Advertisement

Olfactory Cell-Based Smell Sensors

Chapter
  • 1.1k Downloads

Abstract

Olfaction is initiated by the target chemical molecules binding to their corresponding receptors or ion channels. Subsequently, through cellular signaling pathways, chemical signals are translated to electrical signals.

Keywords

Olfactory Receptor Olfactory Epithelium Odorant Receptor Odorant Molecule Odorant Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Liu Q, Cai H, Xu Y, Li Y, Li R, Wang P. Olfactory cell-based biosensor: a first step towards a neurochip of bioelectronic nose. Biosens Bioelectron. 2006;22:318–22.CrossRefPubMedGoogle Scholar
  2. 2.
    Liu Q, Wu C, Cai H, Hu N, Zhou J, Wang P. Cell-based biosensors and their application in biomedicine. Chem Rev. 2014;114:6423–61.CrossRefPubMedGoogle Scholar
  3. 3.
    Maher M, Pine J, Wright J, Tai Y-C. The neurochip: a new multielectrode device for stimulating and recording from cultured neurons. J Neurosci Methods. 1999;87:45–56.CrossRefPubMedGoogle Scholar
  4. 4.
    Lee SH, Ko HJ, Park TH. Real-time monitoring of odorant-induced cellular reactions using surface plasmon resonance. Biosens Bioelectron. 2009;25:55–60.CrossRefPubMedGoogle Scholar
  5. 5.
    Göpel W. From electronic to bioelectronic olfaction, or: from artificial “moses” to real noses. Sensors Actuators B: Chem. 2000;65:70–2.CrossRefGoogle Scholar
  6. 6.
    Gopal KV. Neurotoxic effects of mercury on auditory cortex networks growing on microelectrode arrays: a preliminary analysis. Neurotoxicol Teratol. 2003;25:69–76.CrossRefPubMedGoogle Scholar
  7. 7.
    Fromherz P. Semiconductor chips with ion channels, nerve cells and brain. Physica E. 2003;16:24–34.CrossRefGoogle Scholar
  8. 8.
    Neher E. Molecular biology meets microelectronics. Nat Biotechnol. 2001;19:114.Google Scholar
  9. 9.
    Yang S, Choi S-h, Jung MY, Song K, Park JW. An addressable cell array for a platform of biosensor chips. Nano-Bio Sensing, Imaging and Spectroscopy: International Society for Optics and Photonics; 2013. p. 88790 W-W-5.Google Scholar
  10. 10.
    Lee SH, Jeong SH, Jun SB, Kim SJ, Park TH. Enhancement of cellular olfactory signal by electrical stimulation. Electrophoresis. 2009;30:3283–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Liu Q, Ye W, Hu N, Cai H, Yu H, Wang P. Olfactory receptor cells respond to odors in a tissue and semiconductor hybrid neuron chip. Biosens Bioelectron. 2010;26:1672–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Marrakchi M, Vidic J, Jaffrezic-Renault N, Martelet C, Pajot-Augy E. A new concept of olfactory biosensor based on interdigitated microelectrodes and immobilized yeasts expressing the human receptor OR17-40. Eur Biophys J. 2007;36:1015–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Minic J, Persuy MA, Godel E, Aioun J, Connerton I, Salesse R, et al. Functional expression of olfactory receptors in yeast and development of a bioassay for odorant screening. FEBS J. 2005;272:524–37.CrossRefPubMedGoogle Scholar
  14. 14.
    Sung JH, Ko HJ, Park TH. Piezoelectric biosensor using olfactory receptor protein expressed in Escherichia coli. Biosens Bioelectron. 2006;21:1981–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Pixley SK, Pun RY. Cultured rat olfactory neurons are excitable and respond to odors. Dev Brain Res. 1990;53:125–30.CrossRefGoogle Scholar
  16. 16.
    Laurent G. A systems perspective on early olfactory coding. Science. 1999;286:723–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Narusuye K, Kawai F, Miyachi E-i. Spike encoding of olfactory receptor cells. Neurosci Res. 2003;46:407–13.CrossRefPubMedGoogle Scholar
  18. 18.
    Matthews HR, Reisert J. Calcium, the two-faced messenger of olfactory transduction and adaptation. Curr Opin Neurobiol. 2003;13:469–75.CrossRefPubMedGoogle Scholar
  19. 19.
    Dougherty DP, Wright GA, Yew AC. Computational model of the cAMP-mediated sensory response and calcium-dependent adaptation in vertebrate olfactory receptor neurons. Proc Natl Acad Sci USA. 2005;102:10415–20.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Hafeman DG, Parce JW, McConnell HM. Light-addressable potentiometric sensor for biochemical systems. Science. 1988;240:1182–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Ismail ABM, Yoshinobu T, Iwasaki H, Sugihara H, Yukimasa T, Hirata I, et al. Investigation on light-addressable potentiometric sensor as a possible cell–semiconductor hybrid. Biosens Bioelectron. 2003;18:1509–14.CrossRefPubMedGoogle Scholar
  22. 22.
    Stein B, George M, Gaub H, Parak W. Extracellular measurements of averaged ionic currents with the light-addressable potentiometric sensor (LAPS). Sensors Actuators B: Chem. 2004;98:299–304.CrossRefGoogle Scholar
  23. 23.
    Fromherz P. Electrical interfacing of nerve cells and semiconductor chips. ChemPhysChem. 2002;3:276–84.CrossRefPubMedGoogle Scholar
  24. 24.
    Brody CD, Hopfield J. Simple networks for spike-timing-based computation, with application to olfactory processing. Neuron. 2003;37:843–52.CrossRefPubMedGoogle Scholar
  25. 25.
    Fromherz P. Sheet conductor model of brain slices for stimulation and recording with planar electronic contacts. Eur Biophys J. 2002;31:228–31.CrossRefPubMedGoogle Scholar
  26. 26.
    Bayliss S, Buckberry L, Fletcher I, Tobin M. The culture of neurons on silicon. Sensors Actuators A. 1999;74:139–42.CrossRefGoogle Scholar
  27. 27.
    Lakard S, Herlem G, Valles-Villareal N, Michel G, Propper A, Gharbi T, et al. Culture of neural cells on polymers coated surfaces for biosensor applications. Biosens Bioelectron. 2005;20:1946–54.CrossRefPubMedGoogle Scholar
  28. 28.
    Du L, Zou L, Wang Q, Zhao L, Huang L, Wang P, et al. A novel biomimetic olfactory cell-based biosensorwith DNA-directed site-specific immobilization of cells on a microelectrode array. Sensors Actuators B: Chem. 2014.Google Scholar
  29. 29.
    Ko HJ, Park TH. Piezoelectric olfactory biosensor: ligand specificity and dose-dependence of an olfactory receptor expressed in a heterologous cell system. Biosens Bioelectron. 2005;20:1327–32.CrossRefPubMedGoogle Scholar
  30. 30.
    Touhara K, Sengoku S, Inaki K, Tsuboi A, Hirono J, Sato T, et al. Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc Natl Acad Sci. 1999;96:4040–5.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Zhuang H, Matsunami H. Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nat Protoc. 2008;3:1402–13.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Tanada N, Sakurai T, Mitsuno H, Bakkum DJ, Kanzaki R, Takahashi H. Dissociated neuronal culture expressing ionotropic odorant receptors as a hybrid odorant biosensor—proof-of-concept study. Analyst. 2012;137:3452–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Ingebrandt S, Yeung C-K, Krause M, Offenhäusser A. Cardiomyocyte-transistor-hybrids for sensor application. Biosens Bioelectron. 2001;16:565–70.CrossRefPubMedGoogle Scholar
  34. 34.
    Xu G, Ye X, Qin L, Xu Y, Li Y, Li R, et al. Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosens Bioelectron. 2005;20:1757–63.CrossRefPubMedGoogle Scholar
  35. 35.
    Lee SH, Jun SB, Ko HJ, Kim SJ, Park TH. Cell-based olfactory biosensor using microfabricated planar electrode. Biosens Bioelectron. 2009;24:2659–64.CrossRefPubMedGoogle Scholar
  36. 36.
    Skipwith Jr AC, Sosin E, Nelson N, Prakash S, Abshire P. Biosensors for olfactory cell monitoring.Google Scholar
  37. 37.
    Qintao Z, Ping W, Parak WJ, George M, Zhang G. A novel design of multi-light LAPS based on digital compensation of frequency domain. Sensors Actuators B: Chem. 2001;73:152–6.CrossRefGoogle Scholar
  38. 38.
    MacLeod K, Laurent G. Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies. Science. 1996;274:976–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Oh EH, Lee SH, Lee SH, Ko HJ, Park TH. Cell-based high-throughput odorant screening system through visualization on a microwell array. Biosens Bioelectron. 2014;53:18–25.CrossRefPubMedGoogle Scholar
  40. 40.
    Radhika V, Proikas-Cezanne T, Jayaraman M, Onesime D, Ha JH, Dhanasekaran DN. Chemical sensing of DNT by engineered olfactory yeast strain. Nat Chem Biol. 2007;3:325–30.CrossRefPubMedGoogle Scholar
  41. 41.
    HyunáLim J, JunáJin H, HunáLee S, HyunáPark T. A bioelectronic sensor based on canine olfactory nanovesicle–carbon nanotube hybrid structures for the fast assessment of food quality. Analyst. 2012;137:3249–54.CrossRefGoogle Scholar
  42. 42.
    D’Amico A, Di Natale C, Paolesse R, Macagnano A, Martinelli E, Pennazza G, et al. Olfactory systems for medical applications. Sensors Actuators B: Chem. 2008;130:458–65.CrossRefGoogle Scholar
  43. 43.
    Cornu J-N, Cancel-Tassin G, Ondet V, Girardet C, Cussenot O. Olfactory detection of prostate cancer by dogs sniffing urine: a step forward in early diagnosis. Eur Urol. 2011;59:197–201.CrossRefPubMedGoogle Scholar
  44. 44.
    Lippi G, Cervellin G. Canine olfactory detection of cancer versus laboratory testing: myth or opportunity? Clin Chem Lab Med. 2012;50:435–9.PubMedGoogle Scholar
  45. 45.
    McCulloch M, Jezierski T, Broffman M, Hubbard A, Turner K, Janecki T. Diagnostic accuracy of canine scent detection in early-and late-stage lung and breast cancers. Integr Cancer Ther. 2006;5:30–9.CrossRefPubMedGoogle Scholar

Copyright information

© Science Press, Beijing and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Zhejiang UniversityHangzhouChina
  2. 2.Biosensor National Special Labaratory, Department of Biomedical EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations