Skip to main content

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 19))

Abstract

This chapter provides an overview of the debonding process between the FRP reinforcement and the concrete substrate. The main aspects of the debonding phenomenon are described and discussed, showing also mechanical interpretation of different processes. Experimental techniques to study the bond behavior between FRP and concrete are also described and corresponding available experimental results are shown to compare performances of different set-ups. Finally, an extensive description of the existing bond capacity predicting models is reported, together with the main international Codes provisions, allowing the designer for operating in common practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achintha, P. M. M., & Burgoyne, C. J. (2008). Fracture mechanics of plate debonding. Journal of Composites for Construction, 12(4), 396–404.

    Article  Google Scholar 

  • Achintha, P. M. M., & Burgoyne, C. J. (2011). Fracture mechanics of plate debonding: validation against experiment. Construction and Building Materials, 25(6), 2961–2971.

    Article  Google Scholar 

  • ACI (2002). Design and construction of externally bonded FRP systems for strengthening concrete structures. ACI 440.2R-02, American Concrete Institute, Farmington Hills, Mich.

    Google Scholar 

  • ACI 440.2R-08 (2008). Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. ACI440.2R-08 American Concrete Institute, Farmington Hills, MI, 2008, 76 pp.

    Google Scholar 

  • ACI Committee 440F (2002). Guide for design and construction of externally bonded FRP systems for strengthening concrete structures.

    Google Scholar 

  • Adhikary, B. B., & Mutsuyoshi, H. (2001). Study on the bond between concrete and externally bonded CFRP sheet. In Proceedings of the 6th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures (FRPRCS-5) (vol. 1, pp. 371–378).

    Google Scholar 

  • Ahmed, O., van Gemert, D., & Vanderwalle, L. (2001). Improved model for plate end shear of CFRP strengthened RC beams. Cement & Concrete Composites, 23(1), 3–19.

    Article  Google Scholar 

  • Aiello, M.A., & Leone, M. (2005). Experimental bond analysis of concrete—FRP (fiber reinforced polymer) reinforced. In Proceedings of fib Symposium “Keep Concrete Attractive”. Budapest, Hungary, May.

    Google Scholar 

  • Alam, M. S., Kanakubo, T., & Yasojima, A. (2012). Shear-peeling bond strength between continuous fiber sheet and concrete. ACI Structural Journal, 109(1), 75–82.

    Google Scholar 

  • Ali-Ahmad, M., Subramaniam, K. V., & Ghosn, M. (2006). Experimental investigation and fracture analysis of bebonding between concrete and FRP. Journal of Engineering Mechanics, 132(9), 914–923.

    Article  Google Scholar 

  • Ali-Ahmad, M., Subramaniam, K. V., & Ghosn, M. (2007). Analysis of scaling and instability in FRP-concrete shear debonding for beam-strengthening applications. Journal of Engineering Mechanics, 133(1), 58–67.

    Article  Google Scholar 

  • Anderson, T. L. (2004). Fracture mechanics: fundamentals and applications. Boca Raton: Florida, CRC Press.

    Google Scholar 

  • Bazant, Z. P., & Planas, J. (1997). Fracture and size effect in concrete and other quasibrittle materials. Boca Raton: Florida, CRC Press.

    Google Scholar 

  • Bilotta, A. (2010). Behaviour of FRP-to-concrete interface: theoretical models and experimental results, Doctoral thesis, Naples. Italy: University of Naples “Federico II”.

    Google Scholar 

  • Bilotta, A., Ceroni, F., Nigro, E., & Pecce M. (2011b). Design by testing of debonding load in RC element strengthened with EBR FRP materials. 10th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures,Tampa, Florida, USA. April 2-4, 2011.

    Google Scholar 

  • Bilotta, A., Ceroni, F., Nigro, E., Di Ludovico, M., Pecce, M., & Manfredi, G. (2011a). Bond efficiency of EBR and NSM FRP systems for strengthening of concrete members. Journal of Composites for Construction, ASCE. 15(5), 757–772. October 1, 2011, ISSN 1090-0268/2011/5.

    Google Scholar 

  • Bilotta, A., Faella, C., Martinelli, E., & Nigro, E. (2011c). Indirect identification method for bilinear bond-law relationship, J. of Composites for Construction, ASCE, doi:10.1061/(ASCE)CC.1943-5614.0000253).

    Google Scholar 

  • Bilotta, A., Faella, C., Martinelli, E., & Nigro, E. (2012). Indirect identification method of bilinear interface laws for FRP bonded on a concrete substrate. Journal of Composites for Construction, 16, 171–184, ISSN: 1090-0268, doi:10.1061/(ASCE)CC.1943-5614.0000253.

    Google Scholar 

  • Bizindavyi, L., & Neale, K. W. (1999). Transfer lengths and bond strengths for composites bonded to concrete Journal of Composites for Construction ASCE n. 153–160.

    Google Scholar 

  • Bizindavyi, L., Neale, K. W., & Erki, M. A. (2003). Experimental Investigation of Bonded Fiber Reinforced Polymer-Concrete Joints under Cyclic Loading. Journal of Composites for Construction ASCE, 7(2), 127–134.

    Article  Google Scholar 

  • Blontrock, H., Taerwe, L., & Vanwalleghem, H. (2002). Bond testing of externally glued FRP laminates at elevated temperature. In Proceedings of the International Symposium Bond in Concrete: from research to standards, Budapest (pp. 648–654). ISBN 963-420-714-6.

    Google Scholar 

  • Boschetto, G., Pellegrino, C., Tinazzi, D., & Modena, C. (2006). Bond behaviour between FRP sheets and concrete: an experimental study. In Proceedings of the 2nd International Fib Congress. June, Naples, Italy, CDROM.

    Google Scholar 

  • Brosens, K. (2001). Anchorage of externally bonded steel plates and CFRP laminates for the strengthening of concrete elements. PhD thesis, K.U. Leuven, 2001, 225 pp.

    Google Scholar 

  • Brosens, K., & van Gemert, D. (1997). Anchoring stresses between concrete and carbon fibre reinforced laminates. In Proceedings. of the 3 rd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Japan Concrete Institute, Sapporo, 1, 271–278.

    Google Scholar 

  • Buyukozturk, O., Gunes, O., & Karaca, E. (2004). Progress on under-standing debonding problems in reinforced concrete and steel members strengthened using FRP composites—Short survey. Con-struction and Building Materials, 18(1), 9–19.

    Article  Google Scholar 

  • Camli, U. S., & Binici, B. (2007). Strength of carbon fiber reinforTced polymers bonded to concrete and masonry. Construction and Building Materials, 21, 1431–1446.

    Article  Google Scholar 

  • Carloni, C., & Subramaniam, K. V. (2010). Direct determination of cohesive stress transfer during debonding of FRP from concrete. Composite Structures, 93(1), 184–192.

    Article  Google Scholar 

  • Carloni, C., & Subramaniam, K. V. (2012). Application of fracture mechanics to debonding of FRP from RC members. ACI SP 286-10.

    Google Scholar 

  • Carloni, C., & Subramaniam, K. (2013). Investigation of sub-critical fatigue crack growth in FRP/concrete cohesive interface using digital image analysis. Compos—Part B: Eng, 51, 35–43.

    Article  Google Scholar 

  • Carloni, C., Subramaniam, K. V., Savoia, M., & Mazzotti, C. (2012). Experimental determination of FRP-concrete cohesive interface properties under fatigue loading. Composite Structures, 94, 1288–1296.

    Article  Google Scholar 

  • Carrara, P., Ferreti, D., Freddi, F., & Rosati, G. (2011). Shear tests of carbon fiber plates bonded to concrete with control of snap-back. Engineering Fracture Mechanics, 79, 2663–2678.

    Article  Google Scholar 

  • Carrara, P., & Ferretti, D. (2013). A finite-difference model with mixed interface laws for shear tests of FRP plates bonded to concrete. Composites: Part B, 54, 329–342.

    Article  Google Scholar 

  • Ceroni, F., Garofano, A., & Pecce, M. (2014). Modelling of bond behavior in masonry elements externally bonded with FRP materials, in press on Composite part B, Elsevier.

    Google Scholar 

  • Ceroni, F., & Pecce, M. (2002). Bond behaviour of R.C. elements externally reinforced with FRP laminates. In Proceedings of the International Symposium Bond in Concrete—from research to standards. Budapest (pp. 622-629) ISBN 963-420-714-6.

    Google Scholar 

  • Ceroni, F., & Pecce, M. (2005). Strength and ductility of RC beams strengthened with FRP sheets under monotonic and cyclic loads. Proceedings. of fib Symposium “Keep concrete Attractive”, Budapest, Hungary (418–423).

    Google Scholar 

  • Ceroni, F., & Pecce, M. (2006). Bond tests on concrete and masonry blocks externally bonded with CFRP. In Proceedings of Third International Conference on FRP Composites in Civil Engineering, CICE 2006, Miami, Florida, USA, pp. 17–20.

    Google Scholar 

  • Ceroni, F., & Pecce, M. (2007). Bond performance in concrete elements strengthened with CFRP sheets. In Proceedings of FRP RCS8, July, Patrasso, Greece, CD ROM.

    Google Scholar 

  • Ceroni, F., & Pecce, M. (2010). Evaluation of bond Strength in concrete element externally reinforced with CFRP sheets and anchoring devices. Journal of Composites for Construction, ASCE, 14(5), 521–530.

    Article  Google Scholar 

  • Ceroni, F., Pecce, M., Matthys, S., & Taerwe, L. (2008). “Bond tests on concrete elements with CFRP and anchorage systems”, Composites: Part B. Elsevier, 39, 429–441.

    Google Scholar 

  • Chajes, M. J., Finch, W. W., Januszka, T. F., & Thomson, T. A. (1996). Bond and force transfer of composite material plates bonded to concrete. ACI Structural Journal, 93(2), 208–217.

    Google Scholar 

  • Chen, J. F., & Teng, J. G. (2001). Anchorage strength models for FRP and Steel Plates bonded to concrete. ASCE J. of Structural Engineering, 127(7), 784–791.

    Article  Google Scholar 

  • Chen, J. F., & Teng, J. G. (2003) Shear capacity of FRP-strengthened RC beams: FRP debonding. Construction and Building Materials, 17, 27–41.

    Google Scholar 

  • Chen, J. F., Yang, Z. J., & Holt, G. D. (2001). FRP or steel plate-to-concrete bonded joints: effect of test methods on experimental bond strength. Steel Compos Structures, 1(2), 231–244.

    Article  Google Scholar 

  • CNR-DT 200. (2004). Instructions for design, execution and control of strengthening interventions through fiber-reinforced composites, Council of National Research, Rome.

    Google Scholar 

  • CNR. (2013). Guide for the design and construction of externally bonded FRP systems for strengthening existing structures, CNR-DT 200 R1/2013, National Research Council.

    Google Scholar 

  • Coronado, C. A., & Lopez, M. M. (2005). Modelling of FRP-concrete bond using nonlinear damage mechanics. In C. K. Shield & J. P. Busel(Eds.), Proceedings of 7th International Symposium on FRP Reinforcement for Concrete Structures, Kansas City, Missouri.

    Google Scholar 

  • Cruz, J. M. S., & Barros, J. A. O. (2002). Bond behaviour of carbon laminate strips into concrete by pullout bending test. In Proceedings of the International Symposium “Bond in Concrete—from research to standards”, Budapest (pp. 614–621). ISBN 963-420-714-6.

    Google Scholar 

  • DAfStb. (2012). On the strengthening of concrete parts with adhesively bonded reinforcement, German Committee for Reinforced Concrete.

    Google Scholar 

  • Dai, J. G., Sato, Y., Ueda, T., & Sato, Y. (2005b). Static and Fatigue Bond Characteristics of Interfaces between CFRP Sheets and Frost Damage Experienced Concrete. In Proceedings of FRPRCS-7, (pp. 1515–1530) ACI-SP-230-86.

    Google Scholar 

  • Dai, J., Ueda, T., Hiroki, O., & Sato, Y. (2003). Experimental study on the mix-mode fracture of FRP sheet-concrete interface. JCI International Symposium on Latest Achievement in Technology and Research on Retrofitting Concrete Structures, Interface Mechanics and Structural Performance, Kyoto, Japan (pp. 121–128).

    Google Scholar 

  • Dai, J., Ueda, T., & Sato, Y. (2005a). Development of the nonlinear bond stress–slip model of fiber reinforced plastics sheet-concrete interfaces with a simple method. Journal of Composites for Construction, ASCE 9(1), 52–62.

    Google Scholar 

  • Dai, J. G., Ueda, T., & Sato, Y. (2006). Unified analytical approaches for determining shear bond characteristics of FRP-concrete interfaces through pullout tests. Journal of Advanced Concrete Technology, 4, 133–145.

    Article  Google Scholar 

  • Davalos, J. F., Kodkani, S. S., & Ray, I. (2006). Fracture mechanics method for Mode-I interface evaluation of FRP bonded to concrete substrates. Journal of Materials in Civil Engineering, 18(5), 732–742.

    Article  Google Scholar 

  • De Lorenzis, L., Miller, B., & Nanni, A. (2001). Bond of Fiber-Reinforced Polymer Laminates to Concrete. ACI Materials Journal. 98-M29, 256–264.

    Google Scholar 

  • Delaney, J., & Karbhari, V. (2007). Defect criticality in FRP strengthening. In Proceedings of the 8th International Symposium in Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures (FRPRCS-8) CD-ROM, University of Patras, Greece (pp. 3–20).

    Google Scholar 

  • Diab, H., Wu, Z., & Iwashita, K. (2007). Experimental and numerical investigation of fatigue behavior of frp-concrete interface. In Proceeding of FRPRCS-8, Patras, Greece (pp. 16–18).

    Google Scholar 

  • Dimande, A. O., Juvenades, L. F. P., & Figueiras, J. A. (2005). Bond characterization between concrete and fiber-reinforced polymer. In Proceedings of 3rd International Conference on Composites in Construction, CCC2005, Lyon, France.

    Google Scholar 

  • Elices, M., Guinea, G. V., Gómez, J., & Planas, J. (2002). The cohesive zone model: advantages, limitations and challenges. Engineering Fracture Mechanics, 64, 137–163.

    Article  Google Scholar 

  • Faella, C., Martinelli, E., & Nigro, E. (2002). Aderenza tra calcestruzzo e fogli di FRP utilizzati come placcaggio di elementi inflessi. Parte II: modelli teorici ed elaborazioni numeriche. Atti del XIV Congresso C.T.E., Bologna.

    Google Scholar 

  • Faella, C., Martinelli, E., & Nigro, E. (2003). Interface behaviour in FRP plates bonded to concrete: experimental tests and theoretical analyses. In Proceedings of the International Conference on Advanced Materials for Construction of Bridges, Buildings and other Structures—III, Davos (Svizzera), 7–12 September 2003.

    Google Scholar 

  • Faella, C., Martinelli, E., & Nigro, E (2006a). Formulation and Validation of a Theoretical Model for Intermediate Debonding in FRP Strengthened RC Beams. In Proceedings of the 2nd International fib Congress, Naples, Italy, 5–8 June 2006, Paper 0735.

    Google Scholar 

  • Faella, C., Martinelli, E., & Nigro, E (2006b). Intermediate Debonding in FRP Strengthened RC Beams: A Parametric Analysis, In Proceedings of the 2nd International fib Congress, Naples, Italy, 5–8 June 2006, Paper 0993.

    Google Scholar 

  • Faella, C., Martinelli, E., & Nigro, E., (2007a). Direct versus Indirect identification of FRP-to-concrete interface relationships, Asia-Pacific Conference on FRP in Structures. Hong Kong (China), 12–14 December 2007.

    Google Scholar 

  • Faella, C., Martinelli, E., & Nigro, E. (2008a). Formulation and Validation of a Theoretical Model for Intermediate Debonding in FRP Strengthened RC Beams. Composites Part B, 39(4), 645–655. ISSN 1359-8368.

    Google Scholar 

  • Faella, C., Martinelli, E., & Nigro, E. (2009). Direct versus Indirect Method for Identifying FRP-to-Concrete Interface Relationships. ASCE Journal for Composites for Construction, 13(3), 226–233. ISSN 1090-0268.

    Google Scholar 

  • Fanning, P. J., & Kelly, O. (2001). Ultimate response of RC beams strengthened with CFRP plates. Journal of Composites for Construction, ASCE, 5(2), 122–127.

    Article  Google Scholar 

  • Ferracuti, B., Savoia, M., & Mazzotti, C. (2006). A numerical model for FRP-concrete delamination. Composites: Part B, 37, 356–364.

    Article  Google Scholar 

  • Ferracuti, B., Savoia, M., & Mazzotti, C. (2007). Interface law for FRP-concrete delamination. Composite Structures, 80(4), 523–531.

    Article  Google Scholar 

  • fib. (2001). Externally Bonded FRP Reinforcement for RC Structures. fib Bulletin 14, Technical Report, Task Group 9.3—FRP Reinforcement for Concrete Structures, International Federation for Structural Concrete, Lausanne (CH). ISBN 978-2-88394-054-3.

    Google Scholar 

  • Focacci, F., Nanni, A., & Bakis, C. E. (2000). Local bond-slip relationship for FRP reinforcement in concrete. Journal of Composites for Construction, 4(1), 24–31.

    Article  Google Scholar 

  • Garden, H. N., & Hollaway, L. C. (1998). An experimental study of the influence of plate end anchorage of carbon fibre composite plates used to strengthen reinforced concrete beams. Composite Structures, 42, 175–188.

    Article  Google Scholar 

  • Guadagnini, M., Serbescu, A., Palmieri, A., Matthys, S, Bilotta, A, Nigro, E, Ceroni, F, Czaderski, C, Olia, S, Szambo, Z, Balazs, G, & Mazzotti, C. (2012). Round robin test on the bond behaviour of externally bonded frp systems to concrete. In Proceedings of CICE 2012, 6th International Conference on FRP Composites in Civil Engineering, Rome, Italy, CD ROM (pp. 13–15).

    Google Scholar 

  • Gunes, O. (2004), A Fracture based approach to understanding debonding in FRP bonded structural members, PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Gunes, O., Buyukozturk, O., & Karaca, E. (2009). A Fracture-based model for FRP debonding in strengthened beams. Engineering Fracture Mechanics, 76, 1897–1909.

    Article  Google Scholar 

  • Guo, Z. G., Cao, S. Y., Sun, W. M., & Lin X. Y. (2005). Experimental study on bond stresses-slip behaviour between FRP sheets and concrete. In Chen & Teng (Eds.), Proceedings of the International Symposium on Bond Behaviour of FRP in Structures, BBFS 2005 (pp. 77–83).

    Google Scholar 

  • Hearing, B. F. (2000), Delamination of reinforced concrete retrofitted with fiber reinforced plastics, PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Hillerborg, A., Modéer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6, 773–782.

    Article  Google Scholar 

  • Hiroyuki, Y., & Wu, Z. (1997). Analysis of debonding fracture properties of CFS strengthened member subject to tension. In Proceedings of 3rd international symposium on non-metallic (FRP) reinforcement for concrete structures (vol. 1, pp. 284–94).

    Google Scholar 

  • Holzenkaempfer. (1994). Ingenieurmodelle des verbundes geklebter bewehrung fur betonbauteile, Dissertation, TU Braunschweig (in German).

    Google Scholar 

  • Horiguchi, T., & Saeki, N. (1997). Effect of test methods and quality of concrete on bond strength of CFRP sheet. In Proceedings of International Symposium on Non-metallic (FRP) reinforcement for concrete structures, Sapporo, Japan, Japan Concrete Institute, Vol.1, pp. 265–270.

    Google Scholar 

  • Hutchinson, J. W., & Suo, Z. (1992). Mixed-mode cracking in layered materials. Advances in Applied Mechanics, 29, 63–191.

    Article  MATH  Google Scholar 

  • International Concrete Repair Institute. (1997). Selecting and Specifying Concrete Surface Preparation for Sealers, Coatings and Polymer Overlays. Technical Guideline 1997 No. 03732.

    Google Scholar 

  • Iovinella, I., Prota, A., & Mazzotti, C. (2013). Influence of surface roughness on the bond of FRP laminates to concrete, Construction and Building Materials, 40, 533–542.

    Google Scholar 

  • Japan Concrete Institute (JCI). (2003). Technical report of technical committee on retrofit technology. In Proceedings International Symposium on Latest Achievement of Technology and Research on Retrofitting Concrete Structures.

    Google Scholar 

  • Khalifa, A., Gold, W. J., Nanni, A., & Aziz, A. (1998). Contribution of externally bonded FRP to shear capacity of RC flexural members. Journal of Composites for Construction, ASCE, 2(4), 195–203.

    Article  Google Scholar 

  • Ko, H., & Sato, Y. (2007). Bond stress-slip relationship between FRP sheet and concrete under cyclic load. Journal of Composites for Construction ASCE, 11(4), 419–426.

    Article  Google Scholar 

  • Kobayashi, A., Matsui, S., & Kishimoto, M. (2003). Fatigue Bond of Carbon Fiber Sheets and Concrete in RC Slabs Strengthened by CFRP. In K.H. Tan (Ed.), Proceedings of FRPRCS-6 (vol. 2, pp. 865–874).

    Google Scholar 

  • Leone, M., Aiello, M. A., & Matthys, S. (2006). The influence of service temperature on bond between FRP reinforcement and concrete. In Proceedings of the 2nd International Fib Congress, Naples, Italy.

    Google Scholar 

  • Liu, K., & Wu, Y. F. (2012). Analytical identification of bond-slip relationship of EB-FRP joints. Composite; Part B, 43, 1955–1963.

    Article  Google Scholar 

  • Lu, X. Z., Teng, J. G., Ye, L. P., & Jiang, J. J. (2005). Bond–slip models for FRP sheets/plates bonded to concrete. Engineering Strucures, 27, 920–937.

    Google Scholar 

  • Maeda, T., Asano, Y., Sato, Y., Ueda, T., & Kakuto, Y. (1997). A study on bond mechanism of carbon fiber sheet. In Proceedings of the 3rd International Symposium on Non-Metallic (FRP) Reinforcement of Concrete Structures, Vol. 1, October.

    Google Scholar 

  • Malek, A. M., Saadatmanesh, H., & Ehsani, M. R. (1998). Prediction of failure load of R/C beams strengthened with FRP plate due to stress concentration at the plate end. ACI Structural Journal 95(2), 142–152. ISSN 1090-0268.

    Google Scholar 

  • Martinelli, E., Czaderski, C., & Motavalli, M. (2011). Modeling in-plane and-of-plane displacement fields in pull-off tests FRP strips. Engineering Structures, 33, 3715–3725.

    Article  Google Scholar 

  • Matana, M., Nanni, A., Dharani, L., Silva, P., & Tunis, G. (2005). Bond performance of steel reinforced polymer and steel reinforced grout. In Proceedings of the International Symposium on Bond Behaviour of FRP in structures, Honk Kong (pp. 125–132).

    Google Scholar 

  • Mazzotti, C., Ceroni, F., & Pecce, M., (2013). Effect of test set-up of bond strength in concrete elements externally bonded with CFRP plates. In J. Barros & J. Sena-Cruz (Eds.), Proceedings of FRPRCS11, UM, Guimarães.

    Google Scholar 

  • Mazzotti, C., Savoia, M., & Ferracuti, B. (2005). A New Set-Up for FRP-Concrete Stable Delamination Test. In C. K. Shield & J. P. Busel (Ed.), Proceedings of 7th International Symposium FRP Reinforcement for Concrete Structures, Kansas City, Missouri (pp. 165–180).

    Google Scholar 

  • Mazzotti, C., Savoia, M., & Ferracuti, B. (2007). Mode II fracture energy and interface law for FRP—concrete bonding with different concrete surface preparations. In Proceedings of FRAMCOS 6. FRAMCOS 6—Fracture Mechanics of Concrete and Concrete Structures. Catania, Italy. (vol. 2, pp. 1249–1257).

    Google Scholar 

  • Mazzotti, C., Savoia, M., & Ferracuti, B. (2008). An experimental study on delamination of FRP plates bonded to concrete. Construction and Building Materials, 22, 1409–1421.

    Article  Google Scholar 

  • Mazzucco, G., Salomoni, V. A., & Majorana, C. E. (2012). Three-dimensional contact-damage coupled modeling of FRP reinforcements—simulation of the delamination and long term process. Computer and Structures, 110–111, 15–31.

    Article  Google Scholar 

  • McSweeney, B. M., & Lopez, M. M. (2005). FRP-Concrete Bond Behavior: A Parametric Study Through Pull-Off Testing. In C. K. Shield & J. P. Busel (Eds.), Proceedings of the 7th International Symposium FRP Reinforcement for Concrete Structures, Kansas City, Missouri (pp. 441–460).

    Google Scholar 

  • Miller, B., & Nanni, A. (1999). Bond Between CFRP Sheets and Concrete Congress. In Proceedings ASCE 5th Materials Cincinnati, Ohio (pp. 240–247).

    Google Scholar 

  • Nakaba, K., Kanakubo, T., Furuta, T., & Yoshizawa, H. (2001). Bond behaviour between fiber-reinforced polymer laminates and concrete. ACI Structural Journal, 98(3), 359–367.

    Google Scholar 

  • Neubauer, U., & Rostásy, F. S. (1997). Design aspects of concrete structures strengthened with externally bonded CFRP-plates. In Proceedings of 7th International Conference on Structural Faults and Repair Concrete + Composites (vol. 2, pp. 109–118).

    Google Scholar 

  • Nigro, E., Di Ludovico, M., & Bilotta, A. (2008). Concrete interface relationships under monotonic and cyclic actions. In Fourth International Conference on FRP Composites in Civil Engineering (CICE2008), Zurich, Switzerland (pp. 22–24).

    Google Scholar 

  • Nigro, E., Di Ludovico, M., & Bilotta, A. (2011). Experimental Investigation of FRP-Concrete Debonding under Cyclic Actions. Journal Of Materials In Civil Engineering, 23, 360–371. ISSN: 0899-1561, doi:10.1061/(ASCE)MT.1943-5533.0000173.

    Google Scholar 

  • Nguyen, D. M., Chan, T. K., & Cheong, H. K. (2001). Brittle failure and bond development length of CFRP–concrete beams. Journal of Composites for Construction, ASCE, 5(1), 12–17.

    Google Scholar 

  • Oehlers, D. J., & Moran, J. P. (1990). Premature failure of externally plated reinforced-concrete beams. Journal of Structural Engineering—ASCE 116(4), 978–995. ISSN 0733-9445.

    Google Scholar 

  • Oller, E., Cobo Del Arco, D., & Marì Bernat, A. R. (2009). Design proposal to avoid peeling failure in FRP-strengthened reinforced concrete beams. Journal of Composites for Construction, 13(5), 384–393.

    Google Scholar 

  • Pellegrino, C., & Modena, C. (2009). Influence of axial rigidity on FRP-concrete bond behavior: an analytical study. Advances in Structural Engineering, 12(5), 639–649.

    Article  Google Scholar 

  • Pellegrino, C., Tinazzi, D., & Modena, C. (2008). Experimental study on bond behavior between concrete and FRP reinforcement. Journal of Composites for Construction, ASCE 12(2), 180–189.

    Google Scholar 

  • Pham, H., & Al-Mahaidi, R. (2004). Prediction models for debonding failure loads of CFRP retrofitted RC beams. In Proceedings of the 2nd International Conference on FRP Composites in Civil Engineering, CICE 2004, Adelaide (Australia) (pp. 8–10), December 2004.

    Google Scholar 

  • Pham, H. B., & Al-Mahaidi, R. (2005). Modelling of CFRP—concrete shear-lap tests. In Proceedings of 3rd International Conference on Composites in Construction, CCC2005, Lyon, France.

    Google Scholar 

  • Rabinovitch, O. (2004). Fracture mechanics failure criteria for RC beams strengthened with FRP strips—a simplified approach. Composite Structures, 64, 479–492.

    Article  Google Scholar 

  • Rabinovitch, O. (2008). Debonding analysis of fiber-reinforced-polymer strengthened beams: cohesive zone modeling versus a linear elastic fracture mechanics approach. Engineering Fracture Mechanics, 75, 2842–2859.

    Article  Google Scholar 

  • Rabinovitch, O. (2012). Dynamic debonding on concrete beams strengthened with composite materials. International Journal of Solids and Structures, 49, 3641–3658.

    Article  Google Scholar 

  • Rahimi, H., & Hutchinson, A. (2001). Concrete beams strengthened with externally bonded FRP plates. Journal of Composites for Construction, ASCE, 5(1), 44–56.

    Article  Google Scholar 

  • Roberts, T. M. (1989). Approximate analysis of shear and normal stress concentrations in the adhesive layer of plated RC beams, The Structural Engineer, 67(12), 1989. ISSN, 229–233, 0039–2553.

    Google Scholar 

  • Said, & Wu. (2008). Evaluating and proposing models of predicting IC Debonding Failure. ASCE Journal of Composites for Construction 12(3), 284—299. June 1, 2008.

    Google Scholar 

  • Savoia, M., Bilotta, A., Ceroni, F., Di Ludovico, M., Fava, G., Ferracuti, B., Mazzotti, C., Nigro, E., Olivito, R., Pecce, M., & Poggi, C. (2009). Experimental round robin test on FRP concrete bonding. In Proceedings of FRP RCS9, Sydney, Australia (pp. 13–15).

    Google Scholar 

  • Savoia, M., Ferracuti, B., & Mazzotti, C. (2003). Non linear bond-slip law for FRP-concrete interface. In Proceedings of the conference FRPRCS-6, Singapore.

    Google Scholar 

  • Serbescu, A., Guadagnini, M., & Pilakoutas, K. (2013). Standardised double-shear test for determining bond of FRP to concrete and corresponding model development. Composites Part B Engineering, 55, 277–297.

    Article  Google Scholar 

  • Shen, X., Myers, J. J., Maerz, N., & Galecki, G. (2002). Effect of surface roughness on the bond performance between FRP laminates and concrete. In B. Benmokrane, & E. El-Salakawy (Eds.), Proceedings of the 2nd International Conference on Durability of Fiber Reinforced Polymer (FRP) Composites for Construction, University of Sherbrooke, Canada (pp. 607–616).

    Google Scholar 

  • Smith, S. T., & Teng, J. G. (2002). FRP-strengthened RC beams-II: assessment of debonding strength models. Engineering Structures, 24(4), 397–417.

    Article  Google Scholar 

  • Subramaniam, K. V., Carloni, C., & Nobile, L. (2007). Width effect in the interface fracture during shear debonding of FRP sheets from concrete. Engineering Fracture Mechanics, 74(4), 578–594.

    Article  Google Scholar 

  • Subramaniam, K. V., Carloni, C., & Nobile, L. (2011). An understanding of the width effect in FRP–concrete debonding. Strain, 47, 127–137.

    Article  Google Scholar 

  • Sutton, M. A., Orteu, J. J., & Shreier, H. W. (2009). Image correlation for shape, motion and deformation measurements. New York: Springer.

    Google Scholar 

  • Sutton, M. A., Wolters, W. J., Peters, W. H., Ranson, W. F., & McNeill, S. R. (1983). Determination of displacements using an improved digital correlation method. Image and Vision Computing, 1(3), 133–139.

    Article  Google Scholar 

  • Takeo, K., Matsushita, H., Makizumi, T., & Nagashima, G. (1997). Bond characteristics of CFRP sheets in the CFRP bonding technique. In Proceedings of Japan Concrete Institute (Vol. 19, No. 2, pp. 1599–1604).

    Google Scholar 

  • Taljsten, B. (1996). Strengthening of concrete prisms using the plate-bonding technique. International Journal of Fracture, 82, 253–266.

    Article  Google Scholar 

  • Taljsten, B. (1997a). Strengthening of beams by plate bonding. ASCE Journal of Materials in Civil Engineering 9(4), 206–211. ISSN 1943-5533.

    Google Scholar 

  • Taljsten, B. (1997b) Defining anchor lengths of steel and CFRP plates bonded to concrete. International Journal of Adhesion and Adhesives 7(4), 319–327.

    Google Scholar 

  • Teng, J. G., et al. (2001). FRP composites in civil engineering. Hong Kong: Elsevier.

    Google Scholar 

  • Teng, J. G., Chen, J. F., Smith, S. T., & Lam, L. (2002). FRP Strengthened RC Structures, John Wiley & Sons Ltd., Chichester (UK), 245 pp. ISBN 0-471-48706-6.

    Google Scholar 

  • Teng, J. G., Lu, X. Z., Ye, L. P., & Jiang, J. J. (2004). Recent Research on Intermediate Crack Induced Debonding in FRP Strengthened Beams. In Proceedings of the 4th International Conference on Advanced Composite Materials for Bridges and Structures, Calgary, AB, Canada.

    Google Scholar 

  • Teng, J. G., Smith, S. T., Yao, J., & Chen, J. F. (2003). Intermediate crack-induced debonding in RC beams and slabs. Construction and Building Materials 17(6–7), 447–462. ISSN 0950-0618.

    Google Scholar 

  • Teng, J. G., & Yao, J. (2007). Plate end debonding in FRP-plated RC beams-II: Strength model. Engineering Structures, 29, 2472–2486.

    Article  Google Scholar 

  • Tounsi, A., Hassaine, Daouadji T., Benyoucef, S., & Addabedia, E. A. (2009). Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations, International Journal of Adhesion & Adhesives—Elsevier, 29(4), 2009. ISSN, 343–351, 0143–7496.

    Google Scholar 

  • Toutanji, H., Saxena, P., Zhao, L., & Ooi, T. (2007). Prediction of interfacial bond failure of FRP—Concrete surface. Journal of Composites for Construction, ASCE, 11(4), 427–436.

    Article  Google Scholar 

  • Travassos, N., Ripper, T., & Appleton, J. (2005). Bond stresses characterization on CFRP-RC interfaces. In Proceedings of 3rd International Conference Composites in Construction, CCC2005, Lyon, France, July.

    Google Scholar 

  • Ueda, T., & Dai, J. (2005). Interface Bond between FRP Sheets and Concrete Substrates: properties, numerical modeling and roles in member behavior. Progress in Structural Engineering and Materials, John Wiley & Sons Ltd, 7(1), 27–43.

    Article  Google Scholar 

  • Ueda, T., Sato, Y., & Asano, Y. (1999). Experimental study on bond strength of continuous carbon fiber sheet. In Proceedings of 4th International Symposium on Fiber Reinforced Polymer reinforcement for Reinforced Concrete structure (pp. 407–16).

    Google Scholar 

  • Van Gemert, D. (1980). Force transfer in epoxy-bonded steel–concrete joints. International Journal of Adhesion and Adhesives, 1, 67–72.

    Article  Google Scholar 

  • Wan, B., Sutton, M. A., Petrou, M. F., Harries, K. A., & Li, N. (2004). Investigation of bond between fiber reinforced polymer and concrete undergoing global mixed mode I/II loading. Journal of Engineering Mechanics, 130(12), 1467–1475.

    Article  Google Scholar 

  • Wang, R. G., Liu, W. B., Dai, C. Q., Zhang, C. H., & Zhu, X. (2005). Study on adhesion properties of adhesive materials used for carbon fiber reinforced concrete structure. In Proceedings of 3rd International Conference on Composites in Construction, CCC2005, Lyon, France.

    Google Scholar 

  • Wu, Z. S., & Niu, H. (2007). Prediction of crack-induced debonding failure in R/C structures flexurally strengthened with externally bonded FRP composites. Doboku Gakkai Ronbunshuu E, 63(4), 620–639.

    Article  Google Scholar 

  • Wu, Y. F., Xu, X. S., Sun, J. B., & Jiang, C. (2012). Analytical solution for the bond strength of externally bonded reinforcement. Composite Structures, 94, 3232–3939.

    Article  Google Scholar 

  • Wu, Z., & Yin, J. (2003). Fracturing behaviors of FRP-strengthened concrete structures. Engineering Fracture Mechanics, 70(10), 1339–1355.

    Article  Google Scholar 

  • Wu, Z. S., Yuan, H., & Niu, H. (2002). Stress transfer and fracture propagation in different kinds of adhesive joints. Journal of Engineering Mechanics, 128(5), 562–573.

    Article  Google Scholar 

  • Wu, Z. S., Yuan, H., Yoshizawa, H., & Kanakubo, T. (2001).Experimental/analytical study on interfacial fracture energy and fracture propagation along FRP-concrete interface. ACI International SP-201-8, 133–52.

    Google Scholar 

  • Yao, J., Teng, J. G., & Chen, J. F. (2005). Experimental study on FRP-to-concrete bonded joints. Composites Part B Engineering, 36, 99–113.

    Article  Google Scholar 

  • Yi, W. H., Kang, D. E., Woo, H. S., Choi, K. S., Yoo, Y. C., & Keung-Hwan, K. (2006). A study on bond mechanism of fiber reinforced polymer bonded to concrete. Proceeding of the 2nd International fib Congress, June, Naples, Italy, CDROM.

    Google Scholar 

  • Yuan, H., Teng, J. G., Seracino, R., Wu, Z. S., & Yao, J. (2004). Full-range behavior of FRP-to-concrete bonded joints. Engineering Structures, 26(5), 553–564.

    Article  Google Scholar 

  • Yuan, H., Wu, Z., & Yoshizawa, H. (2001). Theoretical solutions on interfacial stress transfer of externally bonded stee/composite laminates. Structural Engineering/ Earthquake Engineering, 18(1), 27–39.

    Google Scholar 

  • Zhao, H. D., Zhang, Y., & Zhao, M. (2000). Research on the bond performance between CFRP plate and concrete. In Proceedings of 1st Conference on FRP concrete structures of China (pp. 247–53).

    Google Scholar 

  • Zhou, Y. W., Wu, Y. F., & Yun, Y. (2010). Analytical modeling of the bond-slip relationship at FRP-concrete interfaces for adhesively-bonded joints. Composites: Part B, 41, 423–433.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Mazzotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 RILEM

About this chapter

Cite this chapter

Mazzotti, C. et al. (2016). Bond Between EBR FRP and Concrete. In: Pellegrino, C., Sena-Cruz, J. (eds) Design Procedures for the Use of Composites in Strengthening of Reinforced Concrete Structures. RILEM State-of-the-Art Reports, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7336-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7336-2_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7335-5

  • Online ISBN: 978-94-017-7336-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics