Advertisement

In Vivo Bioelectronic Nose

Chapter

Abstract

Detection of odors has been applied to many real applications, such as quality control of food products, safety and security, environmental monitoring, medical diagnosis, and so on. These natural odors are composed of many different odorant molecules.

Keywords

Firing Rate Olfactory Bulb Olfactory System Local Field Potential Electronic Nose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bushdid C, Magnasco M, Vosshall L, Keller A. Humans can discriminate more than 1 trillion olfactory stimuli. Science. 2014;343:1370–2.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Lledo PM, Gheusi G, Vincent JD. Information processing in the mammalian olfactory system. Physiol Rev. 2005;85:281–317.CrossRefPubMedGoogle Scholar
  3. 3.
    Cometto-Muñiz JE, Abraham MH. Human olfactory detection of homologous <i> n </i>-alcohols measured via concentration–response functions. Pharmacol Biochem Behav. 2008;89:279–91.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Doty RL. Olfaction and multiple chemical sensitivity. Toxicol Ind Health. 1994;10:359–68.PubMedGoogle Scholar
  5. 5.
    Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991;65:175–87.CrossRefPubMedGoogle Scholar
  6. 6.
    Ebrahimi FAW, Chess A. The specification of olfactory neurons. Curr Opin Neurobiol. 1998;8:453–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Zou Z, Horowitz LF, Montmayeur JP, Snapper S, Buck LB. Genetic tracing reveals a stereotyped sensory map in the olfactory cortex. Nature. 2001;414:173–9.CrossRefPubMedGoogle Scholar
  8. 8.
    K. Persaud, G. Dodd, Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose, 1982.Google Scholar
  9. 9.
    Haick H, Broza YY, Mochalski P, Ruzsanyi V, Amann A. Assessment, origin, and implementation of breath volatile cancer markers. Chem Soc Rev. 2014;43:1423–49.CrossRefPubMedGoogle Scholar
  10. 10.
    Konvalina G, Haick H. Sensors for breath testing: from nanomaterials to comprehensive disease detection. Acc Chem Res. 2014;47:66–76.CrossRefPubMedGoogle Scholar
  11. 11.
    Broza YY, Haick H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine. 2013;8:785–806.CrossRefPubMedGoogle Scholar
  12. 12.
    Röck F, Barsan N, Weimar U. Electronic nose: current status and future trends. Chem Rev. 2008;108:705–25.CrossRefPubMedGoogle Scholar
  13. 13.
    Hu N, Ha D, Wu C, Zhou J, Kirsanov D, Legin A et al. A LAPS array with low cross-talk for non-invasive measurement of cellular metabolism. Sens and Actuators A: Phys. 2012.Google Scholar
  14. 14.
    Liu Q, Yu H, Tan Z, Cai H, Ye W, Zhang M, et al. In vitro assessing the risk of drug-induced cardiotoxicity by embryonic stem cell-based biosensor. Sens Actuators B: Chem. 2011;155:214–9.CrossRefGoogle Scholar
  15. 15.
    Xiao L, Liu Q, Hu Z, Zhang W, Yu H, Wang P. A multi-scale electrode array (MSEA) to study excitation contraction coupling of cardiomyocytes for high-throughput bioassays. Sens Actuators B: Chem. 2011;152:107–14.CrossRefGoogle Scholar
  16. 16.
    Chen P, Liu X-D, Wang B, Cheng G, Wang P. A biomimetic taste receptor cell-based biosensor for electrophysiology recording and acidic sensation. Sens Actuators B: Chem. 2009;139:576–83.CrossRefGoogle Scholar
  17. 17.
    Zhang W, Li Y, Liu Q, Xu Y, Cai H, Wang P. A novel experimental research based on taste cell chips for taste transduction mechanism. Sens Actuators B: Chem. 2008;131:24–8.CrossRefGoogle Scholar
  18. 18.
    Du L, Wu C, Peng H, Zhao L, Wang P. Bioengineered olfactory sensory neuron-based biosensor for specific odorant detection. Biosens Bioelectron. 2012.Google Scholar
  19. 19.
    Liu Q, Cai H, Xu Y, Li Y, Li R, Wang P. Olfactory cell-based biosensor: a first step towards a neurochip of bioelectronic nose. Biosens Bioelectron. 2006;22:318–22.CrossRefPubMedGoogle Scholar
  20. 20.
    Liu Q, Ye W, Hu N, Cai H, Yu H, Wang P. Olfactory receptor cells respond to odors in a tissue and semiconductor hybrid neuron chip. Biosens Bioelectron. 2010;26:1672–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Liu Q, Ye W, Xiao L, Du L, Hu N, Wang P. Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose. Biosens Bioelectron. 2010;25:2212–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu Q, Zhang F, Zhang D, Hu N, Wang H, Jimmy Hsia K, et al. Bioelectronic tongue of taste buds on microelectrode array for salt sensing. Biosens Bioelectron. 2012.Google Scholar
  23. 23.
    Liu Q, Ye W, Yu H, Hu N, Du L, Wang P, et al. Olfactory mucosa tissue-based biosensor: a bioelectronic nose with receptor cells in intact olfactory epithelium. Sens Actuators B: Chem. 2010;146:527–33.CrossRefGoogle Scholar
  24. 24.
    Liu Q, Hu N, Zhang F, Zhang D, Hsia KJ, Wang P. Olfactory epithelium biosensor: odor discrimination of receptor neurons from a bio-hybrid sensing system. Biomed Microdevices. 2012;1–7.Google Scholar
  25. 25.
    Gazit I, Terkel J. Explosives detection by sniffer dogs following strenuous physical activity. Appl Anim Behav Sci. 2003;81:149–61.CrossRefGoogle Scholar
  26. 26.
    Fjellanger R, Andersen E, McLean IG. A training program for filter-search mine-detection dogs. Int J Comp Psychol. 2002;15:278–87.Google Scholar
  27. 27.
    Boedeker E, Friedel G, Walles T. Sniffer dogs as part of a bimodal bionic research approach to develop a lung cancer screening. Interact Cardiovasc Thorac Surg. 2012;14:511–5.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    McCulloch M, Jezierski T, Broffman M, Hubbard A, Turner K, Janecki T. Diagnostic accuracy of canine scent detection in early-and late-stage lung and breast cancers. Integr Cancer Ther. 2006;5:30–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Ehmann R, Boedeker E, Friedrich U, Sagert J, Dippon J, Friedel G, et al. Canine scent detection in the diagnosis of lung cancer: revisiting a puzzling phenomenon. Eur Respir J. 2012;39:669–76.CrossRefPubMedGoogle Scholar
  30. 30.
    Chapin JK, Moxon KA, Markowitz RS, Nicolelis MAL. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci. 1999;2:664–70.CrossRefPubMedGoogle Scholar
  31. 31.
    Nicolelis MAL, Dimitrov D, Carmena JM, Crist R, Lehew G, Kralik JD, et al. Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Natl Acad Sci. 2003;100:11041–6.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Lehmkuhle M, Normann R, Maynard E. High-resolution analysis of the spatio-temporal activity patterns in rat OB evoked by enantiomer odors. Chem Senses. 2003;28:499–508.CrossRefPubMedGoogle Scholar
  33. 33.
    Rinberg D, Koulakov A, Gelperin A. Sparse odor coding in awake behaving mice. J Neurosci. 2006;26:8857–65.CrossRefPubMedGoogle Scholar
  34. 34.
    Bhalla US, Bower JM. Multiday recordings from OB neurons in awake freely moving rats: spatially and temporally organized variability in odorant response properties. J Comput Neurosci. 1997;4:221–56.CrossRefPubMedGoogle Scholar
  35. 35.
    Davison IG, Katz LC. Sparse and selective odor coding by mitral/tufted neurons in the main OB. J Neurosci. 2007;27:2091–101.CrossRefPubMedGoogle Scholar
  36. 36.
    You K-J, Ham HG, Lee HJ, Lang Y, Im C, Koh CS, et al. Odor discrimination using neural decoding of the main OB in rats. IEEE Trans Biomed Eng. 2011;58:1208–15.CrossRefPubMedGoogle Scholar
  37. 37.
    Furton KG, Myers LJ. The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta. 2001;54:487–500.CrossRefPubMedGoogle Scholar
  38. 38.
    Du L, Wu C, Liu Q, Huang L, Wang P. Recent advances in olfactory receptor-based biosensors. Biosens Bioelectron. 2013;42:570–80.CrossRefPubMedGoogle Scholar
  39. 39.
    Williams H, Pembroke A. Sniffer dogs in the melanoma clinic? Lancet. 1989;1:734.CrossRefPubMedGoogle Scholar
  40. 40.
    Pan¨P§l, Smith D, Holland TA, Singary WA, Elder JB. Analysis of formaldehyde in the headspace of urine from bladder and prostate cancer patients using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom. 1999;13:1354–1359.Google Scholar
  41. 41.
    Willis CM, Church SM, Guest CM, Cook WA, McCarthy N, Bransbury AJ, et al. Olfactory detection of human bladder cancer by dogs: proof of principle study. BMJ. 2004;329:712.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Gordon RT, Schatz CB, Myers LJ, Kosty M, Gonczy C, Kroener J, et al. The use of canines in the detection of human cancers. J Altern Complement Med. 2008;14:61–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Sonoda H, Kohnoe S, Yamazato T, Satoh Y, Morizono G, Shikata K, et al. Colorectal cancer screening with odour material by canine scent detection. Gut. 2011;60:814–9.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Horvath G, Jrverud GK, Jrverud S, Horv I ¢th. Human ovarian carcinomas detected by specific odor. Integr Cancer Ther. 2008;7:76–80.Google Scholar
  45. 45.
    McCulloch M, Turner K, Broffman M. Lung cancer detection by canine scent: will there be a lab in the lab? Eur Respir J. 2012;39:511–2.CrossRefPubMedGoogle Scholar
  46. 46.
    Duchamp-Viret P, Duchamp A, Chaput MA. Peripheral odor coding in the rat and frog: quality and intensity specification. J Neurosci. 2000;20:2383–90.PubMedGoogle Scholar
  47. 47.
    Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, et al. Visualizing an olfactory sensory map. Cell. 1996;87:675–86.CrossRefPubMedGoogle Scholar
  48. 48.
    Adrian E. The electrical activity of the mammalian OB. Electroencephalogr Clin Neurophysiol. 1950;2:377–88.CrossRefPubMedGoogle Scholar
  49. 49.
    Firestein S. How the olfactory system makes sense of scents. Nature. 2001;413:211–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Spors H, Grinvald A. Spatio-temporal dynamics of odor representations in the mammalian OB. Neuron. 2002;34:301–15.CrossRefPubMedGoogle Scholar
  51. 51.
    Rubin BD, Katz LC. Spatial coding of enantiomers in the rat OB. Nat Neurosci. 2001;4:355–6.CrossRefPubMedGoogle Scholar
  52. 52.
    Buzsáki G. Large-scale recording of neuronal ensembles. Nat Neurosci. 2004;7:446–51.CrossRefPubMedGoogle Scholar
  53. 53.
    Boulet M, Daval G, Leveteau J. Qualitative and quantitative odour discrimination by mitral cells as compared to anterior olfactory nucleus cells. Brain Res. 1978;142:123–34.CrossRefPubMedGoogle Scholar
  54. 54.
    Katchalsky AK, Rowland V, Blumenthal R. Dynamic patterns of brain cell assemblies. Neurosci Res Program Bull. 1974.Google Scholar
  55. 55.
    Kay LM, Laurent G. Odor-and context-dependent modulation of mitral cell activity in behaving rats. Nat Neurosci. 1999;2:1003–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Lei H, Christensen TA, Hildebrand JG. Local inhibition modulates odor-evoked synchronization of glomerulus-specific output neurons. Nat Neurosci. 2002;5:557–65.CrossRefPubMedGoogle Scholar
  57. 57.
    Lehmkuhle MJ, Normann RA, Maynard EM. Trial-by-trial discrimination of three enantiomer pairs by neural ensembles in mammalian OB. J Neurophysiol. 2006;95:1369–79.CrossRefPubMedGoogle Scholar
  58. 58.
    Bhandari R, Negi S, Solzbacher F. Wafer-scale fabrication of penetrating neural microelectrode arrays. Biomed Microdevices. 2010;12:797–807.CrossRefPubMedGoogle Scholar
  59. 59.
    Wark HAC, Sharma R, Mathews KS, Fernandez E, Yoo J, Christensen B et al. A new high-density (25 electrodes/mm(2)) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. J Neural Eng. 2013;10.Google Scholar
  60. 60.
    Cheung KC. Implantable microscale neural interfaces. Biomed Microdevices. 2007;9:923–38.CrossRefPubMedGoogle Scholar
  61. 61.
    M.A. Nicolelis, Methods for neural ensemble recordings: CRC press; 2007.Google Scholar
  62. 62.
    Schmidt EM. Electrodes for many single neuron recordings. Methods Neural Ensemble Recordings 1999;1–23.Google Scholar
  63. 63.
    Tsai ML, Yen CT. A simple method for fabricating horizontal and vertical microwire arrays. J Neurosci Methods. 2003;131:107–10.CrossRefPubMedGoogle Scholar
  64. 64.
    Zhuang L, Hu N, Tian F, Dong Q, Hu L, Li R, et al. A high-sensitive detection method for carvone odor by implanted electrodes in rat OB. Chin Sci Bull. 2014;59:29–37.CrossRefGoogle Scholar
  65. 65.
    Schoenbaum G, Chiba AA, Gallagher M. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nat Neurosci. 1998;1:155–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Martin C, Gervais R, Hugues E, Messaoudi B, Ravel N. Learning modulation of odor-induced oscillatory responses in the rat OB: A correlate of odor recognition? J Neurosci. 2004;24:389–97.CrossRefPubMedGoogle Scholar
  67. 67.
    Zhuang L, Guo T, Cao D, Ling L, Su K, Hu N et al. Detection and classification of natural odors with an in vivo bioelectronic nose. Biosens Bioelectron. 2014.Google Scholar
  68. 68.
    Schoppa NE. Synchronization of OB mitral cells by precisely timed inhibitory inputs. Neuron. 2006;49:271–83.CrossRefPubMedGoogle Scholar
  69. 69.
    Kay LM, Beshel J, Brea J, Martin C, Rojas-L¨ªbano C, Kopell N. Olfactory oscillations: the what, how and what for. Trends Neurosci 2009;32:207–214.Google Scholar
  70. 70.
    Zhuang L, Hu N, Dong Q, Liu Q, Wang P. A high sensitive in vivo biosensing detection for odors by multiunit in rat OB. Sens Actuators B-Chem. 2013;186:308–14.CrossRefGoogle Scholar
  71. 71.
    Ghasemi-Varnamkhasti M, Mohtasebi SS, Siadat M, Balasubramanian S. Meat quality assessment by electronic nose (Machine Olfaction Technology). Sensors. 2009;9:6058–83.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Ólafsdóttir G, Kristbergsson K. Electronic-nose technology: application for quality evaluation in the fish industry. Odors Food Ind. 2006;57–74.Google Scholar
  73. 73.
    Buck LB. Information coding in the vertebrate olfactory system. Annu Rev Neurosci. 1996;19:517–44.CrossRefPubMedGoogle Scholar
  74. 74.
    Shusterman R, Smear MC, Koulakov AA, Rinberg D. Precise olfactory responses tile the sniff cycle. Nat Neurosci. 2011;14:1039–44.CrossRefPubMedGoogle Scholar
  75. 75.
    Cang J, Isaacson JS. In vivo whole-cell recording of odor-evoked synaptic transmission in the rat OB. J Neurosci. 2003;23:4108–16.PubMedGoogle Scholar
  76. 76.
    García M, Aleixandre M, Gutiérrez J, Horrillo M. Electronic nose for wine discrimination. Sens Actuators B: Chem. 2006;113:911–6.CrossRefGoogle Scholar
  77. 77.
    Ragazzo-Sanchez J, Chalier P, Chevalier D, Calderon-Santoyo M, Ghommidh C. Identification of different alcoholic beverages by electronic nose coupled to GC. Sens Actuators B: Chem. 2008;134:43–8.CrossRefGoogle Scholar
  78. 78.
    Dickinson TA, White J, Kauer JS, Walt DR. Current trends inartificial-nose’technology. Trends Biotechnol. 1998;16:250–8.CrossRefPubMedGoogle Scholar
  79. 79.
    Shiota H. New esteric components in the volatiles of banana fruit (Musa sapientum L.). J Agric Food Chem. 1993;41:2056–62.CrossRefGoogle Scholar
  80. 80.
    Vincis R, Gschwend O, Bhaukaurally K, Beroud J, Carleton A. Dense representation of natural odorants in the mouse OB. Nat Neurosci. 2012;15:537–9.PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    Dong Q, Du L, Zhuang L, Li R, Liu Q, Wang P. A novel bioelectronic nose based on brain-machine interface using implanted electrode recording in vivo in OB. Biosens Bioelectron. 2013;49:263–9.CrossRefPubMedGoogle Scholar
  82. 82.
    Peris M, Escuder-Gilabert L. A 21st century technique for food control: electronic noses. Anal Chim Acta. 2009;638:1–15.CrossRefPubMedGoogle Scholar
  83. 83.
    Schaller E, Bosset JO, Escher F. ‘Electronic noses’ and their application to food. Food Sci Technol Lebensm Wiss Technol. 1998;31:305–316.Google Scholar

Copyright information

© Science Press, Beijing and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.HangzhouChina

Personalised recommendations