Skip to main content

Smell Sensors Based on Odorant Binding Proteins

  • Chapter
  • First Online:
Book cover Bioinspired Smell and Taste Sensors
  • 1201 Accesses

Abstract

Odorant binding proteins (OBPs ) belong to one of the most abundant class of proteins found in the olfactory apparatus, which play important roles in binding the small hydrophobic molecules to enhance their aqueous solubility and transport them to specific olfactory receptors (ORs). As the extracellular proteins, OBPs of insects and vertebrates were indentified almost at the same time and have a number of similarities [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogt RG, Riddiford LM. Pheromone binding and inactivation by moth antennae. 1981.

    Google Scholar 

  2. Dal Monte M, Centini M, Anselmi C, Pelosi P. Binding of selected odorants to bovine and porcine odorant-binding proteins. Chem Senses. 1993;18:713–21.

    Google Scholar 

  3. Vogt RG, Prestwich GD, Lerner MR. Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. J Neurobiol. 1991;22:74–84.

    Article  CAS  PubMed  Google Scholar 

  4. Wei Y, Brandazza A, Pelosi P. Binding of polycyclic aromatic hydrocarbons to mutants of odorant-binding protein: a first step towards biosensors for environmental monitoring. Biochim Biophys Acta (BBA) Proteins and Proteomics. 2008;1784:666–71.

    Google Scholar 

  5. Hou Y, Jaffrezic-Renault N, Martelet C, Tlili C, Zhang A, Pernollet J-C, et al. Study of Langmuir and Langmuir-Blodgett films of odorant-binding protein/amphiphile for odorant biosensors. Langmuir. 2005;21:4058–65.

    Article  CAS  PubMed  Google Scholar 

  6. Pelosi P, Mastrogiacomo R, Iovinella I, Tuccori E, Persaud KC. Structure and biotechnological applications of odorant-binding proteins. Appl Microbiol Biotechnol. 2014;98:61–70.

    Article  CAS  PubMed  Google Scholar 

  7. Di Pietrantonio F, Cannatà D, Benetti M, Verona E, Varriale A, Staiano M, et al. Detection of odorant molecules via surface acoustic wave biosensor array based on odorant-binding proteins. Biosens Bioelectron. 2013;41:328–34.

    Article  PubMed  Google Scholar 

  8. Felicioli A, Ferraro F, Ganni M, Garibotti M, Navarrini A, Pes D, et al. Odorant-binding proteins and biosensors for odours. Life Chem Rep. 1994;11:347–55.

    CAS  Google Scholar 

  9. Ikematsu M, Takaoka D, Yasuda M. Odorant binding initially occurring at the central pocket in bovine odorant-binding protein. Biochem Biophys Res Commun. 2005;333:1227–33.

    Article  CAS  PubMed  Google Scholar 

  10. Vincent F, Spinelli S, Ramoni R, Grolli S, Pelosi P, Cambillau C, et al. Complexes of porcine odorant binding protein with odorant molecules belonging to different chemical classes. J Mol Biol. 2000;300:127–39.

    Article  CAS  PubMed  Google Scholar 

  11. Sankaran S, Panigrahi S, Mallik S. Odorant binding protein based biomimetic sensors for detection of alcohols associated with Salmonella contamination in packaged beef. Biosens Bioelectron. 2011;26:3103–9.

    Article  CAS  PubMed  Google Scholar 

  12. Vidic J, Grosclaude J, Monnerie R, Persuy M-A, Badonnel K, Baly C, et al. On a chip demonstration of a functional role for odorant binding protein in the preservation of olfactory receptor activity at high odorant concentration. Lab Chip. 2008;8:678–88.

    Article  CAS  PubMed  Google Scholar 

  13. Manai R, Scorsone E, Rousseau L, Ghassemi F, Abreu MP, Lissorgues G, et al. Grafting odorant binding proteins on diamond bio-MEMS. Biosens Bioelectron. 2014;60:311–7.

    Article  CAS  PubMed  Google Scholar 

  14. Lu Y, Yao Y, Zhang Q, Zhang D, Zhuang S, Li H, et al. Olfactory biosensor for insect semiochemicals analysis by impedance sensing of odorant-binding proteins on interdigitated electrodes. Biosens Bioelectron. 2014.

    Google Scholar 

  15. Lu Y, Li H, Zhuang S, Zhang D, Zhang Q, Zhou J, et al. Olfactory biosensor using odorant-binding proteins from honeybee: Ligands of floral odors and pheromones detection by electrochemical impedance. Sens Actuators B Chem. 2014;193:420–7.

    Article  CAS  Google Scholar 

  16. Di Pietrantonio F, Benetti M, Cannatà D, Verona E, Palla-Papavlu A, Fernández-Pradas J, et al. A surface acoustic wave bio-electronic nose for detection of volatile odorant molecules. Biosens Bioelectron. 2014.

    Google Scholar 

  17. Di Pietrantonio F, Benetti M, Dinca V, Cannatà D, Verona E, D’Auria S, et al. Tailoring odorant-binding protein coatings characteristics for surface acoustic wave biosensor development. Appl Surf Sci. 2014;302:250–5.

    Article  Google Scholar 

  18. Ramoni R, Bellucci S, Grycznyski I, Grycznyski Z, Grolli S, Staiano M, et al. The protein scaffold of the lipocalin odorant-binding protein is suitable for the design of new biosensors for the detection of explosive components. J Phys Condens Matter. 2007;19:395012.

    Article  Google Scholar 

  19. Capone S, De Pascali C, Francioso L, Siciliano P, Persaud K, Pisanelli A. Electrical characterization of a pig odorant binding protein by Impedance Spectroscopy. In: IEEE Sensors, 2009. IEEE; 2009. p. 1758–62.

    Google Scholar 

  20. Kuang Z, Kim SN, Crookes-Goodson WJ, Farmer BL, Naik RR. Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. ACS Nano. 2009;4:452–8.

    Article  Google Scholar 

  21. Marshall B, Warr CG, De Bruyne M. Detection of volatile indicators of illicit substances by the olfactory receptors of Drosophila melanogaster. Chem Senses. 2010;35:613–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Strauch M, Lüdke A, Münch D, Laudes T, Galizia CG, Martinelli E, et al. More than apples and oranges-Detecting cancer with a fruit fly’s antenna. Scientific Reports. 2014;4.

    Google Scholar 

  23. Lescop E, Briand L, Pernollet J-C, Guittet E. Structural basis of the broad specificity of a general odorant-binding protein from honeybee. Biochemistry. 2009;48:2431–41.

    Article  CAS  PubMed  Google Scholar 

  24. Kruse SW, Zhao R, Smith DP, Jones DN. Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster. Nat Struct Mol Biol. 2003;10:694–700.

    Article  CAS  Google Scholar 

  25. Golebiowski J, Topin J, Charlier L, Briand L. Interaction between odorants and proteins involved in the perception of smell: the case of odorant-binding proteins probed by molecular modelling and biophysical data. Flavour and Fragrance J. 2012;27:445–53.

    Article  CAS  Google Scholar 

  26. Fan J, Francis F, Liu Y, Chen J, Cheng D. An overview of odorant-binding protein functions in insect peripheral olfactory reception. Genet Mol Res. 2011;10:3056–69.

    Article  CAS  PubMed  Google Scholar 

  27. Forêt S, Maleszka R. Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res. 2006;16:1404–13.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Pelosi P, Calvello M, Ban L. Diversity of odorant-binding proteins and chemosensory proteins in insects. Chem Senses. 2005;30:i291–2.

    Article  CAS  PubMed  Google Scholar 

  29. Alfinito E, Pennetta C, Reggiani L. A network model to correlate conformational change and the impedance spectrum of single proteins. Nanotechnology. 2008;19:065202.

    Article  PubMed  Google Scholar 

  30. Alfinito E, Millithaler J-F, Pennetta C, Reggiani L. A single protein based nanobiosensor for odorant recognition. Microelectron J. 2010;41:718–22.

    Article  CAS  Google Scholar 

  31. Liu Q, Wang H, Li H, Zhang J, Zhuang S, Zhang F, et al. Impedance sensing and molecular modeling of an olfactory biosensor based on chemosensory proteins of honeybee. Biosens Bioelectron. 2013;40:174–9.

    Article  PubMed  Google Scholar 

  32. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinform. 2008;9:40.

    Article  Google Scholar 

  33. Wang X, Corin K, Baaske P, Wienken CJ, Jerabek-Willemsen M, Duhr S, et al. Peptide surfactants for cell-free production of functional G protein-coupled receptors. Proc Natl Acad Sci. 2011;108:9049–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Briand L, Nespoulous C, Perez V, Rémy JJ, Huet JC, Pernollet JC. Ligand-binding properties and structural characterization of a novel rat odorant-binding protein variant. Eur J Biochem. 2000;267:3079–89.

    Article  CAS  PubMed  Google Scholar 

  35. Barou E, Sigoillot M, Bouvet M, Briand L, Meunier-Prest R. Electrochemical detection of the 2-isobutyl-3-methoxypyrazine model odorant based on odorant-binding proteins: The proof of concept. Bioelectrochemistry. 2015;101:28–34.

    Article  CAS  PubMed  Google Scholar 

  36. Parisi M, Mazzini A, Sorbi RT, Ramoni R, Grolli S, Favilla R. Unfolding and refolding of porcine odorant binding protein in guanidinium hydrochloride: equilibrium studies at neutral pH. Biochim Biophys Acta (BBA) Proteins and Proteomics. 2003;1652:115–25.

    Google Scholar 

  37. Li H, Zhang L, Ni C, Shang H, Zhuang S, Li J. Molecular recognition of floral volatile with two olfactory related proteins in the Eastern honeybee (Apis cerana). Int J Biol Macromol. 2013;56:114–21.

    Article  CAS  PubMed  Google Scholar 

  38. Anne A, Demaille C, Moiroux J. Terminal attachment of polyethylene glycol (PEG) chains to a gold electrode surface. Cyclic voltammetry applied to the quantitative characterization of the flexibility of the attached PEG chains and of their penetration by mobile PEG chains. Macromolecules. 2002;35:5578–86.

    Article  CAS  Google Scholar 

  39. Bhargav A, Muller DA, Kendall MA, Corrie SR. Surface modifications of microprojection arrays for improved biomarker capture in the skin of live mice. ACS Appl Mater Interfaces. 2012;4:2483–9.

    Article  CAS  PubMed  Google Scholar 

  40. Herrwerth S, Rosendahl T, Feng C, Fick J, Eck W, Himmelhaus M, et al. Covalent coupling of antibodies to self-assembled monolayers of carboxy-functionalized poly (ethylene glycol): protein resistance and specific binding of biomolecules. Langmuir. 2003;19:1880–7.

    Article  CAS  Google Scholar 

  41. Sun X-L, Stabler CL, Cazalis CS, Chaikof EL. Carbohydrate and protein immobilization onto solid surfaces by sequential Diels-Alder and azide-alkyne cycloadditions. Bioconjug Chem. 2006;17:52–7.

    Article  CAS  PubMed  Google Scholar 

  42. Rodriguez MC, Kawde A-N, Wang J. Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge. Chem Commun. 2005;4267–9.

    Google Scholar 

  43. Lisdat F, Schäfer D. The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem. 2008;391:1555–67.

    Article  CAS  PubMed  Google Scholar 

  44. Apps PJ. Are mammal olfactory signals hiding right under our noses? Naturwissenschaften. 2013;100:487–506.

    Article  CAS  PubMed  Google Scholar 

  45. Fernández-Grandon GM, Girling RD, Poppy GM. Utilizing insect behavior in chemical detection by a behavioral biosensor. J Plant Interact. 2011;6:109–12.

    Article  Google Scholar 

  46. Wehrenfennig C, Schott M, Gasch T, Düring RA, Vilcinskas A, Kohl C-D. On-site airborne pheromone sensing. Anal Bioanal Chem. 2013;405:6389–403.

    Article  CAS  PubMed  Google Scholar 

  47. Briand L, Nespoulous C, Huet JC, Takahashi M, Pernollet JC. Ligand binding and physico-chemical properties of ASP2, a recombinant odorant-binding protein from honeybee (Apis mellifera L.). Eur J Biochem. 2001;268:752–60.

    Article  CAS  PubMed  Google Scholar 

  48. Thomsen R, Christensen MH. MolDock: a new technique for high-accuracy molecular docking. J Med Chem. 2006;49:3315–21.

    Article  CAS  PubMed  Google Scholar 

  49. Carey AF, Carlson JR. Insect olfaction from model systems to disease control. Proc Natl Acad Sci. 2011;108:12987–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Goldman ER, Pazirandeh MP, Charles PT, Balighian ED, Anderson GP. Selection of phage displayed peptides for the detection of 2, 4, 6-trinitrotoluene in seawater. Anal Chim Acta. 2002;457:13–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Science Press, Beijing and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lu, Y., Yao, Y., Liu, Q. (2015). Smell Sensors Based on Odorant Binding Proteins. In: Wang, P., Liu, Q., Wu, C., Hsia, K. (eds) Bioinspired Smell and Taste Sensors. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7333-1_7

Download citation

Publish with us

Policies and ethics