells. Mol Carcinog 11(2):106–114

    Article  CAS  PubMed  Google Scholar 

  149. Zhu D, Kidder GM, Caveney S, Naus CC (1992) Growth retardation in glioma cells cocultured with cells overexpressing a gap junction protein. Proc Natl Acad Sci U S A 89(21):10218–10221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pahujaa M, Anikin M, Goldberg GS (2007) Phosphorylation of connexin43 induced by Src: regulation of gap junctional communication between transformed cells. Exp Cell Res 313(20):4083–4090. doi:10.1016/j.yexcr.2007.09.010

    Article  CAS  PubMed  Google Scholar 

  151. Shen Y, Khusial PR, Li X, Ichikawa H, Moreno AP, Goldberg GS (2007) SRC utilizes Cas to block gap junctional communication mediated by connexin43. J Biol Chem 282(26):18914–18921. doi:10.1074/jbc.M608980200

    Article  CAS  PubMed  Google Scholar 

  152. Zhou L, Kasperek EM, Nicholson BJ (1999) Dissection of the molecular basis of pp60(v-src) induced gating of connexin 43 gap junction channels. J Cell Biol 144(5):1033–1045

    Google Scholar 

  153. Kamei J, Toyofuku T, Hori M (2003) Negative regulation of p21 by beta-catenin/TCF signaling: a novel mechanism by which cell adhesion molecules regulate cell proliferation. Biochem Biophys Res Commun 312(2):380–387

    Article  CAS  PubMed  Google Scholar 

  154. Aleshin A, Finn RS (2010) SRC: a century of science brought to the clinic. Neoplasia 12(8):599–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Goldberg GS, Moreno AP, Lampe PD (2002) Gap junctions between cells expressing connexin 43 or 32 show inverse permselectivity to adenosine and ATP. J Biol Chem 277(39):36725–36730. doi:10.1074/jbc.M109797200

    Article  CAS  PubMed  Google Scholar 

  156. Ding L, Niu C, Zheng Y, Xiong Z, Liu Y, Lin J, Sun H, Huang K, Yang W, Li X, Ye Q (2011) FHL1 interacts with oestrogen receptors and regulates breast cancer cell growth. J Cell Mol Med 15(1):72–85. doi:10.1111/j.1582-4934.2009.00938.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Li X, Jia Z, Shen Y, Ichikawa H, Jarvik J, Nagele RG, Goldberg GS (2008) Coordinate suppression of Sdpr and Fhl1 expression in tumors of the breast, kidney, and prostate. Cancer Sci 99(7):1326–1333. doi:10.1111/j.1349-7006.2008.00816.x

    Article  CAS  PubMed  Google Scholar 

  158. Niu C, Liang C, Guo J, Cheng L, Zhang H, Qin X, Zhang Q, Ding L, Yuan B, Xu X, Li J, Lin J, Ye Q (2012) Downregulation and growth inhibitory role of FHL1 in lung cancer. Int J Cancer 130(11):2549–2556. doi:10.1002/ijc.26259

    Article  CAS  PubMed  Google Scholar 

  159. Bai L, Deng X, Li Q, Wang M, An W, Deli A, Gao Z, Xie Y, Dai Y, Cong YS (2012) Down-regulation of the cavin family proteins in breast cancer. J Cell Biochem 113(1):322–328. doi:10.1002/jcb.23358

    Article  CAS  PubMed  Google Scholar 

  160. Shioi K, Komiya A, Hattori K, Huang Y, Sano F, Murakami T, Nakaigawa N, Kishida T, Kubota Y, Nagashima Y, Yao M (2006) Vascular cell adhesion molecule 1 predicts cancer-free survival in clear cell renal carcinoma patients. Clin Cancer Res 12(24):7339–7346. doi:10.1158/1078-0432.CCR-06-1737

    Article  CAS  PubMed  Google Scholar 

  161. Gustavsson E, Sernbo S, Andersson E, Brennan DJ, Dictor M, Jerkeman M, Borrebaeck CA, Ek S (2010) SOX11 expression correlates to promoter methylation and regulates tumor growth in hematopoietic malignancies. Mol Cancer 9:187. doi:10.1186/1476-4598-9-187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Sernbo S, Gustavsson E, Brennan DJ, Gallagher WM, Rexhepaj E, Rydnert F, Jirstrom K, Borrebaeck CA, Ek S (2011) The tumour suppressor SOX11 is associated with improved survival among high grade epithelial ovarian cancers and is regulated by reversible promoter methylation. BMC Cancer 11:405. doi:10.1186/1471-2407-11-405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Liang H, Chen Q, Coles AH, Anderson SJ, Pihan G, Bradley A, Gerstein R, Jurecic R, Jones SN (2003) Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell 4(5):349–360

    Article  CAS  PubMed  Google Scholar 

  164. Ying J, Li H, Yu J, Ng KM, Poon FF, Wong SC, Chan AT, Sung JJ, Tao Q (2008) WNT5A exhibits tumor-suppressive activity through antagonizing the Wnt/beta-catenin signaling, and is frequently methylated in colorectal cancer. Clin Cancer Res 14(1):55–61. doi:10.1158/1078-0432.CCR-07-1644

    Article  CAS  PubMed  Google Scholar 

  165. Chatterjee S, Heukamp LC, Siobal M, Schottle J, Wieczorek C, Peifer M, Frasca D, Koker M, Konig K, Meder L, Rauh D, Buettner R, Wolf J, Brekken RA, Neumaier B, Christofori G, Thomas RK, Ullrich RT (2013) Tumor VEGF:VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer. J Clin Invest 123(4):1732–1740. doi:10.1172/JCI65385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Liang Y, Brekken RA, Hyder SM (2006) Vascular endothelial growth factor induces proliferation of breast cancer cells and inhibits the anti-proliferative activity of anti-hormones. Endocr Relat Cancer 13(3):905–919. doi:10.1677/erc.1.01221

    Article  CAS  PubMed  Google Scholar 

  167. Smith NR, Baker D, James NH, Ratcliffe K, Jenkins M, Ashton SE, Sproat G, Swann R, Gray N, Ryan A, Jurgensmeier JM, Womack C (2010) Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin Cancer Res 16(14):3548–3561. doi:10.1158/1078-0432.CCR-09-2797

    Article  CAS  PubMed  Google Scholar 

  168. Tanno S, Ohsaki Y, Nakanishi K, Toyoshima E, Kikuchi K (2004) Human small cell lung cancer cells express functional VEGF receptors, VEGFR-2 and VEGFR-3. Lung Cancer 46(1):11–19. doi:10.1016/j.lungcan.2004.03.006

    Article  PubMed  Google Scholar 

  169. Huttenlocher S, Seibold ND, Gebhard MP, Noack F, Thorns C, Hasselbacher K, Wollenberg B, Schild SE, Rades D (2014) Evaluation of the prognostic role of tumor cell podoplanin expression in locally advanced squamous cell carcinoma of the head and neck. Strahlenther Onkol. doi:10.1007/s00066-014-0694-1

    PubMed  Google Scholar 

  170. Kimura N, Kimura I (2005) Podoplanin as a marker for mesothelioma. Pathol Int 55(2):83–86. doi:10.1111/j.1440-1827.2005.01791.x

    Article  CAS  PubMed  Google Scholar 

  171. Ochoa-Alvarez JA, Krishnan H, Shen Y, Acharya NK, Han M, McNulty DE, Hasegawa H, Hyodo T, Senga T, Geng JG, Kosciuk M, Shin SS, Goydos JS, Temiakov D, Nagele RG, Goldberg GS (2012) Plant lectin can target receptors containing sialic acid, exemplified by podoplanin, to inhibit transformed cell growth and migration. PLoS One 7(7), e41845. doi:10.1371/journal.pone.0041845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Raica M, Cimpean AM, Ribatti D (2008) The role of podoplanin in tumor progression and metastasis. Anticancer Res 28(5B):2997–3006

    PubMed  Google Scholar 

  173. Shibahara J, Kashima T, Kikuchi Y, Kunita A, Fukayama M (2006) Podoplanin is expressed in subsets of tumors of the central nervous system. Virchows Arch 448(4):493–499. doi:10.1007/s00428-005-0133-x

    Article  CAS  PubMed  Google Scholar 

  174. Brune V, Tiacci E, Pfeil I, Doring C, Eckerle S, van Noesel CJ, Klapper W, Falini B, von Heydebreck A, Metzler D, Brauninger A, Hansmann ML, Kuppers R (2008) Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. J Exp Med 205(10):2251–2268. doi:10.1084/jem.20080809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Li AM, Tian AX, Zhang RX, Ge J, Sun X, Cao XC (2013) Protocadherin-7 induces bone metastasis of breast cancer. Biochem Biophys Res Commun 436(3):486–490. doi:10.1016/j.bbrc.2013.05.131

    Article  CAS  PubMed  Google Scholar 

  176. Shen Y, Jia Z, Nagele RG, Ichikawa H, Goldberg GS (2006) SRC uses Cas to suppress Fhl1 in order to promote nonanchored growth and migration of tumor cells. Cancer Res 66(3):1543–1552

    Article  CAS  PubMed  Google Scholar 

  177. Ding L, Wang Z, Yan J, Yang X, Liu A, Qiu W, Zhu J, Han J, Zhang H, Lin J, Cheng L, Qin X, Niu C, Yuan B, Wang X, Zhu C, Zhou Y, Li J, Song H, Huang C, Ye Q (2009) Human four-and-a-half LIM family members suppress tumor cell growth through a TGF-beta-like signaling pathway. J Clin Invest 119(2):349–361. doi:10.1172/JCI35930

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Lin J, Ding L, Jin R, Zhang H, Cheng L, Qin X, Chai J, Ye Q (2009) Four and a half LIM domains 1 (FHL1) and receptor interacting protein of 140 kDa (RIP140) interact and cooperate in estrogen signaling. Int J Biochem Cell Biol 41(7):1613–1618. doi:10.1016/j.biocel.2009.02.007

    Article  CAS  PubMed  Google Scholar 

  179. Sakashita K, Mimori K, Tanaka F, Kamohara Y, Inoue H, Sawada T, Hirakawa K, Mori M (2008) Clinical significance of loss of Fhl1 expression in human gastric cancer. Ann Surg Oncol 15(8):2293–2300. doi:10.1245/s10434-008-9904-3

    Article  PubMed  Google Scholar 

  180. Li X, Jia Z, Shen Y, Ichikawa H, Jarvik J, Nagele RG, Goldberg GS (2008) Coordinate suppression of Sdpr and Fhl1 expression in tumors of the breast, kidney, and prostate. Cancer Sci 99(7):1326–1333

    Article  CAS  PubMed  Google Scholar 

  181. Shen Y, Chen CS, Ichikawa H, Goldberg GS (2010) SRC induces podoplanin expression to promote cell migration. J Biol Chem 285(13):9649–9656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Burgener R, Wolf M, Ganz T, Baggiolini M (1990) Purification and characterization of a major phosphatidylserine-binding phosphoprotein from human platelets. Biochem J 269(3):729–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hansen CG, Bright NA, Howard G, Nichols BJ (2009) SDPR induces membrane curvature and functions in the formation of caveolae. Nat Cell Biol 11(7):807–814. doi:10.1038/ncb1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Gustincich S, Schneider C (1993) Serum deprivation response gene is induced by serum starvation but not by contact inhibition. Cell Growth Differ 4(9):753–760

    CAS  PubMed  Google Scholar 

  185. Holmes K, Roberts OL, Thomas AM, Cross MJ (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19(10):2003–2012. doi:10.1016/j.cellsig.2007.05.013

    Article  CAS  PubMed  Google Scholar 

  186. Takahashi T, Shibuya M (1997) The 230 kDa mature form of KDR/Flk-1 (VEGF receptor-2) activates the PLC-gamma pathway and partially induces mitotic signals in NIH3T3 fibroblasts. Oncogene 14(17):2079–2089. doi:10.1038/sj.onc.1201047

    Article  CAS  PubMed  Google Scholar 

  187. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56(4):549–580. doi:10.1124/pr.56.4.3

    Article  CAS  PubMed  Google Scholar 

  188. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling – in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371. doi:10.1038/nrm1911

    Article  CAS  PubMed  Google Scholar 

  189. Yao X, Ping Y, Liu Y, Chen K, Yoshimura T, Liu M, Gong W, Chen C, Niu Q, Guo D, Zhang X, Wang JM, Bian X (2013) Vascular endothelial growth factor receptor 2 (VEGFR-2) plays a key role in vasculogenic mimicry formation, neovascularization and tumor initiation by Glioma stem-like cells. PLoS One 8(3), e57188. doi:10.1371/journal.pone.0057188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Watanabe M, Okochi E, Sugimoto Y, Tsuruo T (1988) Identification of a platelet-aggregating factor of murine colon adenocarcinoma 26: Mr 44,000 membrane protein as determined by monoclonal antibodies. Cancer Res 48(22):6411–6416

    CAS  PubMed  Google Scholar 

  191. Watanabe M, Sugimoto Y, Tsuruo T (1990) Expression of a Mr 41,000 glycoprotein associated with thrombin-independent platelet aggregation in high metastatic variants of murine B16 melanoma. Cancer Res 50(20):6657–6662

    CAS  PubMed  Google Scholar 

  192. Nose K, Saito H, Kuroki T (1990) Isolation of a gene sequence induced later by tumor-promoting 12-O-tetradecanoylphorbol-13-acetate in mouse osteoblastic cells (MC3T3-E1) and expressed constitutively in ras-transformed cells. Cell Growth Differ 1(11):511–518

    CAS  PubMed  Google Scholar 

  193. Kaneko MK, Kato Y, Kitano T, Osawa M (2006) Conservation of a platelet activating domain of Aggrus/podoplanin as a platelet aggregation-inducing factor. Gene 378:52–57

    Article  CAS  PubMed  Google Scholar 

  194. Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, Lavrsen K, Dabelsteen S, Pedersen NB, Marcos-Silva L, Gupta R, Bennett EP, Mandel U, Brunak S, Wandall HH, Levery SB, Clausen H (2013) Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 32(10):1478–1488. doi:10.1038/emboj.2013.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Fernandez-Munoz B, Yurrita MM, Martin-Villar E, Carrasco-Ramirez P, Megias D, Renart J, Quintanilla M (2011) The transmembrane domain of podoplanin is required for its association with lipid rafts and the induction of epithelial-mesenchymal transition. Int J Biochem Cell Biol 43(6):886–896. doi:10.1016/j.biocel.2011.02.010

    Article  CAS  PubMed  Google Scholar 

  196. Martin-Villar E, Megias D, Castel S, Yurrita MM, Vilaro S, Quintanilla M (2006) Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. J Cell Sci 119(Pt 21):4541–4553

    Article  CAS  PubMed  Google Scholar 

  197. Kaneko MK, Kato Y, Kameyama A, Ito H, Kuno A, Hirabayashi J, Kubota T, Amano K, Chiba Y, Hasegawa Y, Sasagawa I, Mishima K, Narimatsu H (2007) Functional glycosylation of human podoplanin: glycan structure of platelet aggregation-inducing factor. FEBS Lett 581(2):331–336. doi:10.1016/j.febslet.2006.12.044

    Article  CAS  PubMed  Google Scholar 

  198. Kato Y, Fujita N, Kunita A, Sato S, Kaneko M, Osawa M, Tsuruo T (2003) Molecular identification of Aggrus/T1alpha as a platelet aggregation-inducing factor expressed in colorectal tumors. J Biol Chem 278(51):51599–51605. doi:10.1074/jbc.M309935200

    Article  CAS  PubMed  Google Scholar 

  199. Kunita A, Kashima TG, Morishita Y, Fukayama M, Kato Y, Tsuruo T, Fujita N (2007) The platelet aggregation-inducing factor aggrus/podoplanin promotes pulmonary metastasis. Am J Pathol 170(4):1337–1347. doi:10.2353/ajpath.2007.060790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Barth K, Blasche R, Kasper M (2010) T1alpha/podoplanin shows raft-associated distribution in mouse lung alveolar epithelial E10 cells. Cell Physiol Biochem 25(1):103–112. doi:10.1159/000272065

    Article  CAS  PubMed  Google Scholar 

  201. Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G (2006) Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9(4):261–272. doi:10.1016/j.ccr.2006.03.010

    Article  CAS  PubMed  Google Scholar 

  202. Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N, Williams M, Dvorak AM, Dvorak HF, Oliver G, Detmar M (2003) T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 22(14):3546–3556. doi:10.1093/emboj/cdg342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476. doi:10.1016/j.cell.2010.01.045

    Article  CAS  PubMed  Google Scholar 

  204. Uhrin P, Zaujec J, Breuss JM, Olcaydu D, Chrenek P, Stockinger H, Fuertbauer E, Moser M, Haiko P, Fassler R, Alitalo K, Binder BR, Kerjaschki D (2010) Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood 115(19):3997–4005. doi:10.1182/blood-2009-04-216069

    Article  CAS  PubMed  Google Scholar 

  205. Navarro A, Perez RE, Rezaiekhaligh MH, Mabry SM, Ekekezie II (2011) Polarized migration of lymphatic endothelial cells is critically dependent on podoplanin regulation of Cdc42. Am J Physiol Lung Cell Mol Physiol 300(1):L32–L42. doi:10.1152/ajplung.00171.2010

    Article  CAS  PubMed  Google Scholar 

  206. Williams MC, Cao Y, Hinds A, Rishi AK, Wetterwald A (1996) T1 alpha protein is developmentally regulated and expressed by alveolar type I cells, choroid plexus, and ciliary epithelia of adult rats. Am J Respir Cell Mol Biol 14(6):577–585. doi:10.1165/ajrcmb.14.6.8652186

    Article  CAS  PubMed  Google Scholar 

  207. Ramirez MI, Millien G, Hinds A, Cao Y, Seldin DC, Williams MC (2003) T1alpha, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth. Dev Biol 256(1):61–72

    Article  CAS  PubMed  Google Scholar 

  208. Breiteneder-Geleff S, Matsui K, Soleiman A, Meraner P, Poczewski H, Kalt R, Schaffner G, Kerjaschki D (1997) Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. Am J Pathol 151(4):1141–1152

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Matsui K, Breitender-Geleff S, Soleiman A, Kowalski H, Kerjaschki D (1999) Podoplanin, a novel 43-kDa membrane protein, controls the shape of podocytes. Nephrol Dial Transplant 14(Suppl 1):9–11

    Article  CAS  PubMed  Google Scholar 

  210. Astarita JL, Acton SE, Turley SJ (2012) Podoplanin: emerging functions in development, the immune system, and cancer. Front Immunol 3:283. doi:10.3389/fimmu.2012.00283

    Article  PubMed  PubMed Central  Google Scholar 

  211. Tomooka M, Kaji C, Kojima H, Sawa Y (2013) Distribution of podoplanin-expressing cells in the mouse nervous systems. Acta Histochem Cytochem 46(6):171–177. doi:10.1267/ahc.13035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, Yamazaki Y, Narimatsu H, Ozaki Y (2007) Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem 282(36):25993–26001. doi:10.1074/jbc.M702327200

    Article  CAS  PubMed  Google Scholar 

  213. Acton SE, Astarita JL, Malhotra D, Lukacs-Kornek V, Franz B, Hess PR, Jakus Z, Kuligowski M, Fletcher AL, Elpek KG, Bellemare-Pelletier A, Sceats L, Reynoso ED, Gonzalez SF, Graham DB, Chang J, Peters A, Woodruff M, Kim YA, Swat W, Morita T, Kuchroo V, Carroll MC, Kahn ML, Wucherpfennig KW, Turley SJ (2012) Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Immunity 37(2):276–289. doi:10.1016/j.immuni.2012.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Herzog BH, Fu J, Wilson SJ, Hess PR, Sen A, McDaniel JM, Pan Y, Sheng M, Yago T, Silasi-Mansat R, McGee S, May F, Nieswandt B, Morris AJ, Lupu F, Coughlin SR, McEver RP, Chen H, Kahn ML, Xia L (2013) Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature 502(7469):105–109. doi:10.1038/nature12501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Cueni LN, Detmar M (2009) Galectin-8 interacts with podoplanin and modulates lymphatic endothelial cell functions. Exp Cell Res 315(10):1715–1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Nakazawa Y, Sato S, Naito M, Kato Y, Mishima K, Arai H, Tsuruo T, Fujita N (2008) Tetraspanin family member CD9 inhibits Aggrus/podoplanin-induced platelet aggregation and suppresses pulmonary metastasis. Blood 112(5):1730–1739. doi:10.1182/blood-2007-11-124693

    Article  CAS  PubMed  Google Scholar 

  217. Martin-Villar E, Fernandez-Munoz B, Parsons M, Yurrita MM, Megias D, Perez-Gomez E, Jones GE, Quintanilla M (2010) Podoplanin associates with CD44 to promote directional cell migration. Mol Biol Cell 21(24):4387–4399. doi:10.1091/mbc.E10-06-0489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Tsuneki M, Yamazaki M, Maruyama S, Cheng J, Saku T (2013) Podoplanin-mediated cell adhesion through extracellular matrix in oral squamous cell carcinoma. Lab Invest 93(8):921–932. doi:10.1038/labinvest.2013.86

    Article  CAS  PubMed  Google Scholar 

  219. Kerjaschki D, Regele HM, Moosberger I, Nagy-Bojarski K, Watschinger B, Soleiman A, Birner P, Krieger S, Hovorka A, Silberhumer G, Laakkonen P, Petrova T, Langer B, Raab I (2004) Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol 15(3):603–612

    Article  CAS  PubMed  Google Scholar 

  220. Tsuneki M, Maruyama S, Yamazaki M, Xu B, Essa A, Abe T, Babkair H, Cheng J, Yamamoto T, Saku T (2013) Extracellular heat shock protein A9 is a novel interaction partner of podoplanin in oral squamous cell carcinoma cells. Biochem Biophys Res Commun 434(1):124–130. doi:10.1016/j.bbrc.2013.03.057

    Article  CAS  PubMed  Google Scholar 

  221. Navarro A, Perez RE, Rezaiekhaligh M, Mabry SM, Ekekezie II (2008) T1alpha/podoplanin is essential for capillary morphogenesis in lymphatic endothelial cells. Am J Physiol Lung Cell Mol Physiol 295(4):L543–L551. doi:10.1152/ajplung.90262.2008

    Article  CAS  PubMed  Google Scholar 

  222. Wicki A, Christofori G (2007) The potential role of podoplanin in tumour invasion. Br J Cancer 96(1):1–5. doi:10.1038/sj.bjc.6603518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Martin-Villar E, Scholl FG, Gamallo C, Yurrita MM, Munoz-Guerra M, Cruces J, Quintanilla M (2005) Characterization of human PA2.26 antigen (T1alpha-2, podoplanin), a small membrane mucin induced in oral squamous cell carcinomas. Int J Cancer 113(6):899–910. doi:10.1002/ijc.20656

    Article  CAS  PubMed  Google Scholar 

  224. Hantusch B, Kalt R, Krieger S, Puri C, Kerjaschki D (2007) Sp1/Sp3 and DNA-methylation contribute to basal transcriptional activation of human podoplanin in MG63 versus Saos-2 osteoblastic cells. BMC Mol Biol 8:20. doi:10.1186/1471-2199-8-20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Pan Y, Wang WD, Yago T (2014) Transcriptional regulation of podoplanin expression by Prox1 in lymphatic endothelial cells. Microvasc Res 94C:96–102. doi:10.1016/j.mvr.2014.05.006

    Article  CAS  Google Scholar 

  226. Hong YK, Harvey N, Noh YH, Schacht V, Hirakawa S, Detmar M, Oliver G (2002) Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 225(3):351–357. doi:10.1002/dvdy.10163

    Article  CAS  PubMed  Google Scholar 

  227. Kulkarni RM, Greenberg JM, Akeson AL (2009) NFATc1 regulates lymphatic endothelial development. Mech Dev 126(5-6):350–365. doi:10.1016/j.mod.2009.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Durchdewald M, Guinea-Viniegra J, Haag D, Riehl A, Lichter P, Hahn M, Wagner EF, Angel P, Hess J (2008) Podoplanin is a novel fos target gene in skin carcinogenesis. Cancer Res 68(17):6877–6883. doi:10.1158/0008-5472.CAN-08-0299

    Article  CAS  PubMed  Google Scholar 

  229. Ekwall AK, Eisler T, Anderberg C, Jin C, Karlsson N, Brisslert M, Bokarewa MI (2011) The tumour-associated glycoprotein podoplanin is expressed in fibroblast-like synoviocytes of the hyperplastic synovial lining layer in rheumatoid arthritis. Arthritis Res Ther 13(2):R40. doi:10.1186/ar3274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Honma M, Minami-Hori M, Takahashi H, Iizuka H (2012) Podoplanin expression in wound and hyperproliferative psoriatic epidermis: regulation by TGF-beta and STAT-3 activating cytokines, IFN-gamma, IL-6, and IL-22. J Dermatol Sci 65(2):134–140. doi:10.1016/j.jdermsci.2011.11.011

    Article  CAS  PubMed  Google Scholar 

  231. Hwang YS, Xianglan Z, Park KK, Chung WY (2012) Functional invadopodia formation through stabilization of the PDPN transcript by IMP-3 and cancer-stromal crosstalk for PDPN expression. Carcinogenesis 33(11):2135–2146. doi:10.1093/carcin/bgs258

    Article  CAS  PubMed  Google Scholar 

  232. Peterziel H, Muller J, Danner A, Barbus S, Liu HK, Radlwimmer B, Pietsch T, Lichter P, Schutz G, Hess J, Angel P (2012) Expression of podoplanin in human astrocytic brain tumors is controlled by the PI3K-AKT-AP-1 signaling pathway and promoter methylation. Neuro Oncol 14(4):426–439. doi:10.1093/neuonc/nos055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Cortez MA, Nicoloso MS, Shimizu M, Rossi S, Gopisetty G, Molina JR, Carlotti C Jr, Tirapelli D, Neder L, Brassesco MS, Scrideli CA, Tone LG, Georgescu MM, Zhang W, Puduvalli V, Calin GA (2010) miR-29b and miR-125a regulate podoplanin and suppress invasion in glioblastoma. Genes Chromosomes Cancer 49(11):981–990. doi:10.1002/gcc.20808

    Article  CAS  PubMed  Google Scholar 

  234. Martin-Villar E, Yurrita MM, Fernandez-Munoz B, Quintanilla M, Renart J (2009) Regulation of podoplanin/PA2.26 antigen expression in tumour cells. Involvement of calpain-mediated proteolysis. Int J Biochem Cell Biol 41(6):1421–1429. doi:10.1016/j.biocel.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  235. Yurrita MM, Fernandez-Munoz B, Del Castillo G, Martin-Villar E, Renart J, Quintanilla M (2014) Podoplanin is a substrate of presenilin-1/gamma-secretase. Int J Biochem Cell Biol 46:68–75. doi:10.1016/j.biocel.2013.11.016

    Article  CAS  PubMed  Google Scholar 

  236. Breiteneder-Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E, Diem K, Weninger W, Tschachler E, Alitalo K, Kerjaschki D (1999) Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 154(2):385–394. doi:10.1016/S0002-9440(10)65285-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Kono T, Shimoda M, Takahashi M, Matsumoto K, Yoshimoto T, Mizutani M, Tabata C, Okoshi K, Wada H, Kubo H (2007) Immunohistochemical detection of the lymphatic marker podoplanin in diverse types of human cancer cells using a novel antibody. Int J Oncol 31(3):501–508

    CAS  PubMed  Google Scholar 

  238. Niemiec JA, Adamczyk A, Ambicka A, Mucha-Malecka A, W MW, Rys J (2014) Triple-negative, basal marker-expressing, and high-grade breast carcinomas are characterized by high lymphatic vessel density and the expression of podoplanin in stromal fibroblasts. Appl Immunohistochem Mol Morphol 22(1):10–16. doi:10.1097/PAI.0b013e318286030d

  239. Pula B, Wojnar A, Werynska B, Ambicka A, Kruczak A, Witkiewicz W, Ugorski M, Podhorska-Okolow M, Dziegiel P (2013) Impact of different tumour stroma assessment methods regarding podoplanin expression on clinical outcome in patients with invasive ductal breast carcinoma. Anticancer Res 33(4):1447–1455

    PubMed  Google Scholar 

  240. Schoppmann SF, Berghoff A, Dinhof C, Jakesz R, Gnant M, Dubsky P, Jesch B, Heinzl H, Birner P (2012) Podoplanin-expressing cancer-associated fibroblasts are associated with poor prognosis in invasive breast cancer. Breast Cancer Res Treat 134(1):237–244. doi:10.1007/s10549-012-1984-x

    Article  CAS  PubMed  Google Scholar 

  241. Cortez MA, Nicoloso MS, Shimizu M, Rossi S, Gopisetty G, Molina JR, Carlotti C Jr, Tirapelli D, Neder L, Brassesco MS, Scrideli CA, Tone LG, Georgescu MM, Zhang W, Puduvalli V, Calin GA (2010) miR-29b and miR-125a regulate podoplanin and suppress invasion in glioblastoma. Genes Chromosomes Cancer 49:981–990

    Article  CAS  PubMed  Google Scholar 

  242. Kan S, Konishi E, Arita T, Ikemoto C, Takenaka H, Yanagisawa A, Katoh N, Asai J (2014) Podoplanin expression in cancer-associated fibroblasts predicts aggressive behavior in melanoma. J Cutan Pathol 41(7):561–567. doi:10.1111/cup.12322

    Article  PubMed  Google Scholar 

  243. Kawaguchi H, El Naggar AK, Papadimitrakopoulou V, Ren H, Fan YH, Feng L, Lee JJ, Kim E, Hong WK, Lippman SM, Mao L (2008) Podoplanin: a novel marker for oral cancer risk in patients with oral premalignancy. J Clin Oncol 26(3):354–360

    Article  PubMed  Google Scholar 

  244. Yuan P, Temam S, El Naggar A, Zhou X, Liu DD, Lee JJ, Mao L (2006) Overexpression of podoplanin in oral cancer and its association with poor clinical outcome. Cancer 107(3):563–569

    Article  CAS  PubMed  Google Scholar 

  245. Shindo K, Aishima S, Ohuchida K, Fujiwara K, Fujino M, Mizuuchi Y, Hattori M, Mizumoto K, Tanaka M, Oda Y (2013) Podoplanin expression in cancer-associated fibroblasts enhances tumor progression of invasive ductal carcinoma of the pancreas. Mol Cancer 12(1):168. doi:10.1186/1476-4598-12-168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Ito M, Ishii G, Nagai K, Maeda R, Nakano Y, Ochiai A (2012) Prognostic impact of cancer-associated stromal cells in patients with stage I lung adenocarcinoma. Chest 142(1):151–158. doi:10.1378/chest.11-2458

    Article  PubMed  Google Scholar 

  247. Ono S, Ishii G, Nagai K, Takuwa T, Yoshida J, Nishimura M, Hishida T, Aokage K, Fujii S, Ikeda N, Ochiai A (2013) Podoplanin-positive cancer-associated fibroblasts could have prognostic value independent of cancer cell phenotype in stage I lung squamous cell carcinoma: usefulness of combining analysis of both cancer cell phenotype and cancer-associated fibroblast phenotype. Chest 143(4):963–970. doi:10.1378/chest.12-0913

    Article  PubMed  Google Scholar 

  248. Schoppmann SF, Jesch B, Riegler MF, Maroske F, Schwameis K, Jomrich G, Birner P (2013) Podoplanin expressing cancer associated fibroblasts are associated with unfavourable prognosis in adenocarcinoma of the esophagus. Clin Exp Metastasis 30(4):441–446. doi:10.1007/s10585-012-9549-2

    Article  CAS  PubMed  Google Scholar 

  249. Cirligeriu L, Cimpean AM, Raica M, Doros CI (2014) Dual role of podoplanin in oral cancer development. In Vivo 28(3):341–347

    Google Scholar 

  250. de Vicente JC, Rodrigo JP, Rodriguez-Santamarta T, Lequerica-Fernandez P, Allonca E, Garcia-Pedrero JM (2013) Podoplanin expression in oral leukoplakia: tumorigenic role. Oral Oncol 49(6):598–603. doi:10.1016/j.oraloncology.2013.02.008

    Article  PubMed  CAS  Google Scholar 

  251. Cueni LN, Hegyi I, Shin JW, Albinger-Hegyi A, Gruber S, Kunstfeld R, Moch H, Detmar M (2010) Tumor lymphangiogenesis and metastasis to lymph nodes induced by cancer cell expression of podoplanin. Am J Pathol 177(2):1004–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Funayama A, Cheng J, Maruyama S, Yamazaki M, Kobayashi T, Syafriadi M, Kundu S, Shingaki S, Saito C, Saku T (2011) Enhanced expression of podoplanin in oral carcinomas in situ and squamous cell carcinomas. Pathobiology 78(3):171–180

    Article  CAS  PubMed  Google Scholar 

  253. Huber GF, Fritzsche FR, Zullig L, Storz M, Graf N, Haerle K, Jochum W, Stoeckli SJ, Moch H (2011) Podoplanin expression correlates with sentinel lymph node metastasis in early squamous cell carcinomas of the oral cavity and oropharynx. Int J Cancer 129(6):1404–1409

    Article  CAS  PubMed  Google Scholar 

  254. Inoue H, Miyazaki Y, Kikuchi K, Yoshida N, Ide F, Ohmori Y, Tomomura A, Sakashita H, Kusama K (2012) Podoplanin promotes cell migration via the EGF-Src-Cas pathway in oral squamous cell carcinoma cell lines. J Oral Sci 54(3):241–250

    Article  CAS  PubMed  Google Scholar 

  255. Kreppel M, Drebber U, Wedemeyer I, Eich HT, Backhaus T, Zoller JE, Scheer M (2011) Podoplanin expression predicts prognosis in patients with oral squamous cell carcinoma treated with neoadjuvant radiochemotherapy. Oral Oncol 47(9):873–878

    Article  CAS  PubMed  Google Scholar 

  256. dos Santos Almeida A, Oliveira DT, Pereira MC, Faustino SE, Nonogaki S, Carvalho AL, Kowalski LP (2013) Podoplanin and VEGF-C immunoexpression in oral squamous cell carcinomas: prognostic significance. Anticancer Res 33(9):3969–3976

    PubMed  Google Scholar 

  257. Nakashima Y, Yoshinaga K, Kitao H, Ando K, Kimura Y, Saeki H, Oki E, Morita M, Kakeji Y, Hirahashi M, Oda Y, Maehara Y (2013) Podoplanin is expressed at the invasive front of esophageal squamous cell carcinomas and is involved in collective cell invasion. Cancer Sci 104(12):1718–1725. doi:10.1111/cas.12286

    Article  CAS  PubMed  Google Scholar 

  258. Pula B, Witkiewicz W, Dziegiel P, Podhorska-Okolow M (2013) Significance of podoplanin expression in cancer-associated fibroblasts: a comprehensive review. Int J Oncol 42(6):1849–1857. doi:10.3892/ijo.2013.1887

    CAS  PubMed  Google Scholar 

  259. Sugimoto Y, Watanabe M, Oh-hara T, Sato S, Isoe T, Tsuruo T (1991) Suppression of experimental lung colonization of a metastatic variant of murine colon adenocarcinoma 26 by a monoclonal antibody 8F11 inhibiting tumor cell-induced platelet aggregation. Cancer Res 51(3):921–925

    CAS  PubMed  Google Scholar 

  260. Chandramohan V, Bao X, Kato Kaneko M, Kato Y, Keir ST, Szafranski SE, Kuan CT, Pastan IH, Bigner DD (2013) Recombinant anti-podoplanin (NZ-1) immunotoxin for the treatment of malignant brain tumors. Int J Cancer 132(10):2339–2348. doi:10.1002/ijc.27919

    Article  CAS  PubMed  Google Scholar 

  261. Kato Y, Kaneko MK, Kuno A, Uchiyama N, Amano K, Chiba Y, Hasegawa Y, Hirabayashi J, Narimatsu H, Mishima K, Osawa M (2006) Inhibition of tumor cell-induced platelet aggregation using a novel anti-podoplanin antibody reacting with its platelet-aggregation-stimulating domain. Biochem Biophys Res Commun 349(4):1301–1307. doi:10.1016/j.bbrc.2006.08.171

    Article  CAS  PubMed  Google Scholar 

  262. Kato Y, Vaidyanathan G, Kaneko MK, Mishima K, Srivastava N, Chandramohan V, Pegram C, Keir ST, Kuan CT, Bigner DD, Zalutsky MR (2010) Evaluation of anti-podoplanin rat monoclonal antibody NZ-1 for targeting malignant gliomas. Nucl Med Biol 37(7):785–794. doi:10.1016/j.nucmedbio.2010.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Abe S, Morita Y, Kaneko MK, Hanibuchi M, Tsujimoto Y, Goto H, Kakiuchi S, Aono Y, Huang J, Sato S, Kishuku M, Taniguchi Y, Azuma M, Kawazoe K, Sekido Y, Yano S, Akiyama S, Sone S, Minakuchi K, Kato Y, Nishioka Y (2013) A novel targeting therapy of malignant mesothelioma using anti-podoplanin antibody. J Immunol 190(12):6239–6249. doi:10.4049/jimmunol.1300448

    Article  CAS  PubMed  Google Scholar 

  264. Kaneko MK, Kunita A, Abe S, Tsujimoto Y, Fukayama M, Goto K, Sawa Y, Nishioka Y, Kato Y (2012) Chimeric anti-podoplanin antibody suppresses tumor metastasis through neutralization and antibody-dependent cellular cytotoxicity. Cancer Sci 103(11):1913–1919. doi:10.1111/j.1349-7006.2012.02385.x

    Article  CAS  PubMed  Google Scholar 

  265. Cheriyan VT, Wang Y, Muthu M, Jamal S, Chen D, Yang H, Polin LA, Tarca AL, Pass HI, Dou QP, Sharma S, Wali A, Rishi AK (2014) Disulfiram suppresses growth of the malignant pleural mesothelioma cells in part by inducing apoptosis. PLoS One 9(4), e93711. doi:10.1371/journal.pone.0093711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Jamal S, Cheriyan VT, Muthu M, Munie S, Levi E, Ashour AE, Pass HI, Wali A, Singh M, Rishi AK (2014) CARP-1 functional mimetics are a novel class of small molecule inhibitors of malignant pleural mesothelioma cells. PLoS One 9(3), e89146. doi:10.1371/journal.pone.0089146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  267. Chang CH, Chung CH, Hsu CC, Peng HC, Huang TF (2014) Inhibitory effects of polypeptides derived from a snake venom C-type lectin, aggretin, on tumor cell-induced platelet aggregation. J Thromb Haemost 12(4):540–549. doi:10.1111/jth.12519

    Article  CAS  PubMed  Google Scholar 

  268. Ochoa-Alvarez JA, Krishnan H, Pastorino JG, Nevel E, Kephart D, Lee JJ, Retzbach EP, Shen Y, Fatahzadeh M, Baredes S, Kalyoussef E, Honma M, Adelson ME, Kaneko MK, Kato Y, Young MA, Deluca-Rapone L, Shienbaum AJ, Yin K, Jensen LD, Goldberg GS (2015) Antibody and lectin target podoplanin to inhibit oral squamous carcinoma cell migration and viability by distinct mechanisms. Oncotarget 6(11):9045–9060

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary S. Goldberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krishnan, H., Goldberg, G.S. (2015). Contact Normalization or Escape from the Matrix. In: Kandouz, M. (eds) Intercellular Communication in Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7380-5_12

Download citation

Publish with us

Policies and ethics