Skip to main content

Abstract

Fibre reinforced composite systems are increasingly used in civil engineering infrastructure applications for strengthening and rehabilitation of reinforced concrete (RC) structures. Composite materials represent a sustainable alternative to new construction because they allow for an extension of the original service life and therefore prevent demolition of existing structures. Promising newly-developed types of matrix that potentially represent a valid, sustainable, and durable alternative to epoxy, employed in fibre-reinforced polymer (FRP) composites, are the so-called inorganic matrices. Within the broad category of inorganic matrices, cement-based mortars have raised some interest in recent years. This chapter intends to highlight the potentials of this new category of fibre-reinforced composites as a viable alternative to traditional FRP systems. The latest advancements in this field and the new challenges that researchers will face in the future are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Concrete Institute (ACI). (2008). Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. ACI 440.2R-08, Farmington Hills, MI.

    Google Scholar 

  • American Concrete Institute (ACI). (2013). Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix (FRCM) Systems for Repair and Strengthening Concrete and Masonry Structures. ACI 549.4R-13, Farmington Hills, MI.

    Google Scholar 

  • ASTM. (1996) Standard test method for tensile properties of polymer matrix composite materials. D3039/D3039 M, ASTM International, 6 pages.

    Google Scholar 

  • ASTM. (2011a) Standard test method for compressive strength for cylindrical concrete specimens. C39/C39 M-12, ASTM International, 7 pages.

    Google Scholar 

  • ASTM. (2011b) Standard test method for splitting tensile strength of cylindrical concrete specimens. C496/C496 M, ASTM International, 5 pages.

    Google Scholar 

  • Badanoiu, A., & Holmgren, J. (2003). Cementitious composites reinforced with continuous carbon fibers for strengthening of concrete structures. Cement & Concrete Composites, 25, 387–394.

    Article  Google Scholar 

  • Banholzer, B. (2004). Bond behaviour of a multi-filament yarn embedded in a cementitious matrix. Ph.D. Thesis, RWTH Aachen University.

    Google Scholar 

  • Banholzer, B., Brockmann, T., & Brameshuber, W. (2006). Material and bonding characteristics for dimensioning and modeling of textile reinforced concrete (TRC) elements. Materials and Structures, 39, 749–763.

    Article  Google Scholar 

  • Bisby, L. A., Roy, E. C., Ward, M., & Stratford, T. J. (2009). Fibre reinforced cementitious matrix systems for fire-safe flexural strengthening of concrete: Pilot testing at ambient temperature. In Proceedings Advanced Composites in Construction, Edinburgh, UK.

    Google Scholar 

  • Bournas, D., Lontou, P., Papanicolaou, C. G., & Triantafillou, T. C. (2007). Textile-Reinforced Mortar (TRM) versus FRP Confinement in Reinforced Concrete Columns. ACI Structural Journal, 104(6), 740–748.

    Google Scholar 

  • Bournas, D. A., & Triantafillou, T. C. (2011a). Bar Buckling in RC Columns Confined with Composite Materials. Journal of Composites for Construction, 15(3), 393–403.

    Article  Google Scholar 

  • Bournas, D. A., & Triantafillou, T. C. (2011b). Bond Strength of Lap Spliced Bars in Concrete Confined with Composite Materials. Journal of Composites for Construction, 15(2), 156–167.

    Article  Google Scholar 

  • Bournas, D. A., Triantafillou, T. C., Zygouris, K., & Stavropoulos, F. (2009). Textile-reinforced mortar (TRM) versus FRP jacketing in seismic retrofitting of RC columns with continuous or lap-spliced deformed bars. Journal of Compososites for Construction, 13(5), 360–371.

    Article  Google Scholar 

  • BrĂ¼ckner, A., Ortlepp, R., & Curbach, M. (2006). Textile reinforced concrete for strengthening in bending and shear. Materials and Structures, 39, 741–748.

    Article  Google Scholar 

  • Carloni, C., D’Antino, T., Sneed, L. H., & Pellegrino, C. (2014). Role of the matrix layers in the stress-transfer mechanism of FRCM composites bonded to a concrete substrate. Journal of Engineering Mechanics, ASCE. doi:10.1061/(ASCE)EM.1943-7889.0000883.

    MATH  Google Scholar 

  • Carloni, C., Sneed, L. H., & D’Antino, T. (2013). Interfacial bond characteristics of fiber reinforced cementitious matrix for external strengthening of reinforced concrete members. In Proceedings of the 8th international Conference on Fracture Mechanics of Concrete and Concrete Structures (FraMCoS-8), Toledo (Spain) (pp. 129–137).

    Google Scholar 

  • Carloni, C., & Subramaniam, K. V. (2012). Application of fracture mechanics to debonding of FRP from RC members. ACI SP-286: 10-1-10-14.

    Google Scholar 

  • Carozzi, F. G., & Poggi, C. (2015). Mechanical properties and debonding strength of Fabric Reinforced Cementitious Matrix (FRCM) systems for masonry strengthening. Composites: Part B, 70, 215–230.

    Article  Google Scholar 

  • Contamine, R., Si LArbi, A., & Hamelin, P. (2011). Contribution to direct tensile testing of textile reinforced concrete (TRC) composites, Material Science and Engineering A, 528, 8589–8598.

    Google Scholar 

  • Curbach, M., Ortlepp, R., & Triantafillou, T. C. (2006). TRC for rehabilitation. In W. Brameshuber (Ed.), Textile Reinforced Concrete (pp. 221–236), RILEM Report 36.

    Google Scholar 

  • D’Ambrisi, A., & Focacci, F. (2011). Flexural strengthening of RC beams with cement based composites. Journal of Composites for Construction, 15(2), 707–720.

    Article  Google Scholar 

  • D’Ambrisi, A., Feo, L., & Focacci, F. (2012). Bond-slip relations for PBO-FRCM materials externally bonded to concrete. Compos Part B, 43(8), 2938–2949.

    Article  Google Scholar 

  • D’Ambrisi, L., Focacci, F., & Caporale, A. (2013a). Strengthening of masonry–unreinforced concrete railway bridges with PBO-FRCM materials. Composite Structures, 102, 193–204.

    Article  Google Scholar 

  • D’Ambrisi, A., Feo, L., & Focacci, F. (2013b). Experimental analysis on bond between PBO-FRCM strengthening materials and concrete. Composites—Part B, 44(1), 524–532.

    Google Scholar 

  • D’Ambrisi, A., Feo, L., & Focacci, F. (2013c). Experimental and analytical investigation on bond between carbon-FRCM materials and masonry. Compos Part B, 46, 15–20.

    Article  Google Scholar 

  • D’Ambrisi, A., Focacci, F., Luciano, R., Alecci, V., & De Stefano, M. (2015). Carbon-FRCM materials for structural upgrade of masonry arch road bridges. Compos Part B, 75, 355–366.

    Article  Google Scholar 

  • D’Antino, T., Carloni, C., Sneed, L. H., & Pellegrino, C. (2014). Matrix-fiber bond behavior in PBO FRCM composites: a fracture mechanics approach. Engineering Fracture Mechanics, 117, 94–111.

    Article  Google Scholar 

  • D’Antino, T., Carloni, C., Sneed, L. H., & Pellegrino, C. (2015). Fatigue and Post-fatigue Behavior of PBO FRCM-Concrete Joints. International Journal of Fatigue. doi:10.1016/j.ijfatigue.2015.06.008.

    Google Scholar 

  • D’Antino, T., Sneed, L.H., Carloni, C., & Pellegrino, C. (2013). Bond behavior of the FRCM-concrete interface. In Proceedings of 11th international symposium on fiber reinforced polymer reinforcement for concrete structures (FRPRCS-11), Guimaraes, Portugal.

    Google Scholar 

  • Elsanadedy, H. M., Almusallam, T. H., Alsayed, S. H., & Al-Salloum, Y. A. (2013). Flexural strengthening of RC beams using textile reinforced mortar—Experimental and numerical study. Composite Structures, 97, 40–55.

    Article  Google Scholar 

  • FĂ©deration Internationale du BĂ©ton (FIB) (2001). Externally bonded FRP reinforcement for RC structures. Bulletin 14, Lausanne, Switzerland.

    Google Scholar 

  • Hartig, J., Häuβler-Combe, U., & Schicktanz, K. (2008). Influence of bond properties on the tensile behaviour of Textile Reinforced Concrete. Cement & Concrete Composites, 30, 898–906.

    Article  Google Scholar 

  • Hartig, F., Jesse, F., Schicktanz, K., & HäuĂŸler-Combe, U. (2012). Influence of experimental setups on the apparent uniaxial tensile load-bearing capacity of textile reinforced concrete specimens. Materials and Structures, 45, 433–446.

    Article  Google Scholar 

  • Hashemi, S., & Al-Mahaidi, R. (2008). Cement based bonding material for FRP strengthening of RC structures. In Proceedings of 11th International Inorganic-Bonded Fiber Composites Conference (IIBC), Toledo, Spain.

    Google Scholar 

  • Hashemi, S., & Al-Mahaidi, R. (2012a). Experimental and finite element analysis of flexural behavior of FRP-strengthened RC beams using cement-based adhesives. Construction and Building Materials, 26, 268–273.

    Article  Google Scholar 

  • Hashemi, S., & Al-Mahaidi, R. (2012b). Investigation of flexural performance of RC beams strengthened with CFRP textile and cement based adhesives. In Proceedings of the 3rd Asia-Pacific Conference on FRP in Structures (APFIS 2012), Hokkaido, Japan.

    Google Scholar 

  • Häuβler-Combe, U., & Hartig, J. (2007). Bond and failure mechanisms of textile reinforced concrete (TRC) under uniaxial tensile loading. Cement and Concrete Composites, 29, 297–289.

    Google Scholar 

  • Hegger, J., Will, N., Bruckermann, O., & Voss, S. (2006). Load-bearing behavior and simulation of textile reinforced concrete. Materials and Structures, 39, 765–776.

    Article  Google Scholar 

  • ICC Evaluation Service. (2013). Acceptance Criteria for Masonry and Concrete Strengthening Using Fiber-reinforced Cementitious Matrix (FRCM) Composite Systems. AC434-2013.

    Google Scholar 

  • Italian National Research Council (CNR). (2004). Guide for the design and construction of externally bonded FRP systems for strengthening existing structures. CNR-DT200/2004, Rome.

    Google Scholar 

  • Jesse, F., Schicktanz, K., & Curbach, M. (2009). Obtaining Characteristic Material Strength of Textile Reinforced Concrete (TRC) from Laboratory Tests. In Proceedings of the 9th International Symposium on Ferrocement (Ferro9), Bali (pp. 305–318.

    Google Scholar 

  • Jesse, F., Weiland, S., Curbach, M. (2005). Flexural strengthening of rc-structures with textile reinforced concrete, Textile Reinforced Concrete (TRC)—German/International Experience. ACI Special Publication, SP-250CD-4.

    Google Scholar 

  • Kolsch, H. (1998). Carbon fiber cement matrix overlay system for masonry strengthening. Journal of Composites for Construction, 2(2), 105–109.

    Article  Google Scholar 

  • Lignola, G. P., Prota, A., & Manfredi, G. (2009). Nonlinear Analyses of tuff masonry walls strengthened with cementitious matrix grid composites. Journal of Composites for Construction, 14(4), 243–251.

    Article  Google Scholar 

  • Ombres, L. (2009). Failure modes in reinforced concrete beams strengthened with PBO fiber reinforced mortars. In Proceedings of Fiber-Reinforced Polymer Reinforcement for Concrete Structures, FRPRCS-9, Sydney, Australia.

    Google Scholar 

  • Ombres, L. (2011). Flexural analysis of reinforced concrete beams strengthened with a cement based high strength composite material. Composite Structures, 94(1), 143–155.

    Article  Google Scholar 

  • Ombres, L. (2012). Debonding analysis of reinforced concrete beams strengthened with fibre reinforced cementitious mortar. Engineering Fracture Mechanics, 81, 94–109.

    Article  Google Scholar 

  • Ortlepp, R., Hampel, U., & Curbach, M. (2006). A new approach for evaluating bond capacity or TRC strengthening. Cement & Concrete Composites, 28, 589–597.

    Article  Google Scholar 

  • Ortlepp, R., Ortlepp, S., & Curbach, M. (2004). Stress transfer in the bond joint of subsequently applied Textile Reinforced Concrete strengthening. In Proceedings of Fibre-Reinforced Concretes (FRC), RILEM, PRO 39, Varenna, Italy.

    Google Scholar 

  • Pareek, S., Suzuki, Y., & Kobayashi, A. (2007). Flexural and shear strengthening of RC beams using newly developed CFRP and polymer-cement pastes as bonding agents. In Proceedings of Fiber-Reinforced Polymer Reinforcement for Concrete Structures, FRPRCS-8, Patras, Greece.

    Google Scholar 

  • Parisi, F., Lignola, G. P., Augenti, N., Prota, A., & Manfredi, G. (2011). Nonlinear Behavior of a Masonry Subassemblage Before and After Strengthening with Inorganic Matrix-Grid Composites. Journal of Composites for Construction, 15(5), 821–832.

    Article  Google Scholar 

  • Peled, A., Zaguri, E., & Marom, G. (2008). Bonding characteristics of multifilament polymer yarns and cement matrices. Composites: Part A, 39, 930–939.

    Article  Google Scholar 

  • Pellegrino, C., & D’Antino, T. (2013). Experimental behavior of existing precast prestressed reinforced concrete elements strengthened with cementitious composites. Composites: Part B, 55, 31–40.

    Article  Google Scholar 

  • Pellegrino, C., Tinazzi, D., & Modena, C. (2008). An experimental study on bond behavior between concrete and FRP reinforcement. Journal of Compososites for Construction, 12(2), 180–189.

    Article  Google Scholar 

  • Prota, A., Marcari, G., Fabbrocino, G., Manfredi, G., & Aldea, C. (2006). Experimental in-plane behavior of tuff masonry strengthened with cementitious matrix grid composites. Journal of Composites for Construction, 10(3), 223–233.

    Article  Google Scholar 

  • Smith, S. T., & Teng, J. G. (2002). FRP-strengthened RC beams-II: assessment of debonding strength models. Engineering Structures, 24(4), 397–417.

    Article  Google Scholar 

  • Sneed, L. H., D’Antino, T., & Carloni, C. (2014). Investigation of bond behavior of PBO fiber-reinforced cementitious matrix composite—concrete interface. ACI Materials Journal, 111(1–6), 1–12.

    Google Scholar 

  • Sneed, L. H., D’Antino, T., Carloni, C., & Pellegrino, C. (2015). A comparison of the bond behavior of PBO-FRCM composites determined by single-lap and double-lap shear tests. Cement and Concrete Composites. doi:10.1016/j.cemconcomp.2015.07.007.

    Google Scholar 

  • Soranakom, C., & Mobasher, B. (2009). Geometrical and mechanical aspects of fabric bonding and pullout in cement composites. Materials and Structures, 42, 765–777.

    Article  Google Scholar 

  • Subramaniam, K.V., Carloni, C., & Nobile, L. (2007). Width effect in the interface fracture during debonding of FRP from concrete. Engineering Fracture Mechanics, 74, 578–594.

    Google Scholar 

  • Subramaniam, K.V., Carloni, C., & Nobile, L. (2011). An understanding of the width effect in FRP-concrete debonding. Strain, 47, 127–137.

    Google Scholar 

  • Täljsten, B., & Blanksvärd, T. (2007). Mineral-Based bonding of Carbon FRP to strengthen concrete structures. Journal of Composites for Construction, 11(2), 120–128.

    Article  Google Scholar 

  • Triantafillou, T. C. (2010). Innovative Textile-based Composites for Strengthening and Seismic Retrofitting of Concrete and Masonry Structures. In Proceedings of the 5th International Conference on FRP Composites in Civil Engineering, CICE-2010, Beijing, China.

    Google Scholar 

  • Triantafillou, T.C., Papanicolaou, C.G., Zissimopoulos, P., & Laourdekis, T. (2006). Concrete confinement with textile-reinforced mortar jackets. ACI Structural Journal, 103(1), 28–37.

    Google Scholar 

  • UNI EN 1015-11. (2007). Methods of test for mortar for masonry—Part 11: Determination of flexural and compressive strength of hardened mortar, ComitĂ© EuropĂ©en de Normalisation, Brussels, Belgium.

    Google Scholar 

  • UNI EN 1998-3. (2005). Eurocode 8: Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings, European Committee for Standardization, Brussels, Belgium.

    Google Scholar 

  • Weiland, S., Ortlepp, R., & Curbach, M. (2006). Strengthening of preformed slabs with textile reinforced concrete. In Proceedings of the 2nd International fib Congress, Naples, Italy.

    Google Scholar 

  • Wiberg, A. (2003). Strengthening of Concrete Beams Using Cementitious Carbon Fibre Composites. Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden.

    Google Scholar 

  • Wu, H. C., & Sun, P. (2005). Fiber reinforced cement based composite sheets for structural retrofit. In Proceedings of the International Symposium on Bond Behaviour of FRP in Structures, BBFS 2005, Hong Kong, China.

    Google Scholar 

  • Zastrau, B., Lepenies, I., & Richter. M. (2008). On the multi scale modeling of textile reinforced concrete. Technische Mechanik, 28, 53–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Carloni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 RILEM

About this chapter

Cite this chapter

Carloni, C. et al. (2016). Fiber Reinforced Composites with Cementitious (Inorganic) Matrix. In: Pellegrino, C., Sena-Cruz, J. (eds) Design Procedures for the Use of Composites in Strengthening of Reinforced Concrete Structures. RILEM State-of-the-Art Reports, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7336-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7336-2_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7335-5

  • Online ISBN: 978-94-017-7336-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics