Advertisement

Smell Sensors with Insect Antenna

  • Chunsheng Wu
  • Liping Du
  • Ling Zou
Chapter

Abstract

Biologically inspired sensors utilize highly developed biological olfactory functional components as sensitive elements for the detection of specific chemical compounds. Biological olfactory functional components, including olfactory tissues, olfactory cells, and olfactory receptors, are evolutionary tuned for the detection of environmental chemical compounds. After millions of years of natural evolution process, insect antennae have become special chemical sensing organs with extreme high sensitivity and specificity, which are complex biochemical detection system for the detection of specific volatile organic compounds even at the trace level.

Keywords

Sensor System Olfactory Receptor Sensitive Element Specific Chemical Compound Olfactory Sensory Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schülz S. The chemistry of pheromones and other semiochemicals. In: Schülz IS, editor. Berlin Heidelberg: Springer; 2010.Google Scholar
  2. 2.
    Ridgway K, Lalljie SPD, Smith RM. Analysis of food taints and off-flavours: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2010;27(2):146–68.CrossRefPubMedGoogle Scholar
  3. 3.
    Keil TA. Morphology and development of the peripheral olfactory organs. In: Hansson BS, editor. In Insect olfaction. Heidelberg: Springer; 1999. pp. 5–47.Google Scholar
  4. 4.
    Rutzler M, Zwiebel LJ. Molecular biology of insect olfaction: recent progress and conceptual models. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005;191(9):777–90.CrossRefPubMedGoogle Scholar
  5. 5.
    Glatz R, Bailey-Hill K. Mimicking nature’s noses: from receptor deorphaning to olfactory biosensing. Prog Neurobiol. 2011;93(2):270–96.CrossRefPubMedGoogle Scholar
  6. 6.
    Stengl M, Ziegelberger G, Boekhoff I, Krieger J. Perireceptor events and transduction mechanisms in insect olfaction. In: Hansson BS, editor. In Insect olfaction. Heidelberg: Springer; 1999. pp. 49–66.Google Scholar
  7. 7.
    Brossut R. Phéromones : la communication chimique chez les animaux. Paris: CNRS Éditions; 1996.Google Scholar
  8. 8.
    Schott M, Wehrenfennig C, Gasch T, Vilcinskas A. Insect antenna-based biosensors for in situ detection of volatiles, in Yellow Biotechnology Ii: Insect Biotechnology in Plant Protection and Industry, Vilcinskas A editor. 2013. p. 101–122.Google Scholar
  9. 9.
    Martini R. Fine-structure and development of the large sensilla basiconica on the antennae of sphecid wasps. Tissue Cell. 1986;18(1):143–51.CrossRefPubMedGoogle Scholar
  10. 10.
    Leal WS. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol. 2013;58:58373–91.CrossRefGoogle Scholar
  11. 11.
    Schutz S, Weissbecker B, Hummel HE, Apel KH, Schmitz H, Bleckmann H. Insect antenna as a smoke detector. Nature. 1999;398(6725):298–9.CrossRefGoogle Scholar
  12. 12.
    Schneide D, Block BC, Boeckh J, Priesner E. Die reaktion der mannlichen seidenspinner auf bombykol und seine isomeren0electroantennogramm und verhal ten. Zeitschrift Fur Vergleichende Physiologie, 1967. 54(2): 192-&.Google Scholar
  13. 13.
    Schneider D, Mikro-Elektroden registrieren die elektrischen Impulse einzelner Sinnesnervenzellen der Antenne des Seidenspinners Bombyx mori L. Industrie-Elektronik, 1955. pp. 53–7.Google Scholar
  14. 14.
    Schutz S, Weissbecker B, Hummel HE. Biosensor for volatiles released by damaged plants. Biosens Bioelectron. 1996;11(4):427–33.CrossRefGoogle Scholar
  15. 15.
    Malo EA, Renou M, Guerrero A. Analytical studies of Spodoptera littoralis sex pheromone components by electroantennography and coupled gas chromatography-electroantennographic detection. Talanta. 2000;52(3):525–32.CrossRefPubMedGoogle Scholar
  16. 16.
    Behrend K. Olfaction under water and in air by water beetle dytiscus-marginalis L. Zeitschrift Fur Vergleichende Physiologie. 1971;75(1):108–000.CrossRefGoogle Scholar
  17. 17.
    Schügerl K, Sensor-Meßtechniken in der biotechnologischen Forschung und Industrie. Naturwissenschaften. 1985. pp. 72400–407.Google Scholar
  18. 18.
    Schutz S, Weissbecker B, Hummel HE, Schoning MJ, Riemer A, Kordos P, Luth H. Field effect transistor-insect antenna junction. Naturwissenschaften. 1997;84(2):86–8.CrossRefGoogle Scholar
  19. 19.
    Schoning MJ, Schutz S, Schroth P, Weissbecker B, Steffen A, Kordos P, Hummel HE, Luth H. A BioFET on the basis of intact insect antennae. Sens Actuators B-Chem. 1998;47(1–3):235–8.CrossRefGoogle Scholar
  20. 20.
    Schroth P, Schoning MJ, Luth H, Weissbecker B, Hummel HE, Schutz S. Extending the capabilities of an antenna/chip biosensor by employing various insect species. Sens Actuators B-Chem. 2001;78(1–3):1–5.CrossRefGoogle Scholar
  21. 21.
    Weißbecker B, Schütz S. Insect olfaction as a natural blueprint of gas sensors?. Berlin Heidelberg: Springer; 2013.CrossRefGoogle Scholar
  22. 22.
    Kaissling KE, Thorson J. Insect olfactory sensilla : structural, chemical and electrical aspects of the functional organization. In: Sattelle DB, Hall LM, Hildebrand JG, editors. Receptors for neurotransmitters, hormones and pheromones in insects. Amsterdam: Elsevier; 1980. pp. 261–282.Google Scholar
  23. 23.
    Dickens JC, Payne TL, Ryker LC, Rudinsky JA. Single cell responses of the Douglas-fir beetle, Dendroctanus pseudotsugae Hopkins (Coleoptera: Scolytidae) to pheromones and host odors. J Chem Ecol. 1984. pp. 10583–600.Google Scholar
  24. 24.
    Mustaparta H, Tommeras BA, Baeckstrom P, Bakke JM, Ohloff G. Ipsdienol-specific receptor cells in bark beetles: structure-activity relationships of various analogues and of deuteriumlabelled ipsdienol. J Comp Physiol A 1984. 1545591–595.Google Scholar
  25. 25.
    Kaissling KE. Structures of odour molecules and multiple activities of receptor cells. In: Magnen JL, MacLeod P, editors. International symposium on olfaction and taste. 1977. London: Information Retrieval; pp. 9–16.Google Scholar
  26. 26.
    Leal WS. Pheromone reception. Top Curr Chem. 2005: 240:2401–36.Google Scholar
  27. 27.
    Miller JR, Mori K, Roelofs WL. Gypsy moth (lepidoptera-lymantriidae) field trapping and electroantennogram studies with pheromone enantiomers. J Insect Physiol. 1977;23(11–1):1447–53.CrossRefGoogle Scholar
  28. 28.
    Todd JL, Baker TC. Function of peripheral olfactory organs. In: Hansson BS, editor. Insect olfaction. Heidelberg: Springer; 1999. p. 67–96.Google Scholar
  29. 29.
    Schroth P, Schoning MJ, Kordos P, Luth H, Schutz S, Weissbecker B, Hummel HE. Insect-based BioFETs with improved signal characteristics. Biosens Bioelectron. 1999;14(3):303–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Schutz S, Schoning MJ, Schroth P, Malkoc U, Weissbecker B, Kordos P, Luth H, Hummel HE. An insect-based BioFET as a bioelectronic nose. Sens Actuators B-Chem. 2000;65(1–3):291–5.CrossRefGoogle Scholar
  31. 31.
    Huotari MJ. Biosensing by insect olfactory receptor neurons. Sens Actuators B-Chem. 2000;71(3):212–22.CrossRefGoogle Scholar
  32. 32.
    Roelofs WL. Electroantennogram assays: rapid and convenient screening procedures for pheromones. In: Hummel H, Miller T, editors. Techniques in pheromone research. New York: Springer; 1984. pp. 131–159.Google Scholar
  33. 33.
    Koch UT, Carde AM, Carde RT. Calibration of an EAG system to measure airborne concentration of pheromone formulated for mating disruption of the pink bollworm moth, Pectinophora gossypiella (Saunders) (Lep., Gelechiidae). J Appl Entomol-Zeitschrift Fur Angewandte Entomologie. 2002; 126(7–8): 431-435.Google Scholar
  34. 34.
    Karg G, Suckling DM, Bradley SJ. Defining interaction between electroantennogram responses of Epiphyas postvittana (Lepidoptera: Tortricidae) to pheromone and other volatiles. J Insect Physiol. 1997;43(2):179–87.CrossRefPubMedGoogle Scholar
  35. 35.
    Ai J. Solid phase microextraction in headspace analysis. dynamics in non-steady state mass transfer. Anal Chem. 1998;70(22):4822–6.CrossRefGoogle Scholar
  36. 36.
    Schutz S, Weissbecker B, Koch UT, Hummel HE. Detection of volatiles released by diseased potato tubers using a biosensor on the basis of intact insect antennae. Biosens Bioelectron. 1999;14(2):221–8.CrossRefGoogle Scholar
  37. 37.
    Weissbecker B, Schutz S, Klein A, Hummel HE. Analysis of volatiles emitted by potato plants by means of a Colorado beetle electroantennographic detector. Talanta. 1997;44(12):2217–24.CrossRefPubMedGoogle Scholar
  38. 38.
    Evans WG. Infra-red receptors in melanophila accuminata degeer. Nature. 1964;202(492):211–000.CrossRefPubMedGoogle Scholar
  39. 39.
    Linsley EG. Attraction of Melanophila beetles by fire and smoke. J Econ Entomol. 1943; 36341–342.Google Scholar
  40. 40.
    Schmitz H, Bleckmann H, Murtz M. Infrared detection in a beetle. Nature. 1997;386(6627):773–4.CrossRefGoogle Scholar
  41. 41.
    Sloop KD. Buprestid beetles belonging to the genus Melanophila (Goleotera, Buprestidae). University of California, Berkeley: Public Entomology; 1937. pp. 71–20.Google Scholar
  42. 42.
    Vondran T, Apel KH, Schmitz H. The infrared receptor of Melanophila acuminata De Geer (Coleoptera: Buprestidae): Ultrastructural study of a unique insect thermoreceptor and its possible descent from a hair mechanoreceptor. Tissue Cell. 1995;27(6):645–58.CrossRefPubMedGoogle Scholar
  43. 43.
    Manee A. Observations on buprestidae at southern pines. North Carolina: Entomology News; 1913. pp. 24167–171.Google Scholar
  44. 44.
    Sagebiel JC, Seiber JN. Studies on the occurrence and distribution of wood smoke marker compounds in foggy atmospheres. Environ Toxicol Chem. 1993;12(5):813–22.CrossRefGoogle Scholar
  45. 45.
    Edye LA, Richards GN. Analysis of condensates from wood smoke-components derived from polysaccharides and lignins. Environ Sci Technol. 1991;25(6):1133–7.CrossRefGoogle Scholar
  46. 46.
    Bossert WH, Wilson EO. Analysis of olfactory communication among animals. J Theor Biol. 1963;5(3):443–000.CrossRefPubMedGoogle Scholar

Copyright information

© Science Press, Beijing and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Zhejiang UniversityHangzhouChina

Personalised recommendations