Skip to main content

Olfactory Cell-Based Smell Sensors

  • Chapter
  • First Online:
  • 1247 Accesses

Abstract

Olfaction is initiated by the target chemical molecules binding to their corresponding receptors or ion channels. Subsequently, through cellular signaling pathways, chemical signals are translated to electrical signals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Liu Q, Cai H, Xu Y, Li Y, Li R, Wang P. Olfactory cell-based biosensor: a first step towards a neurochip of bioelectronic nose. Biosens Bioelectron. 2006;22:318–22.

    Article  CAS  PubMed  Google Scholar 

  2. Liu Q, Wu C, Cai H, Hu N, Zhou J, Wang P. Cell-based biosensors and their application in biomedicine. Chem Rev. 2014;114:6423–61.

    Article  CAS  PubMed  Google Scholar 

  3. Maher M, Pine J, Wright J, Tai Y-C. The neurochip: a new multielectrode device for stimulating and recording from cultured neurons. J Neurosci Methods. 1999;87:45–56.

    Article  CAS  PubMed  Google Scholar 

  4. Lee SH, Ko HJ, Park TH. Real-time monitoring of odorant-induced cellular reactions using surface plasmon resonance. Biosens Bioelectron. 2009;25:55–60.

    Article  CAS  PubMed  Google Scholar 

  5. Göpel W. From electronic to bioelectronic olfaction, or: from artificial “moses” to real noses. Sensors Actuators B: Chem. 2000;65:70–2.

    Article  Google Scholar 

  6. Gopal KV. Neurotoxic effects of mercury on auditory cortex networks growing on microelectrode arrays: a preliminary analysis. Neurotoxicol Teratol. 2003;25:69–76.

    Article  CAS  PubMed  Google Scholar 

  7. Fromherz P. Semiconductor chips with ion channels, nerve cells and brain. Physica E. 2003;16:24–34.

    Article  Google Scholar 

  8. Neher E. Molecular biology meets microelectronics. Nat Biotechnol. 2001;19:114.

    Google Scholar 

  9. Yang S, Choi S-h, Jung MY, Song K, Park JW. An addressable cell array for a platform of biosensor chips. Nano-Bio Sensing, Imaging and Spectroscopy: International Society for Optics and Photonics; 2013. p. 88790 W-W-5.

    Google Scholar 

  10. Lee SH, Jeong SH, Jun SB, Kim SJ, Park TH. Enhancement of cellular olfactory signal by electrical stimulation. Electrophoresis. 2009;30:3283–8.

    Article  CAS  PubMed  Google Scholar 

  11. Liu Q, Ye W, Hu N, Cai H, Yu H, Wang P. Olfactory receptor cells respond to odors in a tissue and semiconductor hybrid neuron chip. Biosens Bioelectron. 2010;26:1672–8.

    Article  CAS  PubMed  Google Scholar 

  12. Marrakchi M, Vidic J, Jaffrezic-Renault N, Martelet C, Pajot-Augy E. A new concept of olfactory biosensor based on interdigitated microelectrodes and immobilized yeasts expressing the human receptor OR17-40. Eur Biophys J. 2007;36:1015–8.

    Article  CAS  PubMed  Google Scholar 

  13. Minic J, Persuy MA, Godel E, Aioun J, Connerton I, Salesse R, et al. Functional expression of olfactory receptors in yeast and development of a bioassay for odorant screening. FEBS J. 2005;272:524–37.

    Article  CAS  PubMed  Google Scholar 

  14. Sung JH, Ko HJ, Park TH. Piezoelectric biosensor using olfactory receptor protein expressed in Escherichia coli. Biosens Bioelectron. 2006;21:1981–6.

    Article  CAS  PubMed  Google Scholar 

  15. Pixley SK, Pun RY. Cultured rat olfactory neurons are excitable and respond to odors. Dev Brain Res. 1990;53:125–30.

    Article  CAS  Google Scholar 

  16. Laurent G. A systems perspective on early olfactory coding. Science. 1999;286:723–8.

    Article  CAS  PubMed  Google Scholar 

  17. Narusuye K, Kawai F, Miyachi E-i. Spike encoding of olfactory receptor cells. Neurosci Res. 2003;46:407–13.

    Article  CAS  PubMed  Google Scholar 

  18. Matthews HR, Reisert J. Calcium, the two-faced messenger of olfactory transduction and adaptation. Curr Opin Neurobiol. 2003;13:469–75.

    Article  CAS  PubMed  Google Scholar 

  19. Dougherty DP, Wright GA, Yew AC. Computational model of the cAMP-mediated sensory response and calcium-dependent adaptation in vertebrate olfactory receptor neurons. Proc Natl Acad Sci USA. 2005;102:10415–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hafeman DG, Parce JW, McConnell HM. Light-addressable potentiometric sensor for biochemical systems. Science. 1988;240:1182–5.

    Article  CAS  PubMed  Google Scholar 

  21. Ismail ABM, Yoshinobu T, Iwasaki H, Sugihara H, Yukimasa T, Hirata I, et al. Investigation on light-addressable potentiometric sensor as a possible cell–semiconductor hybrid. Biosens Bioelectron. 2003;18:1509–14.

    Article  CAS  PubMed  Google Scholar 

  22. Stein B, George M, Gaub H, Parak W. Extracellular measurements of averaged ionic currents with the light-addressable potentiometric sensor (LAPS). Sensors Actuators B: Chem. 2004;98:299–304.

    Article  CAS  Google Scholar 

  23. Fromherz P. Electrical interfacing of nerve cells and semiconductor chips. ChemPhysChem. 2002;3:276–84.

    Article  CAS  PubMed  Google Scholar 

  24. Brody CD, Hopfield J. Simple networks for spike-timing-based computation, with application to olfactory processing. Neuron. 2003;37:843–52.

    Article  CAS  PubMed  Google Scholar 

  25. Fromherz P. Sheet conductor model of brain slices for stimulation and recording with planar electronic contacts. Eur Biophys J. 2002;31:228–31.

    Article  PubMed  Google Scholar 

  26. Bayliss S, Buckberry L, Fletcher I, Tobin M. The culture of neurons on silicon. Sensors Actuators A. 1999;74:139–42.

    Article  CAS  Google Scholar 

  27. Lakard S, Herlem G, Valles-Villareal N, Michel G, Propper A, Gharbi T, et al. Culture of neural cells on polymers coated surfaces for biosensor applications. Biosens Bioelectron. 2005;20:1946–54.

    Article  CAS  PubMed  Google Scholar 

  28. Du L, Zou L, Wang Q, Zhao L, Huang L, Wang P, et al. A novel biomimetic olfactory cell-based biosensorwith DNA-directed site-specific immobilization of cells on a microelectrode array. Sensors Actuators B: Chem. 2014.

    Google Scholar 

  29. Ko HJ, Park TH. Piezoelectric olfactory biosensor: ligand specificity and dose-dependence of an olfactory receptor expressed in a heterologous cell system. Biosens Bioelectron. 2005;20:1327–32.

    Article  CAS  PubMed  Google Scholar 

  30. Touhara K, Sengoku S, Inaki K, Tsuboi A, Hirono J, Sato T, et al. Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc Natl Acad Sci. 1999;96:4040–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Zhuang H, Matsunami H. Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nat Protoc. 2008;3:1402–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Tanada N, Sakurai T, Mitsuno H, Bakkum DJ, Kanzaki R, Takahashi H. Dissociated neuronal culture expressing ionotropic odorant receptors as a hybrid odorant biosensor—proof-of-concept study. Analyst. 2012;137:3452–8.

    Article  CAS  PubMed  Google Scholar 

  33. Ingebrandt S, Yeung C-K, Krause M, Offenhäusser A. Cardiomyocyte-transistor-hybrids for sensor application. Biosens Bioelectron. 2001;16:565–70.

    Article  CAS  PubMed  Google Scholar 

  34. Xu G, Ye X, Qin L, Xu Y, Li Y, Li R, et al. Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosens Bioelectron. 2005;20:1757–63.

    Article  CAS  PubMed  Google Scholar 

  35. Lee SH, Jun SB, Ko HJ, Kim SJ, Park TH. Cell-based olfactory biosensor using microfabricated planar electrode. Biosens Bioelectron. 2009;24:2659–64.

    Article  CAS  PubMed  Google Scholar 

  36. Skipwith Jr AC, Sosin E, Nelson N, Prakash S, Abshire P. Biosensors for olfactory cell monitoring.

    Google Scholar 

  37. Qintao Z, Ping W, Parak WJ, George M, Zhang G. A novel design of multi-light LAPS based on digital compensation of frequency domain. Sensors Actuators B: Chem. 2001;73:152–6.

    Article  CAS  Google Scholar 

  38. MacLeod K, Laurent G. Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies. Science. 1996;274:976–9.

    Article  CAS  PubMed  Google Scholar 

  39. Oh EH, Lee SH, Lee SH, Ko HJ, Park TH. Cell-based high-throughput odorant screening system through visualization on a microwell array. Biosens Bioelectron. 2014;53:18–25.

    Article  CAS  PubMed  Google Scholar 

  40. Radhika V, Proikas-Cezanne T, Jayaraman M, Onesime D, Ha JH, Dhanasekaran DN. Chemical sensing of DNT by engineered olfactory yeast strain. Nat Chem Biol. 2007;3:325–30.

    Article  CAS  PubMed  Google Scholar 

  41. HyunáLim J, JunáJin H, HunáLee S, HyunáPark T. A bioelectronic sensor based on canine olfactory nanovesicle–carbon nanotube hybrid structures for the fast assessment of food quality. Analyst. 2012;137:3249–54.

    Article  Google Scholar 

  42. D’Amico A, Di Natale C, Paolesse R, Macagnano A, Martinelli E, Pennazza G, et al. Olfactory systems for medical applications. Sensors Actuators B: Chem. 2008;130:458–65.

    Article  Google Scholar 

  43. Cornu J-N, Cancel-Tassin G, Ondet V, Girardet C, Cussenot O. Olfactory detection of prostate cancer by dogs sniffing urine: a step forward in early diagnosis. Eur Urol. 2011;59:197–201.

    Article  PubMed  Google Scholar 

  44. Lippi G, Cervellin G. Canine olfactory detection of cancer versus laboratory testing: myth or opportunity? Clin Chem Lab Med. 2012;50:435–9.

    CAS  PubMed  Google Scholar 

  45. McCulloch M, Jezierski T, Broffman M, Hubbard A, Turner K, Janecki T. Diagnostic accuracy of canine scent detection in early-and late-stage lung and breast cancers. Integr Cancer Ther. 2006;5:30–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Science Press, Beijing and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lu, Y., Liu, Q. (2015). Olfactory Cell-Based Smell Sensors. In: Wang, P., Liu, Q., Wu, C., Hsia, K. (eds) Bioinspired Smell and Taste Sensors. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7333-1_3

Download citation

Publish with us

Policies and ethics