Advertisement

Smell Sensors Based on Odorant Binding Proteins

Chapter
  • 1k Downloads

Abstract

Odorant binding proteins (OBPs ) belong to one of the most abundant class of proteins found in the olfactory apparatus, which play important roles in binding the small hydrophobic molecules to enhance their aqueous solubility and transport them to specific olfactory receptors (ORs). As the extracellular proteins, OBPs of insects and vertebrates were indentified almost at the same time and have a number of similarities [1].

Keywords

Surface Plasmon Resonance Surface Acoustic Wave Quartz Crystal Microbalance Isoamyl Acetate Odorant Binding Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Vogt RG, Riddiford LM. Pheromone binding and inactivation by moth antennae. 1981.Google Scholar
  2. 2.
    Dal Monte M, Centini M, Anselmi C, Pelosi P. Binding of selected odorants to bovine and porcine odorant-binding proteins. Chem Senses. 1993;18:713–21.Google Scholar
  3. 3.
    Vogt RG, Prestwich GD, Lerner MR. Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. J Neurobiol. 1991;22:74–84.CrossRefPubMedGoogle Scholar
  4. 4.
    Wei Y, Brandazza A, Pelosi P. Binding of polycyclic aromatic hydrocarbons to mutants of odorant-binding protein: a first step towards biosensors for environmental monitoring. Biochim Biophys Acta (BBA) Proteins and Proteomics. 2008;1784:666–71.Google Scholar
  5. 5.
    Hou Y, Jaffrezic-Renault N, Martelet C, Tlili C, Zhang A, Pernollet J-C, et al. Study of Langmuir and Langmuir-Blodgett films of odorant-binding protein/amphiphile for odorant biosensors. Langmuir. 2005;21:4058–65.CrossRefPubMedGoogle Scholar
  6. 6.
    Pelosi P, Mastrogiacomo R, Iovinella I, Tuccori E, Persaud KC. Structure and biotechnological applications of odorant-binding proteins. Appl Microbiol Biotechnol. 2014;98:61–70.CrossRefPubMedGoogle Scholar
  7. 7.
    Di Pietrantonio F, Cannatà D, Benetti M, Verona E, Varriale A, Staiano M, et al. Detection of odorant molecules via surface acoustic wave biosensor array based on odorant-binding proteins. Biosens Bioelectron. 2013;41:328–34.CrossRefPubMedGoogle Scholar
  8. 8.
    Felicioli A, Ferraro F, Ganni M, Garibotti M, Navarrini A, Pes D, et al. Odorant-binding proteins and biosensors for odours. Life Chem Rep. 1994;11:347–55.Google Scholar
  9. 9.
    Ikematsu M, Takaoka D, Yasuda M. Odorant binding initially occurring at the central pocket in bovine odorant-binding protein. Biochem Biophys Res Commun. 2005;333:1227–33.CrossRefPubMedGoogle Scholar
  10. 10.
    Vincent F, Spinelli S, Ramoni R, Grolli S, Pelosi P, Cambillau C, et al. Complexes of porcine odorant binding protein with odorant molecules belonging to different chemical classes. J Mol Biol. 2000;300:127–39.CrossRefPubMedGoogle Scholar
  11. 11.
    Sankaran S, Panigrahi S, Mallik S. Odorant binding protein based biomimetic sensors for detection of alcohols associated with Salmonella contamination in packaged beef. Biosens Bioelectron. 2011;26:3103–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Vidic J, Grosclaude J, Monnerie R, Persuy M-A, Badonnel K, Baly C, et al. On a chip demonstration of a functional role for odorant binding protein in the preservation of olfactory receptor activity at high odorant concentration. Lab Chip. 2008;8:678–88.CrossRefPubMedGoogle Scholar
  13. 13.
    Manai R, Scorsone E, Rousseau L, Ghassemi F, Abreu MP, Lissorgues G, et al. Grafting odorant binding proteins on diamond bio-MEMS. Biosens Bioelectron. 2014;60:311–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Lu Y, Yao Y, Zhang Q, Zhang D, Zhuang S, Li H, et al. Olfactory biosensor for insect semiochemicals analysis by impedance sensing of odorant-binding proteins on interdigitated electrodes. Biosens Bioelectron. 2014.Google Scholar
  15. 15.
    Lu Y, Li H, Zhuang S, Zhang D, Zhang Q, Zhou J, et al. Olfactory biosensor using odorant-binding proteins from honeybee: Ligands of floral odors and pheromones detection by electrochemical impedance. Sens Actuators B Chem. 2014;193:420–7.CrossRefGoogle Scholar
  16. 16.
    Di Pietrantonio F, Benetti M, Cannatà D, Verona E, Palla-Papavlu A, Fernández-Pradas J, et al. A surface acoustic wave bio-electronic nose for detection of volatile odorant molecules. Biosens Bioelectron. 2014.Google Scholar
  17. 17.
    Di Pietrantonio F, Benetti M, Dinca V, Cannatà D, Verona E, D’Auria S, et al. Tailoring odorant-binding protein coatings characteristics for surface acoustic wave biosensor development. Appl Surf Sci. 2014;302:250–5.CrossRefGoogle Scholar
  18. 18.
    Ramoni R, Bellucci S, Grycznyski I, Grycznyski Z, Grolli S, Staiano M, et al. The protein scaffold of the lipocalin odorant-binding protein is suitable for the design of new biosensors for the detection of explosive components. J Phys Condens Matter. 2007;19:395012.CrossRefGoogle Scholar
  19. 19.
    Capone S, De Pascali C, Francioso L, Siciliano P, Persaud K, Pisanelli A. Electrical characterization of a pig odorant binding protein by Impedance Spectroscopy. In: IEEE Sensors, 2009. IEEE; 2009. p. 1758–62.Google Scholar
  20. 20.
    Kuang Z, Kim SN, Crookes-Goodson WJ, Farmer BL, Naik RR. Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. ACS Nano. 2009;4:452–8.CrossRefGoogle Scholar
  21. 21.
    Marshall B, Warr CG, De Bruyne M. Detection of volatile indicators of illicit substances by the olfactory receptors of Drosophila melanogaster. Chem Senses. 2010;35:613–25.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Strauch M, Lüdke A, Münch D, Laudes T, Galizia CG, Martinelli E, et al. More than apples and oranges-Detecting cancer with a fruit fly’s antenna. Scientific Reports. 2014;4.Google Scholar
  23. 23.
    Lescop E, Briand L, Pernollet J-C, Guittet E. Structural basis of the broad specificity of a general odorant-binding protein from honeybee. Biochemistry. 2009;48:2431–41.CrossRefPubMedGoogle Scholar
  24. 24.
    Kruse SW, Zhao R, Smith DP, Jones DN. Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster. Nat Struct Mol Biol. 2003;10:694–700.CrossRefGoogle Scholar
  25. 25.
    Golebiowski J, Topin J, Charlier L, Briand L. Interaction between odorants and proteins involved in the perception of smell: the case of odorant-binding proteins probed by molecular modelling and biophysical data. Flavour and Fragrance J. 2012;27:445–53.CrossRefGoogle Scholar
  26. 26.
    Fan J, Francis F, Liu Y, Chen J, Cheng D. An overview of odorant-binding protein functions in insect peripheral olfactory reception. Genet Mol Res. 2011;10:3056–69.CrossRefPubMedGoogle Scholar
  27. 27.
    Forêt S, Maleszka R. Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res. 2006;16:1404–13.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Pelosi P, Calvello M, Ban L. Diversity of odorant-binding proteins and chemosensory proteins in insects. Chem Senses. 2005;30:i291–2.CrossRefPubMedGoogle Scholar
  29. 29.
    Alfinito E, Pennetta C, Reggiani L. A network model to correlate conformational change and the impedance spectrum of single proteins. Nanotechnology. 2008;19:065202.CrossRefPubMedGoogle Scholar
  30. 30.
    Alfinito E, Millithaler J-F, Pennetta C, Reggiani L. A single protein based nanobiosensor for odorant recognition. Microelectron J. 2010;41:718–22.CrossRefGoogle Scholar
  31. 31.
    Liu Q, Wang H, Li H, Zhang J, Zhuang S, Zhang F, et al. Impedance sensing and molecular modeling of an olfactory biosensor based on chemosensory proteins of honeybee. Biosens Bioelectron. 2013;40:174–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinform. 2008;9:40.CrossRefGoogle Scholar
  33. 33.
    Wang X, Corin K, Baaske P, Wienken CJ, Jerabek-Willemsen M, Duhr S, et al. Peptide surfactants for cell-free production of functional G protein-coupled receptors. Proc Natl Acad Sci. 2011;108:9049–54.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Briand L, Nespoulous C, Perez V, Rémy JJ, Huet JC, Pernollet JC. Ligand-binding properties and structural characterization of a novel rat odorant-binding protein variant. Eur J Biochem. 2000;267:3079–89.CrossRefPubMedGoogle Scholar
  35. 35.
    Barou E, Sigoillot M, Bouvet M, Briand L, Meunier-Prest R. Electrochemical detection of the 2-isobutyl-3-methoxypyrazine model odorant based on odorant-binding proteins: The proof of concept. Bioelectrochemistry. 2015;101:28–34.CrossRefPubMedGoogle Scholar
  36. 36.
    Parisi M, Mazzini A, Sorbi RT, Ramoni R, Grolli S, Favilla R. Unfolding and refolding of porcine odorant binding protein in guanidinium hydrochloride: equilibrium studies at neutral pH. Biochim Biophys Acta (BBA) Proteins and Proteomics. 2003;1652:115–25.Google Scholar
  37. 37.
    Li H, Zhang L, Ni C, Shang H, Zhuang S, Li J. Molecular recognition of floral volatile with two olfactory related proteins in the Eastern honeybee (Apis cerana). Int J Biol Macromol. 2013;56:114–21.CrossRefPubMedGoogle Scholar
  38. 38.
    Anne A, Demaille C, Moiroux J. Terminal attachment of polyethylene glycol (PEG) chains to a gold electrode surface. Cyclic voltammetry applied to the quantitative characterization of the flexibility of the attached PEG chains and of their penetration by mobile PEG chains. Macromolecules. 2002;35:5578–86.CrossRefGoogle Scholar
  39. 39.
    Bhargav A, Muller DA, Kendall MA, Corrie SR. Surface modifications of microprojection arrays for improved biomarker capture in the skin of live mice. ACS Appl Mater Interfaces. 2012;4:2483–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Herrwerth S, Rosendahl T, Feng C, Fick J, Eck W, Himmelhaus M, et al. Covalent coupling of antibodies to self-assembled monolayers of carboxy-functionalized poly (ethylene glycol): protein resistance and specific binding of biomolecules. Langmuir. 2003;19:1880–7.CrossRefGoogle Scholar
  41. 41.
    Sun X-L, Stabler CL, Cazalis CS, Chaikof EL. Carbohydrate and protein immobilization onto solid surfaces by sequential Diels-Alder and azide-alkyne cycloadditions. Bioconjug Chem. 2006;17:52–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Rodriguez MC, Kawde A-N, Wang J. Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge. Chem Commun. 2005;4267–9.Google Scholar
  43. 43.
    Lisdat F, Schäfer D. The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem. 2008;391:1555–67.CrossRefPubMedGoogle Scholar
  44. 44.
    Apps PJ. Are mammal olfactory signals hiding right under our noses? Naturwissenschaften. 2013;100:487–506.CrossRefPubMedGoogle Scholar
  45. 45.
    Fernández-Grandon GM, Girling RD, Poppy GM. Utilizing insect behavior in chemical detection by a behavioral biosensor. J Plant Interact. 2011;6:109–12.CrossRefGoogle Scholar
  46. 46.
    Wehrenfennig C, Schott M, Gasch T, Düring RA, Vilcinskas A, Kohl C-D. On-site airborne pheromone sensing. Anal Bioanal Chem. 2013;405:6389–403.CrossRefPubMedGoogle Scholar
  47. 47.
    Briand L, Nespoulous C, Huet JC, Takahashi M, Pernollet JC. Ligand binding and physico-chemical properties of ASP2, a recombinant odorant-binding protein from honeybee (Apis mellifera L.). Eur J Biochem. 2001;268:752–60.CrossRefPubMedGoogle Scholar
  48. 48.
    Thomsen R, Christensen MH. MolDock: a new technique for high-accuracy molecular docking. J Med Chem. 2006;49:3315–21.CrossRefPubMedGoogle Scholar
  49. 49.
    Carey AF, Carlson JR. Insect olfaction from model systems to disease control. Proc Natl Acad Sci. 2011;108:12987–95.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Goldman ER, Pazirandeh MP, Charles PT, Balighian ED, Anderson GP. Selection of phage displayed peptides for the detection of 2, 4, 6-trinitrotoluene in seawater. Anal Chim Acta. 2002;457:13–9.CrossRefGoogle Scholar

Copyright information

© Science Press, Beijing and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Zhejiang UniversityHangzhouChina
  2. 2.Biosensor National Special Laboratory, Department of Biomedical EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations