Skip to main content

Abstract

This chapter gives an overview on the state-of-the-art about verifications of reinforced concrete structures using Externally Bonded (EB) Fibre Reinforced Polymers (FRP) under particular loading condition. Focus is mainly put on flexural strengthening, nowadays the most common application field for composite materials in structural engineering. The items discussed in this chapter are:

  • Serviceability limit states;

  • Fatigue behaviour;

  • Effects of fire and high temperature;

  • Long term behaviour;

  • Anchoring systems;

  • Mechanically Fastened Systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Serviceability Limit States

  • ACI (2005). Building code requirements for structural concrete and commentary, ACI 318R-05, ACI Committee 318, Farmington Hills, Mich.

    Google Scholar 

  • Aiello, M. A., & Ombres, L. (2000). Load deflection analysis of FRP reinforced concrete flexural members. ASCE Journal of Composite in Construction, 4(4), 164–171.

    Article  Google Scholar 

  • Aiello, M. A., & Ombres, L. (2004). Cracking and deformability analysis of reinforced concrete beams strengthened with externally bonded carbon fiber reinforced polymer sheets. Journal of Materials in Civil Engineering, 16(5), 392–399.

    Article  Google Scholar 

  • Balsamo, A., Nardone, F., Iovinella, I., Ceroni, F., & Pecce, M. (2013a). Flexural strengthening of concrete beams with EB-FRP, SRP and SRCM. Experimental investigation, Composites: Part B doi:10.1016/j.compositesb.2012.10.014.

    Google Scholar 

  • Balsamo, A., Bilotta, A., Ceroni, F., Nigro, E., & Pecce M., (2013b). Efficiency of CFRP NSM strips and EBR laminates for flexural strengthening of RC beams. In B. Joaquim & S.-C. José (Eds.), Proceedings of FRPRCS11, UM, Guimarães.

    Google Scholar 

  • Barros, J. A. O., & Fortes, A. S. (2005). Flexural strengthening of concrete beams with CFRP laminates bonded into slits. Journal Cement and Concrete Composites, 27(4), 471–480.

    Article  Google Scholar 

  • Barros, J. A. O., Dias, S. J. E., & Lima, J. L. T. (2007). Efficacy of CFRP-based techniques for the flexural and shear strengthening of concrete beams. Journal Cement and Concrete Composites, 29(3), 203–217.

    Article  Google Scholar 

  • Bischoff, P. H. (2007). Deflection calculation of FRP reinforced concrete beams based on modifications to the existing Branson equation. ASCE Journal of Composites for Constructions, 11(1), 4–14.

    Article  MathSciNet  Google Scholar 

  • Borchert, K. (2007). Bond behaviour of adhesively bonded reinforcement in service. Ph.D. Thesis, Technische Universität München (in German with English summary).

    Google Scholar 

  • Borchert, K., & Zilch, K. (2008). Bond behaviour of NSM FRP strips in service. Structural Concrete, 9, 128–142.

    Article  Google Scholar 

  • Branson, D. E. (1977). Deformations of concrete structures (pp. 167–169). New York: McGraw-Hill.

    Google Scholar 

  • Charkas, H., Rasheed, H. A., & Melhem, H. (2003). Rigorous procedure for calculating deflections of fiber-reinforced polymer-strengthened reinforced concrete beams. ACI Structural Journal, 100(4), 529–539.

    Google Scholar 

  • fib bulletin No. 65. (2012). Model Code 2010-Final draft, Volume 1, International Federation for Structural Concrete, Lausanne, Switzerland. ISSN 1562-3610. ISBN:978-2-88394-105-2.

    Google Scholar 

  • fib bulletin No. 66. (2012). Model Code 2010-Final draft, Volume 2, International Federation for Structural Concrete, Lausanne, Switzerland. ISSN 1562-3610. ISBN:978-2-88394-105-2.

    Google Scholar 

  • Ceroni, F., Pecce, M., & Matthys, S. (2004). Tension stiffening of RC ties strengthened with externally bonded FRP sheets. ASCE Journal of Composites for Constructions, 8(1), 22–32.

    Article  Google Scholar 

  • Ceroni, F., & Pecce, M. (2004). Modelling of tension stiffening behaviour of RC ties strengthened with FRP sheets. ASCE Journal of Composites for Constructions, 8(6), 510–518.

    Article  Google Scholar 

  • Ceroni, F., & Pecce, M. (2007). Cracking behaviour of RC beams externally strengthened with emerging materials. Construction and Building Materials, 21(4), 736–745.

    Article  Google Scholar 

  • Ceroni, F., & Pecce, M. (2009). Design provisions for crack spacing and width in RC elements externally bonded with FRP. Composites Part B, 40(1), 17–28.

    Article  Google Scholar 

  • Ceroni, F. (2010). Experimental performances of RC beams strengthened with FRP materials. Construction and Building Material, 24, 1547–1559.

    Article  Google Scholar 

  • CNR DT 200/R1. (2012). Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures, Advisory Committee on Technical Recommendation for Construction of National Research council, Rome, Italy.

    Google Scholar 

  • Eligehausen, R., Popov, E. P., & Bertero, V. V. (1983). Local bond stress-slip relationships of deformed bars under generalized excitations, Report no. 83/23, EERC. University of California, Berkeley.

    Google Scholar 

  • El-Mihilmy, M. T., & Tedesco, J. W. (2000). Deflection of reinforced concrete beams strengthened with fiber-reinforced polymer (FRP) plates. ACI Structural Journal, 97(5).

    Google Scholar 

  • EN 1990. (2002). Eurocode 0: Basis of Structural Design, European Committee of Standardization.

    Google Scholar 

  • Ferretti, D., & Savoia, M. (2003). Cracking evolution in R/C tensile members strengthened by FRP-plates. Engineering Fracture Mechanics, 70, 1069–1083.

    Article  Google Scholar 

  • Ferrier, E., Avril, S., Hamelin, P., & Vautrin, A. (2003). Mechanical behavior of rc beams reinforced by externally bonded CFRP sheets. Materials and Structures/Matériaux and Constructions, 36(262), 522–529.

    Google Scholar 

  • Jourawski, D. J. (1858). Sur le résistance d’un corps prismatique et d’une Piece Composée en Bois ou on Tôle de Fer à une Force Perpendiculaire à leur Longeur, Annales des Ponts et Chausees, Memoires and Documents, 3rd Series, V. 12, Part 2, pp. 328–351

    Google Scholar 

  • Kim, Y. J., Shi, C., & Green, M. F. (2008a). Ductility and cracking behavior of prestressed concrete beams strengthened with prestressed CFRP sheets. ASCE Journal of Composites for Construction, 12(3), 274–283.

    Article  Google Scholar 

  • Matthys, S. (2000). Structural behaviour and design of concrete members strengthened with externally bonded FRP reinforcement, Ph Doctoral thesis, Faculty of Engineering, Department of Structural Engineering, Ghent University, Ghent, Belgium.

    Google Scholar 

  • Monti, G., Alessandri, S., & Santini, S. (2009). Design by testing: a procedure for the statistical determination of capacity models. Construction and Building Materials, 23(4), 1487–1494.

    Article  Google Scholar 

  • Pecce, M., Ceroni, F., Prota, A., & Manfredi, G. (2006). Response prediction of RC beams externally bonded with steel reinforced polymers. ASCE Journal of Composites for Construction, 10(3), 195–203.

    Article  Google Scholar 

  • Rasheed, A. H., Charkas, H., & Melhem, H. (2004). Simplified nonlinear analysis of strengthened concrete beams based on a rigorous approach. ASCE Journal of Structural Engineering, 130(7), 1087–1096.

    Article  Google Scholar 

  • Razaqpur, A. G., Švecová, D., & Cheung, M. S. (2000). Rational method for calculating deflection of fiber-reinforced polymer reinforced beams. ACI Structural Journal, 97(1), 175–184.

    Google Scholar 

  • Roberts, T. M. (1989). Approximate analysis of shear and normal stress concentrations in the adhesive layer of plated RC beams. The Structural Engineer, 67(12), 229–233.

    Google Scholar 

  • Sato, Y., Ueda, T., & Shoji, K. (2002). Tension stiffening effect of reinforced concrete member strengthened by carbon fiber sheet. In Proceedings of the International Symposium “Bond in concrete”, Budapest, 20–22 November 2002, pp. 606–613.

    Google Scholar 

  • Täljsten, B. (2004). FRP Strengthening of existing concrete structures: design guideline. Lulea University of Technology. ISSN 91-89580-03-4.

    Google Scholar 

  • Tan, K. H., & Saha, M. K. (2008). Cracking characteristics of RC beams strengthened with FRP system. Journal of Composites for Construction, 12(5), 513–521.

    Article  Google Scholar 

  • Tripi, J. M., Bakis, C. E., Boothby, T. E., & Nanni, A. (2000). Deformation in concrete with external CFRP sheet reinforcement. ASCE Journal of Composites for Construction, 4(2), 85–94.

    Article  Google Scholar 

  • Ueda, T., Yamaguchi, R., Shoji, K., & Sato, Y. (2002). Study on behavior in tension of reinforced concrete members strengthened by carbon fiber sheet. ASCE Journal of Composites for Construction, 6(3), 168–174.

    Google Scholar 

  • Yoshizawa, H., & Wu, Z. (1999). Crack behavior of plain concrete and reinforced concrete members strengthened with carbon fiber sheets. Proceedings of Fourth International Symposium on FRP Reinforcement, Vol. 1, pp. 767–779

    Google Scholar 

  • Zehetmaier, G., & Zilch, K. (2008). Rissbildung und Rissbreitenbeschränkung bei Verstärkung mit CFK-Lamellen. Bauingenieur, 83, 19–26.

    Google Scholar 

  • Zhang, Y., Toutanji, H., & Balagrou, P. (2003). Crack widths in R.C. beams externally bonded with CFRP sheets. Proceedings of FRPRCS-6, Singapore, 8–10 July 2003.

    Google Scholar 

Fatigue Behaviour

  • ACI Committee 440. (2008). Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures.

    Google Scholar 

  • Ali-Ahmad M., et al. (2006), Experimental investigation and fracture analysis of debonding between concrete and FRP. Journal of Engineering Mechanics ASCE, 132(9), 914–923.

    Google Scholar 

  • Anderson, T. L. (2004). Fracture mechanics: fundamentals and applications. Boca Raton: CRC Press.

    Google Scholar 

  • Bizindavyi, L., et al. (2003), Experimental investigation of bonded fiber reinforced polymer-concrete joints under cyclic. Journal of Composites in Construction, pp. 127–133.

    Google Scholar 

  • Budelmann, H., et al. (2013). Praxisgerechte Bemessungsansätze für das wirtschaftliche Verstärken von Betonbauteilen mit geklebter Bewehrung - Verbundtragfähigkeit unter dynamischer Belastung, DAfStb Heft 593. Berlin: Beuth Verlag.

    Google Scholar 

  • Carloni, C., et al. (2012). Experimental determination of FRP concrete cohesive interface properties under fatigue loading. Composite Structures, 94(4), 1288–1296.

    Article  Google Scholar 

  • Carloni C., et al.. (2013). Sub-critical fatigue crack growth in FRP/concrete cohesive interface. Composite: Part B, 51, 35–43.

    Google Scholar 

  • CNR-DT 200. (2004). Guide for the design and construction of externally bonded FRP systems for strengthening existing structures.

    Google Scholar 

  • Dai, J. G., et al. (2005). Static and fatigue bond characteristics of interfaces between CFRP sheets and frost damage experienced concrete. Proceedings of 7th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures, Kansas City, MO, American Concrete Institute (ACI), Farmington Hills, MI, 15151530.

    Google Scholar 

  • Diab, H. M., et al. (2009). Theoretical solution for fatigue debonding growth and fatigue life prediction of FRP-concrete interfaces. Advanced Structural Engineering, 12(6), 781–792.

    Google Scholar 

  • Ferrier, E., et al. (2005). Fatigue of CFRPs externally bonded to concrete. Materials and Structures, 38, 39–46.

    Article  Google Scholar 

  • fib Task Group 9.3 FRP, bulletin 14. (2001). Externally bonded FRP reinforcement for RC structures.

    Google Scholar 

  • DAfStb-guideline. (2012). DAfStb Guideline On the Strengthening of Concrete Members with Adhesively Bonded Reinforcement. German Committee for Structural Concrete, Berlin: Beuth Verlag.

    Google Scholar 

  • German Committee for Structural Concrete. (2013). Commentary on the DAfStb Guideline Strengthening of Concrete Members with Adhesively Bonded Reinforcement with Examples, Report 595. Berlin: Beuth Verlag.

    Google Scholar 

  • Hankers, C. (1996). Zum Verbundtragverhalten laschenverstärkter Betonbauteile unter nicht vorwiegend ruhender Beanspruchung, Dissertation, Institut für Baustoffe, Massivbau und Brandschutz, TU Braunschweig.

    Google Scholar 

  • Heffernan, P. J., et al. (2004). Fatigue behavior of reinforced concrete beams strengthened with carbon fiber reinforced plastic laminates. Journal of Composites in Construction, 8, 132–140.

    Google Scholar 

  • Kim, Y. J., Heffernan, P. J. (2008). Fatigue behavior of externally strengthened concrete beams with fiber-reinforced polymers: state of the art. Journal of Composites in Construction, 12, 246–256.

    Google Scholar 

  • ISIS Canada. (2001), Strengthening reinforced concrete structures with externally-bonded fibre reinforced polymers: Design manual No. 4.

    Google Scholar 

  • Ko, H. (2007). Bond stress slip relationship between frp sheet and concrete under cyclic load. Journal of Composites for Construction, 11(4), 419–426.

    Google Scholar 

  • Sutton, M. A. et al. (1983). Determination of displacements using an improved digital correlation method. Image Vision Computing, 1(3), 133–139.

    Google Scholar 

  • Sutton, M. A., et al. (2009). Image correlation for shape, motion and deformation measurements. New York: Springer.

    Google Scholar 

  • Wu, Z., et al. (2010). Tensile fatigue behavior of FRP and hybrid FRP sheets. Composites: Part B, 41, 396402.

    Google Scholar 

  • Yao, J., et al. (2005). Experimental study on FRP-to-concrete bonded joints. Composites Part B Engineering, 36(2), 99–113.

    Article  Google Scholar 

Effects of Fire and High Temperature

  • ACI 318-11. (2013). Building Code Requirements for Structural Concrete and Commentary, ISBN-13 978-0870317446.

    Google Scholar 

  • Bai, Y., Vallée, T., & Keller, T. (2007). Modeling of thermo-physical properties for FRP composites under elevated and high temperature. Composites Science and Technology, 67, 3098–3109.

    Article  Google Scholar 

  • Bisby, L. A., Green, M. F., Kodur, V. K. R. (2005). Response to fire of concrete structures that incorporate FRP. Progress in Structural Engineering and Materials, 7(3), 136–149.

    Google Scholar 

  • Blontrock, H., Taerwe, L., & Vandevelde, P. (2001). Fire testing of concrete slabs strengthened with fibre composite laminates. Proceedings of 5th International Conference on Fibre Reinforced Plastics for Reinforced Concrete Structures, Telford, Cambridge, U.K., pp. 547–556.

    Google Scholar 

  • Cleary, D. B., Cassino, C. D., & Tortorice, R. (2003). Effect of elevated temperature on a fiber composite used to strengthen concrete columns. Journal of Reinforced Plastics and Composites, 2210, 881–895.

    Article  Google Scholar 

  • Dai, J. G., Sato, Y., Ueda, T., & Sato, Y. (2005). Static and fatigue bond characteristics of interfaces between CFRP sheets and frost damage experienced concrete. Proceedings of FRPRCS-7, ACI-SP-230-86, pp. 1515–1530.

    Google Scholar 

  • Dai, J. G., Gao, W. Y., Teng, J. G. (2013). Bond-slip model for FRP laminates externally bonded to concrete at elevated temperature. Journal of Composites for Construction, 17(2). © ASCE, ISSN 1090-0268/2013/2-217-228.

    Google Scholar 

  • Deuring, M. (1993). Brandversuche an nachtraglich verstarkten tragern aus beton. Research Rep. No. 148’795, EMPA, Dubendorf, Switzerland.

    Google Scholar 

  • EN 1992-1-2. Eurocode 2. Design of concrete structures – Part 1-2: General Rules – Structural Fire Design, European committee for standardization, March, 2004.

    Google Scholar 

  • Gamage, J. C. P. H., Wong, M. B., & Al-Mahaidi, R. (2005). Performance of CFRP strengthened concrete members under elevated temperatures. Proceedings of International Symposium on Bond Behaviour of FRP in Structures, IIFC, Hong Kong, pp. 113–118.

    Google Scholar 

  • Jia, J., Boothby, T. E., Bakis, C. E., & Brown T. L. (2005). Durability evaluation of glass fiber reinforced-polymer-concrete bonded interfaces. Journal of Composites for Construction, 9(4). ©ASCE, ISSN 1090-0268/2005/4-348–359.

    Google Scholar 

  • Kodur, V. K. R., Bisby, L. A., & Green, M. F. (2007). Guidance for the design of FRP-strengthened concrete members exposed to fire. Journal of Fire Protection Engineering, 175, 5–26.

    Article  Google Scholar 

  • Mouritz, A. P., & Gibson, A. G. (2006). Fire properties of polymer composite materials. New York: Springer.

    Google Scholar 

  • Mouritz, A. P., & Mathys, Z. (1999). Postfire mechanical properties of marine polymer composites. Composite Structures, 471, 643–653.

    Article  Google Scholar 

  • NTC. (2008). D.M.14/1/2008 “Norme Tecniche per le Costruzioni” (Testo integrato con la Circolare n°617/C.S.LL.PP. del 2/2/2009).

    Google Scholar 

  • Nigro, E., Cefarelli, G., Bilotta, A., Manfredi, G., & Cosenza, E. (2011a). Fire resistance of concrete slabs reinforced with FRP bars. Part I: experimental investigations on the mechanical behaviour. Composites: Part B, Engineering, 42, 1739–1750. doi:10.1016/j.compositesb.2011.02.025. ISSN 1359-8368.

    Google Scholar 

  • Nigro, E., Cefarelli, G., Bilotta, A., Manfredi, G., & Cosenza, E. (2011b). Fire resistance of concrete slabs reinforced with FRP bars. Part II: experimental results and numerical simulations on the thermal field. Composites: Part B, Engineering, 42, 1751–1763. doi:10.1016/j.compositesb.2011.02.026. ISSN 1359-8368.

    Google Scholar 

  • Nigro, E., Cefarelli, G., Bilotta, A., Manfredi, G., & Cosenza, E. (2013). Adhesion at high temperature of FRP bars straight or bent at the end of concrete slabs. Journal of Structural Fire Engineering, pp. 71–86. doi:10.1260/2040-2317.4.2.71. ISSN 2040-2317.

    Google Scholar 

  • Nigro, E., Bilotta, A., & Del Prete, I. (2013a). Flexural check at high temperatures of reinforced concrete bridge decks strengthened with EBR-FRP. Applications of Structural Fire Engineering, 19–20 April 2013, Prague, Czech Republic.

    Google Scholar 

  • Nigro, E., Bilotta, A., & Del Prete, I. (2013b). High temperature effects on flexural performances of RC bridge decks strengthened with EBR-FRP. ACI Italy Chapter. Bergamo 3-4 October 2013.

    Google Scholar 

  • Porter, M. L., & Harries, K. A. (2005). Workshop on research in FRP composites in concrete construction. Arlington: National Science Foundation.

    Google Scholar 

  • Saafi, M., & Romine, P. (2002). Effect of fire on concrete cylinders confined with GFRP. Proceedings of 2nd International Conference on Durability of Fibre Reinforced Polymer (FRP) Composites for Construction, Université de Sherbrooke, pp. 512–521.

    Google Scholar 

Long Term Properties of FRP Systems

  • ASTM D 638. (2003). Standard Test Methods for Tensile Properties of Plastics. American Society for Testing and Materials (ASTM), Pennsylvania, US.

    Google Scholar 

  • ASTM 2990. (2001). Standard Test Methods for Tensile, Compressive, and Flexural Creep and Creep-Rupture of Plastics. American Society for Testing and Materials (ASTM), Pennsylvania, US, 20 pp.

    Google Scholar 

  • Brinson, H. F., & Brinson, L. C. (2008). Polymer engineering science and viscoelasticity: an introduction. New York: Springer Science + Business Media.

    Book  Google Scholar 

  • Choi, K.-K., Meshgin, P., & Taha, M. M. R. (2007). Shear creep of epoxy as the concrete-FRP interfaces. Composites Part B: Engineering, 38(5–6), 772–780.

    Article  Google Scholar 

  • Costa, I. G. (2014). Prestressed carbon fibre laminates applied according to near surface mounted technique to increase the flexural resistance of reinforced concrete beams. Ph.D. Thesis, University of Minho.

    Google Scholar 

  • Costa, I. G., & Barros, J. A. O. (2013). Assessment of the long term behaviour of structural adhesives in the context of NSM flexural strengthening technique with prestressed CFRP laminates. FRPRCS11, Guimarães, Portugal.

    Google Scholar 

  • Costa, I. G., & Barros, J. A. O. (2011). Creep of Adhesives: Review. Report 11-DEC/E-03, University of Minho, Guimarães, Portugal, 39 pp.

    Google Scholar 

  • Diab, H., & Wu, Z. (2007). A linear viscoelastic model for interfacial long-term behavior of FRP–concrete interface. Composites Part B: Engineering, 39(4), 722–730.

    Article  Google Scholar 

  • Dolan, C. W., Hamilton, H. R., Bakis, C. E., & Nanni, A. (2001). Design recommendations for concrete structures prestressed with FRP tendons. FHWA-DTFH61-96-C-00019, Federal Highway Administration, Washington, DC.

    Google Scholar 

  • Feng, C. W., Keong, C. W., Hsueh, Y. P., Wang, Y. Y., & Sue, H. J. (2005). Modeling of long-term creep behavior of structural epoxy adhesives. International Journal of Adhesion and Adhesives, 25(5), 427–436.

    Article  Google Scholar 

  • ISO 527-2. (1993). Plastics: Determination of tensile properties—Part 2: Test conditions for moulding and extrusion plastics. International Organization for Standardization (ISO), Geneva, SZ, 8 pp.

    Google Scholar 

  • ISO 899-1. (2003). Plastics: Determination of creep behaviour—Part 1: Tensile creep. International Organization for Standardization (ISO), Geneva, SZ.

    Google Scholar 

  • Khoun, L., & Hubert, P. (2010). Cure shrinkage characterization of an epoxy resin system by two in situ measurement methods. Polymer Composites, 31(9), 1603–1610.

    Google Scholar 

  • Li, C., Potter, K., Wisnom, M. R., & Stringer, G. (2004). In-situ measurement of chemical shrinkage of MY750 epoxy resin by a novel gravimetric method. Composites Science and Technology, 64(1), 55–64.

    Article  Google Scholar 

  • Lopez-Anido, R. A., & Naik, T. R. (2000). Emerging Materials for Civil Engineering Infrastructure: State of the Art. Reston: American Society of Civil Engineers.

    Google Scholar 

  • Majda, P., & Skrodzewicz, J. (2009). A modified creep model of epoxy adhesive at ambient temperature. International Journal of Adhesion and Adhesives, 29(4), 396–404.

    Article  Google Scholar 

  • Meaud, C., Jurkiewiez, B., & Ferrier, E. (2011). Investigation of creep effects in strengthened RC structures through double lap shear testing. Composites Part B: Engineering, 42(3), 359–366.

    Article  Google Scholar 

  • Sayed-Ahmed, E. Y. (2002). Single and Multi-Strand Steel Anchorage Systems for CFRP Tendons/Stays. 4th Structural Speciality Conference of the Canadian Society for Civil Engineering, Montréal, Québec, 5–8 June, 10 pp.

    Google Scholar 

  • Wang, W.-W., Dai, J.-G., Harries, K. A., & Bao, Q.-H. (2012). Prestress losses and flexural behavior of reinforced concrete beams strengthened with posttensioned CFRP sheets. Journal of Composites for Construction, ASCE, 16(2), 207–216.

    Article  Google Scholar 

  • Wu, Z., & Diab, H. (2007). A linear viscoelastic model for interfacial long-term behavior of FRP-concrete interface. Journal of Composites for Construction, ASCE, 11(5), 477–486.

    Article  Google Scholar 

  • Yu, H., Mhaisalkar, S., & Wong, E. (2005). Cure shrinkage measurement of nonconductive adhesives by means of a thermomechanical analyzer. Journal of Electronic Materials, 38(4), 1177–1182.

    Article  Google Scholar 

Anchorage Systems for External Strengthening with FRP

  • Ascione, L., & Berardi, V. P. (2011). Anchorage device for FRP laminates in the strengthening of concrete structures close to beam-column joints. Composites Part B: Engineering, 42(7), 1840–1850.

    Google Scholar 

  • Al-Mahaidi, R., & Kalfat, R. (2011). Investigation into CFRP plate end anchorage utilizing uni-directional fabric wrap. Composite Structures, 93(2), 821–830.

    Article  Google Scholar 

  • Antoniades, K. K., Salonikios, T. N., & Kappos, A. J. (2003). Cyclic tests on seismically damaged R/C walls strengthened using fiber reinforced polymer reinforcement. ACI Structural Journal, 100(4), 510–518.

    Google Scholar 

  • Antoniades, K. K., Salonikios, T. N., & Kappos, A. J. (2005). Tests on seismically damaged reinforced concrete walls repaired and strengthened using fiber-reinforced polymers. Journal of Composites for Construction, 9(3), 236–246.

    Article  Google Scholar 

  • Bank, L. C. (2004). Mechanically-fastened FRP (MF-FRP): a viable alternative for strengthening RC members. In Seracino (Ed.), Proceedings of the International Conference FRP Composites in Civil engineering, CICE 2004, Adelaide, Australia, 8–10 December 2004, pp. 3–15. Taylor & Francis Group, London. ISBN 90 5809 638 6.

    Google Scholar 

  • Blaschko. M. (2001). Anchorage device for FRP strips. In T. Telford (Ed.), Proceedings of the Fifth Conference on Non-Metallic Reinforcement for Concrete Structures, Proceedings of FRPRCS5 International symposium, Cambridge, UK, Vol. 2, pp. 1255–1264.

    Google Scholar 

  • Bonaldo, E., Barros, J. A. O., & Lourenço, P. J. B. (2008). Efficient strengthening technique to increase the flexural resistance of existing RC slabs. Journal of Composites for Construction, 12(2), 149–159.

    Article  Google Scholar 

  • Ceroni, F. (2010). Experimental performances of RC beams strengthened with FRP materials. Construction and Building Material, 24, 1547–1559.

    Article  Google Scholar 

  • Ceroni, F., Pecce, M., Matthys, S., & Taerwe, L. (2008). Bond tests on concrete elements with CFRP and anchorage systems. Composites: Part B, 39, 429–441.

    Article  Google Scholar 

  • Ceroni, F., & Pecce, M. (2010). Evaluation of bond strength and anchorage systems in concrete elements strengthened with CFRP sheets. Journal of Composites in Construction, ASCE, 14(5), 521–530.

    Article  Google Scholar 

  • Eshwar, N., Nanni, A., & Ibell, T. J. (2008). Performance of two anchor systems of externally bonded fiber-reinforced polymer laminates. ACI Materials Journal.

    Google Scholar 

  • Jinno, Y., Tsukagoshi, H., & Yabe, Y. (2001). RC beams with slabs strengthened by CF sheets and bundles of CF strands. In T. Telford (Ed.), Proceedings of FRPRCS-5 International symposium, July 2001, Cambridge, UK, pp. 981–987.

    Google Scholar 

  • Karantzikis, M., Papanicolaou, C. G., Antonopoulos, C. P., & Triantafillou, T. C. (2005). Experimental investigation of nonconventional confinement for concrete using FRP. ASCE Journal of Composite for Construction.

    Google Scholar 

  • Khalifa, A., Belarbi, A., & Nanni, A. (2000). Shear performance of RC members strengthened with externally bonded FRP wraps. Proceedings of 12WCEE Conference.

    Google Scholar 

  • Khalifa, A., Alkhrdaji, A., Nanni, A., & Lansburg, S. (1999). Anchorage of surface mounted FRP reinforcement. Concrete International: Design and Construction, 21(10), 49–54.

    Google Scholar 

  • Kim, Y. J., Wight, R. G., & Green, M. F. (2008). Flexural strengthening of RC beams with prestressed CFRP sheets: using nonmetallic anchor systems. ASCE Journal of Composites for Construction, 12(1), 44–52.

    Article  Google Scholar 

  • Kobayshi, K., Fujii, S., Yabe, Y., Tukagoshi, H., & Sugiyama, T. (2001). Advanced wrapping system with CF-anchor: stress transfer mechanism of CF-anchor. In T. Telford (Ed.), Proceedings of FRPRCS5 International symposium, July 2001, Cambridge, UK.

    Google Scholar 

  • Mukhopadhyaya, P., Swamy, N., & Lynsdale, C. (1998). Optimizing structural response of beams strengthened with GFRP plates. Journal of composites for construction.

    Google Scholar 

  • Nagy-Gyorgy, T., Mosoarca, M., Stoian, V., Gergely, J., & Dan, D. (2005). Retrofit of reinforced concrete shear walls with CFRP composites. Proceedings of fib Symposium “Keep concrete Attractive, Budapest, Hungary, 23–25 May 2005, pp. 897–902.

    Google Scholar 

  • Niemitz, C. W., James, R., & Breña, S. F. (2010). Experimental behavior of carbon fiber-reinforced polymer CFRP sheets attached to concrete surfaces using CFRP anchors. Journal of Composites for Construction, 14(2), 185–194.

    Article  Google Scholar 

  • Orton, S. L., Jirsa, J. O., & Bayrak, O. (2008). Design considerations of carbon fiber anchors. ASCE Journal of Composites for Construction, 12(6), 608–616.

    Article  Google Scholar 

  • Özdemir, G. (2005). Mechanical Properties of CFRP Anchorages, Master of Science Thesis, Middle East Technical University, Istanbul Turkey.

    Google Scholar 

  • Prota, A., Nanni, A., Manfredi, G., & Cosenza, E. (2004). Selective upgrade of undersigned reinforced concrete beam-column joints using carbon fiber reinforced polymers. ACI Structural Journal, 101(5), 699–707.

    Google Scholar 

  • Prota, A., Tan, K., Nanni, A., Pecce, M., & Manfredi, G. (2006). Performance of RC shallow beams externally bonded with steel reinforced polymer. ACI Structural Journal.

    Google Scholar 

  • Prota, A., Manfredi, G., Balsamo, A., Nanni, A., & Cosenza, E. (2005). Innovative technique for seismic upgrade of RC square columns. Proceedings of FRPRCS7.

    Google Scholar 

  • Smith, S., Zhang, H., & Wang, Z. (2013). Influence of FRP anchors on the strength and ductility of FRP-strengthened RC slabs. Construction and Building Materials, 49, 998–1012.

    Article  Google Scholar 

  • Tan, K. H. (2001). Details of FRP reinforcement: an overview. In J. G. Teng (Ed.), Proceedings of FRP Composite in Civil Engineering, 12–15 December 2001, Hong Kong, China, Vol. 2, pp. 1247–1254.

    Google Scholar 

  • Tan, K. H., Patoary, M. K. H., & Roger, C. S. K. (2003). Anchorage system for masonry walls strengthened with FRP composite laminates. Journal of Reinforced Plastics and Composites, 22(15), 1353–1371.

    Google Scholar 

  • Tan, K. H. (2002). Strength enhancement of rectangular reinforced concrete columns using fiber-reinforced polymer. ASCE Journal Composite for Construction, 6(3), 175–183.

    Article  Google Scholar 

  • Tan, K. H. (2003). Effect of cyclic loading on FRP-concrete interfacial bond strength. In Proceedings of International Symposium on Latest Achievement of Technology and Research on Retrofitting Concrete structures, JCI, Kyoto, July 2003, pp. 1–8.

    Google Scholar 

  • Zhang, H., & Smith, S. (2012a). Influence of FRP anchor fan configuration and dowel angle on anchoring FRP plates. Composites Part B Engineering, 43(8), 3516–3527.

    Article  Google Scholar 

  • Zhang, H., & Smith, S. (2012b). FRP-to-concrete joint assemblages anchored with multiple FRP anchors. Composite Structures, 94(2), 403–414.

    Google Scholar 

  • Zehetmaier, Z. (2000). Entwicklung mechanischer endverankerungen für aufgeklebte CFK-lamellen. (Development of mechanical anchorages for externally bonded CFRP-strips). In K. Zilch (Ed.), Massivbau 2000, Forschung, Entwicklungen und Anwendungen, Münchner Massivbau- Seminar 2000, pp. 217–232. Springer VDI Verlag, Düsseldorf.

    Google Scholar 

Mechanically Fastened Systems

  • Arora, D. (2003). Rapid Strengthening of Reinforced Concrete Bridge with Mechanically Fastened Fiber-Reinforced Polymer Strips. M.Sc. Thesis, University of Wisconsin, Madison, 353 pp.

    Google Scholar 

  • Bank, L. C., Lamanna, A. J., Ray, J. C. & Velazquez, G. I. (2002). Rapid Strengthening of Reinforced Concrete Beams with Mechanically Fastened, Fiber Reinforced Polymeric Composites Materials. Report ERDC/GSL TR-02-4, US Army Corps of Engineers, 99 pp.

    Google Scholar 

  • Bank, L. C. (2004). Mechanically-Fastened FRP (MF-FRP): A Viable Alternative for Strengthening RC Members. Proceedings of the FRP Composites in Civil Engineering (CICE 2004), Adelaide, Australia. December 8–10.

    Google Scholar 

  • Bank, L. C., Arora, D. (2007). Analysis of RC beam strengthened with mechanically fastened FRP (MF-FRP) strips. Composite Structures, 79, 180–191.

    Google Scholar 

  • Brown, V. L., Bank, L. C., Arora, D., Borowicz, D. T., Godat, A., Lamanna, A. J., Lee, J., Matta, F., Napoli, A. & Tan, K. H. Experimental Studies of Mechanically-Fastened FRP Systems: State-of-the-Art. ACI Special Publication-Proceedings of the FRPRCS-10. Tampa Bay, FL, USA, April 2011.

    Google Scholar 

  • Dempsey, D. D., & Scott, D. W. (2006). Wood members strengthened with mechanically fastened FRP strips. Journal of Composites for Construction, 10(5), 392–398.

    Article  Google Scholar 

  • Ebead, U. (2011). Hybrid externally bonded/mechanically fastened fiber-reinforced polymer for RC beam strengthening. ACI Structural Journal, 108(6), 669–678.

    Google Scholar 

  • Ekenel, M., Rizzo, A., Myers, J. J. & Nanni, A. (2005). Effect of fatigue loading on flexural performance of reinforced concrete beams strengthened with FRP fabric and pre-cured laminate systems. Proceedings of 3rd International Conference of Composites in Construction, Lyon, France.

    Google Scholar 

  • Ekenel, M., Rizzo, A., Myers, J. J., & Nanni, A. (2006). Flexural fatigue behavior of reinforced concrete beams strengthened with FRP fabric and precured laminate systems. Journal of Composites for Construction, 10(5), 433–442.

    Article  Google Scholar 

  • Elsayed, W. E., Ebead, U. A., & Neale, K. W. (2009a). Studies of mechanically fastened fiber-reinforced polymer strengthening systems. ACI Structural Journal, 106, 49–59.

    Google Scholar 

  • Elsayed, W. E., Ebead, U. A., & Neale, K. W. (2009b). Mechanically fastened FRP-strengthened two-way concrete slabs with and without cutouts. Journal of Composites for Construction, 13(1), 198–207.

    Article  Google Scholar 

  • El-Maaddawy, T. (2013). Mechanically fastened composites for retrofitting corrosion-damaged reinforced-concrete beams: experimental investigation. Journal of Composites for Construction, 1–9. ISSN 1090-0268/04013041(9).

    Google Scholar 

  • Faella, C., Martinelli, E., & Nigro, E. (2008). Analysis of steel-concrete composite PR-frames in partial shear interaction: a numerical model and some applications. Engineering Structures, 30(4), 1178–1186.

    Article  Google Scholar 

  • Galati, D., Rizzo, A. & Micelli, F. (2007). Comparison of reinforced concrete beams strengthened with FRP pre-cured laminate systems and tested under flexural loading. Proceedings of the 8th International Symposium on Fiber-Reinforced Polymer Reinforcement for Concrete Structures, FRPRCS-8, Patras, Greece.

    Google Scholar 

  • Johnson, D. (2011). An Investigation for Strengthening Existing Reinforced Concrete Beams in Shear Using a MF-FRP Retrofit System. Master Thesis 2011, University of Wisconsin-Madison, USA. pp. 1–202.

    Google Scholar 

  • Lamanna, A. J., Bank, L. C., & Scott, D. W. (2001). Flexural strengthening of reinforced concrete beams using fasteners and fiber reinforced polymer strips. ACI Structural Journal, 98(3), 368–376.

    Google Scholar 

  • Lamanna, A. J. (2002). Flexural Strengthening of Reinforced Concrete Beams with Mechanically Fastened Fiber Reinforced Polymer Strips. Ph.D. Dissertation, University of Wisconsin-Madison.

    Google Scholar 

  • Lamanna, A. J., Bank, L. C., & Scott, D. W. (2004a). Flexural strengthening of reinforced concrete beams by mechanically attaching fiber-reinforced polymer strips. Journal of Composites for Construction, 8(3), 203–210.

    Article  Google Scholar 

  • Lamanna, A. J., Bank, L. C., & Borowicz, D. T. (2004b). Mechanically fastened FRP strengthening of large scale RC bridge T beams. Advances in Structural Engineering, 7(6), 525–538.

    Article  Google Scholar 

  • Lee, H. L., Lopez, M. M., Bakis, C. E. Flexural behavior of reinforced concrete beams strengthened with mechanically fastened FRP strip. Proceedings of FRPRCS-8. Patras, Greece, pp. 1–9.

    Google Scholar 

  • Lee, J. H., Lopez, M. M., & Bakis, C. E. (2009). Slip effects in reinforced concrete members with mechanically fastened FRP strip. Cement and Concrete Composites, 31, 496–504.

    Article  Google Scholar 

  • Martin, J. A., & Lamanna, A. J. (2008). Performance of mechanically fastened FRP strengthened concrete beams in flexure. Journal of Composites for Construction, 12(3), 257–265.

    Article  Google Scholar 

  • Martinelli, E., Napoli, A., Nunziata, B. & Realfonzo, R. (2013). Flexural Response of RC Beams Strengthened by MF-FRP Laminates: Numerical Modeling. Proceedings of SMAR 2013, Istanbul, September 9–11.

    Google Scholar 

  • Martinelli, E., Napoli, A., Nunziata, B., & Realfonzo, R. (2014). A 1D finite element model for the flexural behaviour of RC beams strengthened with MF-FRP strips. Composite Structures, 107, 190–204.

    Article  Google Scholar 

  • Napoli, A., Matta, F., Martinelli, E., Nanni, A., & Realfonzo, R. (2010). Modeling and verification of response of RC slabs strengthened in flexure with mechanically fastened FRP laminates. Magazine of Concrete Research, 62(8), 593–605.

    Article  Google Scholar 

  • Napoli, A., Bank, L. C., Brown, V. L., Martinelli, E., Matta, F., & Realfonzo, R. (2013). Analysis and design of RC structures strengthened with mechanically fastened FRP laminates: a review. Composites Part B: Eng, 55, 386–399.

    Article  Google Scholar 

  • Nardone, F., Lignola, G. P., Prota, A., Manfredi, G. & Nanni, A. (2012) Ultimate limit state of MF-FRP beams. In Biondini & Frangopol (Eds.), Proceedings “6th International Conference on Bridge Maintenance, Safety and Management (IABMAS 2012). Stresa, Lake Maggiore, Italy, July 8–12, pp. 1235–1242. London: Taylor & Francis Group. ISBN 978-0-415-62124-3.

    Google Scholar 

  • Nardone, F., Lignola, G. P., Prota, A., Manfredi, G., & Nanni, A. (2011). Modeling of flexural behavior of RC beams strengthened with mechanically fastened FRP strips. Elsevier Composite Structures, 93(8), 1973–1985.

    Article  Google Scholar 

  • Newmark, N. M., Siess, C. P. & Viest, I. M. (1951). Tests and Analysis of Composite Beams with Incomplete Interaction. Proceedings of the Society of Experimental Stress Analysis (Vol. 9, no. 1, pp. 75–92).

    Google Scholar 

  • Oliva, M., Bank. L. C., Borowicz, D. T., Arora, D. (2003). Rapid strengthening of reinforced concrete bridges. Technical Report 2003, University of Wisconsin Madison, Wisconsin Highway Research Program, USA. pp. 1–167.

    Google Scholar 

  • Quattlebaum, J. B., Harries, K. A., & Petrou, M. F. (2005). Comparison of three flexural retrofit systems under monotonic and fatigue loads. Journal of Bridge Engineering, 10(6), 731–740.

    Article  Google Scholar 

  • Realfonzo, R., Martinelli, E., Napoli, A., & Nunziata, B. (2013). Experimental investigation of the mechanical connection between FRP laminates and concrete. Composites Part B Engineering, 45(1), 341–355.

    Article  Google Scholar 

  • Rizzo, A. (2005). Application of Mechanically Fastened FRP (MF-FRP) Pre-cured Laminates in Off- System Bridges. MSc thesis, University of Missouri-Rolla, USA. pp. 1–285.

    Google Scholar 

  • Rizzo, A., Galati, N., Nanni, A. & Dharani, L. R. (2005a). Material Characterization of FRP Pre-Cured Laminates Used in the Mechanically Fastened FRP Strengthening of RC Structures. SP-230. 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures, American Concrete Institute (Vol. 230, pp. 135-152).

    Google Scholar 

  • Rizzo, A., Galati, N., Nanni, A. & Bank, L. C. (2005b). Strengthening Concrete Structures with Mechanically Fastened Pultruded Strips. Proceedings of Composites. Columbus, Ohio, USA, September 28–30.

    Google Scholar 

  • Rosner, C. N., & Rizkalla, S. H. (1995). Bolted connections for fiber reinforced composite structural members: experimental program. Journal of Materials in Civil Engineering, 7(4), 223–231.

    Article  Google Scholar 

  • Schorer, A. E., Bank, L. C., Oliva, M. G., Wacker, J. P. & Rammer, D. C. (2008). Feasibility of Rehabilitating Timber Bridges Using Mechanically Fastened FRP Strips. Proceedings of the ASCE SEI Structures 2008 Conference: Crossing Borders, Vancouver, Canada, April 24–26, 2008.

    Google Scholar 

  • Sena-Cruz, J. M., Barros, J. A. O., Coelho, M. R. F. & Silva, L. F. F. T. (2011). Efficiency of different techniques in flexural strengthening of RC beams under monotonic and fatigue loading. Construction and Building Materials, 29, 175–182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francesca Ceroni or Marisa Pecce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 RILEM

About this chapter

Cite this chapter

Ceroni, F. et al. (2016). Special Problems. In: Pellegrino, C., Sena-Cruz, J. (eds) Design Procedures for the Use of Composites in Strengthening of Reinforced Concrete Structures. RILEM State-of-the-Art Reports, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7336-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7336-2_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7335-5

  • Online ISBN: 978-94-017-7336-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics