Skip to main content

In Vivo Bioelectronic Nose

  • Chapter
  • First Online:

Abstract

Detection of odors has been applied to many real applications, such as quality control of food products, safety and security, environmental monitoring, medical diagnosis, and so on. These natural odors are composed of many different odorant molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bushdid C, Magnasco M, Vosshall L, Keller A. Humans can discriminate more than 1 trillion olfactory stimuli. Science. 2014;343:1370–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Lledo PM, Gheusi G, Vincent JD. Information processing in the mammalian olfactory system. Physiol Rev. 2005;85:281–317.

    Article  PubMed  Google Scholar 

  3. Cometto-Muñiz JE, Abraham MH. Human olfactory detection of homologous <i> n </i>-alcohols measured via concentration–response functions. Pharmacol Biochem Behav. 2008;89:279–91.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Doty RL. Olfaction and multiple chemical sensitivity. Toxicol Ind Health. 1994;10:359–68.

    CAS  PubMed  Google Scholar 

  5. Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991;65:175–87.

    Article  CAS  PubMed  Google Scholar 

  6. Ebrahimi FAW, Chess A. The specification of olfactory neurons. Curr Opin Neurobiol. 1998;8:453–7.

    Article  CAS  PubMed  Google Scholar 

  7. Zou Z, Horowitz LF, Montmayeur JP, Snapper S, Buck LB. Genetic tracing reveals a stereotyped sensory map in the olfactory cortex. Nature. 2001;414:173–9.

    Article  CAS  PubMed  Google Scholar 

  8. K. Persaud, G. Dodd, Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose, 1982.

    Google Scholar 

  9. Haick H, Broza YY, Mochalski P, Ruzsanyi V, Amann A. Assessment, origin, and implementation of breath volatile cancer markers. Chem Soc Rev. 2014;43:1423–49.

    Article  CAS  PubMed  Google Scholar 

  10. Konvalina G, Haick H. Sensors for breath testing: from nanomaterials to comprehensive disease detection. Acc Chem Res. 2014;47:66–76.

    Article  CAS  PubMed  Google Scholar 

  11. Broza YY, Haick H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine. 2013;8:785–806.

    Article  CAS  PubMed  Google Scholar 

  12. Röck F, Barsan N, Weimar U. Electronic nose: current status and future trends. Chem Rev. 2008;108:705–25.

    Article  PubMed  Google Scholar 

  13. Hu N, Ha D, Wu C, Zhou J, Kirsanov D, Legin A et al. A LAPS array with low cross-talk for non-invasive measurement of cellular metabolism. Sens and Actuators A: Phys. 2012.

    Google Scholar 

  14. Liu Q, Yu H, Tan Z, Cai H, Ye W, Zhang M, et al. In vitro assessing the risk of drug-induced cardiotoxicity by embryonic stem cell-based biosensor. Sens Actuators B: Chem. 2011;155:214–9.

    Article  CAS  Google Scholar 

  15. Xiao L, Liu Q, Hu Z, Zhang W, Yu H, Wang P. A multi-scale electrode array (MSEA) to study excitation contraction coupling of cardiomyocytes for high-throughput bioassays. Sens Actuators B: Chem. 2011;152:107–14.

    Article  CAS  Google Scholar 

  16. Chen P, Liu X-D, Wang B, Cheng G, Wang P. A biomimetic taste receptor cell-based biosensor for electrophysiology recording and acidic sensation. Sens Actuators B: Chem. 2009;139:576–83.

    Article  CAS  Google Scholar 

  17. Zhang W, Li Y, Liu Q, Xu Y, Cai H, Wang P. A novel experimental research based on taste cell chips for taste transduction mechanism. Sens Actuators B: Chem. 2008;131:24–8.

    Article  CAS  Google Scholar 

  18. Du L, Wu C, Peng H, Zhao L, Wang P. Bioengineered olfactory sensory neuron-based biosensor for specific odorant detection. Biosens Bioelectron. 2012.

    Google Scholar 

  19. Liu Q, Cai H, Xu Y, Li Y, Li R, Wang P. Olfactory cell-based biosensor: a first step towards a neurochip of bioelectronic nose. Biosens Bioelectron. 2006;22:318–22.

    Article  CAS  PubMed  Google Scholar 

  20. Liu Q, Ye W, Hu N, Cai H, Yu H, Wang P. Olfactory receptor cells respond to odors in a tissue and semiconductor hybrid neuron chip. Biosens Bioelectron. 2010;26:1672–8.

    Article  CAS  PubMed  Google Scholar 

  21. Liu Q, Ye W, Xiao L, Du L, Hu N, Wang P. Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose. Biosens Bioelectron. 2010;25:2212–7.

    Article  CAS  PubMed  Google Scholar 

  22. Liu Q, Zhang F, Zhang D, Hu N, Wang H, Jimmy Hsia K, et al. Bioelectronic tongue of taste buds on microelectrode array for salt sensing. Biosens Bioelectron. 2012.

    Google Scholar 

  23. Liu Q, Ye W, Yu H, Hu N, Du L, Wang P, et al. Olfactory mucosa tissue-based biosensor: a bioelectronic nose with receptor cells in intact olfactory epithelium. Sens Actuators B: Chem. 2010;146:527–33.

    Article  CAS  Google Scholar 

  24. Liu Q, Hu N, Zhang F, Zhang D, Hsia KJ, Wang P. Olfactory epithelium biosensor: odor discrimination of receptor neurons from a bio-hybrid sensing system. Biomed Microdevices. 2012;1–7.

    Google Scholar 

  25. Gazit I, Terkel J. Explosives detection by sniffer dogs following strenuous physical activity. Appl Anim Behav Sci. 2003;81:149–61.

    Article  Google Scholar 

  26. Fjellanger R, Andersen E, McLean IG. A training program for filter-search mine-detection dogs. Int J Comp Psychol. 2002;15:278–87.

    Google Scholar 

  27. Boedeker E, Friedel G, Walles T. Sniffer dogs as part of a bimodal bionic research approach to develop a lung cancer screening. Interact Cardiovasc Thorac Surg. 2012;14:511–5.

    Article  PubMed Central  PubMed  Google Scholar 

  28. McCulloch M, Jezierski T, Broffman M, Hubbard A, Turner K, Janecki T. Diagnostic accuracy of canine scent detection in early-and late-stage lung and breast cancers. Integr Cancer Ther. 2006;5:30–9.

    Article  PubMed  Google Scholar 

  29. Ehmann R, Boedeker E, Friedrich U, Sagert J, Dippon J, Friedel G, et al. Canine scent detection in the diagnosis of lung cancer: revisiting a puzzling phenomenon. Eur Respir J. 2012;39:669–76.

    Article  CAS  PubMed  Google Scholar 

  30. Chapin JK, Moxon KA, Markowitz RS, Nicolelis MAL. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci. 1999;2:664–70.

    Article  CAS  PubMed  Google Scholar 

  31. Nicolelis MAL, Dimitrov D, Carmena JM, Crist R, Lehew G, Kralik JD, et al. Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Natl Acad Sci. 2003;100:11041–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Lehmkuhle M, Normann R, Maynard E. High-resolution analysis of the spatio-temporal activity patterns in rat OB evoked by enantiomer odors. Chem Senses. 2003;28:499–508.

    Article  CAS  PubMed  Google Scholar 

  33. Rinberg D, Koulakov A, Gelperin A. Sparse odor coding in awake behaving mice. J Neurosci. 2006;26:8857–65.

    Article  CAS  PubMed  Google Scholar 

  34. Bhalla US, Bower JM. Multiday recordings from OB neurons in awake freely moving rats: spatially and temporally organized variability in odorant response properties. J Comput Neurosci. 1997;4:221–56.

    Article  CAS  PubMed  Google Scholar 

  35. Davison IG, Katz LC. Sparse and selective odor coding by mitral/tufted neurons in the main OB. J Neurosci. 2007;27:2091–101.

    Article  CAS  PubMed  Google Scholar 

  36. You K-J, Ham HG, Lee HJ, Lang Y, Im C, Koh CS, et al. Odor discrimination using neural decoding of the main OB in rats. IEEE Trans Biomed Eng. 2011;58:1208–15.

    Article  PubMed  Google Scholar 

  37. Furton KG, Myers LJ. The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta. 2001;54:487–500.

    Article  CAS  PubMed  Google Scholar 

  38. Du L, Wu C, Liu Q, Huang L, Wang P. Recent advances in olfactory receptor-based biosensors. Biosens Bioelectron. 2013;42:570–80.

    Article  CAS  PubMed  Google Scholar 

  39. Williams H, Pembroke A. Sniffer dogs in the melanoma clinic? Lancet. 1989;1:734.

    Article  CAS  PubMed  Google Scholar 

  40. Pan¨P§l, Smith D, Holland TA, Singary WA, Elder JB. Analysis of formaldehyde in the headspace of urine from bladder and prostate cancer patients using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom. 1999;13:1354–1359.

    Google Scholar 

  41. Willis CM, Church SM, Guest CM, Cook WA, McCarthy N, Bransbury AJ, et al. Olfactory detection of human bladder cancer by dogs: proof of principle study. BMJ. 2004;329:712.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Gordon RT, Schatz CB, Myers LJ, Kosty M, Gonczy C, Kroener J, et al. The use of canines in the detection of human cancers. J Altern Complement Med. 2008;14:61–7.

    Article  PubMed  Google Scholar 

  43. Sonoda H, Kohnoe S, Yamazato T, Satoh Y, Morizono G, Shikata K, et al. Colorectal cancer screening with odour material by canine scent detection. Gut. 2011;60:814–9.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Horvath G, Jrverud GK, Jrverud S, Horv I ¢th. Human ovarian carcinomas detected by specific odor. Integr Cancer Ther. 2008;7:76–80.

    Google Scholar 

  45. McCulloch M, Turner K, Broffman M. Lung cancer detection by canine scent: will there be a lab in the lab? Eur Respir J. 2012;39:511–2.

    Article  CAS  PubMed  Google Scholar 

  46. Duchamp-Viret P, Duchamp A, Chaput MA. Peripheral odor coding in the rat and frog: quality and intensity specification. J Neurosci. 2000;20:2383–90.

    CAS  PubMed  Google Scholar 

  47. Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, et al. Visualizing an olfactory sensory map. Cell. 1996;87:675–86.

    Article  CAS  PubMed  Google Scholar 

  48. Adrian E. The electrical activity of the mammalian OB. Electroencephalogr Clin Neurophysiol. 1950;2:377–88.

    Article  CAS  PubMed  Google Scholar 

  49. Firestein S. How the olfactory system makes sense of scents. Nature. 2001;413:211–8.

    Article  CAS  PubMed  Google Scholar 

  50. Spors H, Grinvald A. Spatio-temporal dynamics of odor representations in the mammalian OB. Neuron. 2002;34:301–15.

    Article  CAS  PubMed  Google Scholar 

  51. Rubin BD, Katz LC. Spatial coding of enantiomers in the rat OB. Nat Neurosci. 2001;4:355–6.

    Article  CAS  PubMed  Google Scholar 

  52. Buzsáki G. Large-scale recording of neuronal ensembles. Nat Neurosci. 2004;7:446–51.

    Article  PubMed  Google Scholar 

  53. Boulet M, Daval G, Leveteau J. Qualitative and quantitative odour discrimination by mitral cells as compared to anterior olfactory nucleus cells. Brain Res. 1978;142:123–34.

    Article  CAS  PubMed  Google Scholar 

  54. Katchalsky AK, Rowland V, Blumenthal R. Dynamic patterns of brain cell assemblies. Neurosci Res Program Bull. 1974.

    Google Scholar 

  55. Kay LM, Laurent G. Odor-and context-dependent modulation of mitral cell activity in behaving rats. Nat Neurosci. 1999;2:1003–9.

    Article  CAS  PubMed  Google Scholar 

  56. Lei H, Christensen TA, Hildebrand JG. Local inhibition modulates odor-evoked synchronization of glomerulus-specific output neurons. Nat Neurosci. 2002;5:557–65.

    Article  CAS  PubMed  Google Scholar 

  57. Lehmkuhle MJ, Normann RA, Maynard EM. Trial-by-trial discrimination of three enantiomer pairs by neural ensembles in mammalian OB. J Neurophysiol. 2006;95:1369–79.

    Article  CAS  PubMed  Google Scholar 

  58. Bhandari R, Negi S, Solzbacher F. Wafer-scale fabrication of penetrating neural microelectrode arrays. Biomed Microdevices. 2010;12:797–807.

    Article  CAS  PubMed  Google Scholar 

  59. Wark HAC, Sharma R, Mathews KS, Fernandez E, Yoo J, Christensen B et al. A new high-density (25 electrodes/mm(2)) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. J Neural Eng. 2013;10.

    Google Scholar 

  60. Cheung KC. Implantable microscale neural interfaces. Biomed Microdevices. 2007;9:923–38.

    Article  PubMed  Google Scholar 

  61. M.A. Nicolelis, Methods for neural ensemble recordings: CRC press; 2007.

    Google Scholar 

  62. Schmidt EM. Electrodes for many single neuron recordings. Methods Neural Ensemble Recordings 1999;1–23.

    Google Scholar 

  63. Tsai ML, Yen CT. A simple method for fabricating horizontal and vertical microwire arrays. J Neurosci Methods. 2003;131:107–10.

    Article  PubMed  Google Scholar 

  64. Zhuang L, Hu N, Tian F, Dong Q, Hu L, Li R, et al. A high-sensitive detection method for carvone odor by implanted electrodes in rat OB. Chin Sci Bull. 2014;59:29–37.

    Article  CAS  Google Scholar 

  65. Schoenbaum G, Chiba AA, Gallagher M. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nat Neurosci. 1998;1:155–9.

    Article  CAS  PubMed  Google Scholar 

  66. Martin C, Gervais R, Hugues E, Messaoudi B, Ravel N. Learning modulation of odor-induced oscillatory responses in the rat OB: A correlate of odor recognition? J Neurosci. 2004;24:389–97.

    Article  CAS  PubMed  Google Scholar 

  67. Zhuang L, Guo T, Cao D, Ling L, Su K, Hu N et al. Detection and classification of natural odors with an in vivo bioelectronic nose. Biosens Bioelectron. 2014.

    Google Scholar 

  68. Schoppa NE. Synchronization of OB mitral cells by precisely timed inhibitory inputs. Neuron. 2006;49:271–83.

    Article  CAS  PubMed  Google Scholar 

  69. Kay LM, Beshel J, Brea J, Martin C, Rojas-L¨ªbano C, Kopell N. Olfactory oscillations: the what, how and what for. Trends Neurosci 2009;32:207–214.

    Google Scholar 

  70. Zhuang L, Hu N, Dong Q, Liu Q, Wang P. A high sensitive in vivo biosensing detection for odors by multiunit in rat OB. Sens Actuators B-Chem. 2013;186:308–14.

    Article  CAS  Google Scholar 

  71. Ghasemi-Varnamkhasti M, Mohtasebi SS, Siadat M, Balasubramanian S. Meat quality assessment by electronic nose (Machine Olfaction Technology). Sensors. 2009;9:6058–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Ólafsdóttir G, Kristbergsson K. Electronic-nose technology: application for quality evaluation in the fish industry. Odors Food Ind. 2006;57–74.

    Google Scholar 

  73. Buck LB. Information coding in the vertebrate olfactory system. Annu Rev Neurosci. 1996;19:517–44.

    Article  CAS  PubMed  Google Scholar 

  74. Shusterman R, Smear MC, Koulakov AA, Rinberg D. Precise olfactory responses tile the sniff cycle. Nat Neurosci. 2011;14:1039–44.

    Article  CAS  PubMed  Google Scholar 

  75. Cang J, Isaacson JS. In vivo whole-cell recording of odor-evoked synaptic transmission in the rat OB. J Neurosci. 2003;23:4108–16.

    CAS  PubMed  Google Scholar 

  76. García M, Aleixandre M, Gutiérrez J, Horrillo M. Electronic nose for wine discrimination. Sens Actuators B: Chem. 2006;113:911–6.

    Article  Google Scholar 

  77. Ragazzo-Sanchez J, Chalier P, Chevalier D, Calderon-Santoyo M, Ghommidh C. Identification of different alcoholic beverages by electronic nose coupled to GC. Sens Actuators B: Chem. 2008;134:43–8.

    Article  CAS  Google Scholar 

  78. Dickinson TA, White J, Kauer JS, Walt DR. Current trends inartificial-nose’technology. Trends Biotechnol. 1998;16:250–8.

    Article  CAS  PubMed  Google Scholar 

  79. Shiota H. New esteric components in the volatiles of banana fruit (Musa sapientum L.). J Agric Food Chem. 1993;41:2056–62.

    Article  CAS  Google Scholar 

  80. Vincis R, Gschwend O, Bhaukaurally K, Beroud J, Carleton A. Dense representation of natural odorants in the mouse OB. Nat Neurosci. 2012;15:537–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Dong Q, Du L, Zhuang L, Li R, Liu Q, Wang P. A novel bioelectronic nose based on brain-machine interface using implanted electrode recording in vivo in OB. Biosens Bioelectron. 2013;49:263–9.

    Article  CAS  PubMed  Google Scholar 

  82. Peris M, Escuder-Gilabert L. A 21st century technique for food control: electronic noses. Anal Chim Acta. 2009;638:1–15.

    Article  CAS  PubMed  Google Scholar 

  83. Schaller E, Bosset JO, Escher F. ‘Electronic noses’ and their application to food. Food Sci Technol Lebensm Wiss Technol. 1998;31:305–316.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liujing Zhuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Science Press, Beijing and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhuang, L., Guo, T., Zhang, B. (2015). In Vivo Bioelectronic Nose. In: Wang, P., Liu, Q., Wu, C., Hsia, K. (eds) Bioinspired Smell and Taste Sensors. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7333-1_9

Download citation

Publish with us

Policies and ethics