Electronic Nose and Electronic Tongue



The sensations of smell and taste resulting from a series of specific and nonspecific molecular recognition can be used as an analytical tool in many industries to measure the quality of food, drinks, and chemical products. In a few cases, there are olfactory receptor s or gustatory receptors which are specific for individual chemical molecules. However, most tastes and odorants are identified through a synthesis of the global chemical information from nonspecific interactions. Taking mammalian gustation as an example, the combination of “gustatory buds” which respond to five taste categories : sour , sweet , bitter , salty , and umami creates a distinct pattern for each taste.


Partial Little Square Linear Discriminant Analysis Surface Acoustic Wave Partial Little Square Regression Quartz Crystal Microbalance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gardner JW, Bartlett PN. Electronic noses: principles and applications, vol. 233. New York: Oxford University Press; 1999.Google Scholar
  2. 2.
    Turner AP, Magan N. Electronic noses and disease diagnostics. Nat Rev Microbiol. 2004;2(2):161–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Ampuero S, Bosset J. The electronic nose applied to dairy products: a review. Sensors Actuators B: Chem. 2003;94(1):1–12.CrossRefGoogle Scholar
  4. 4.
    Ahn M-W, Park K-S, Heo J-H, Park J-G, Kim D-W, Choi K, Lee J-H, Hong S-H. Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl Phys Lett. 2008;93(26):263103.CrossRefGoogle Scholar
  5. 5.
    Bie L-J, Yan X-N, Yin J, Duan Y-Q, Yuan Z-H. Nanopillar ZnO gas sensor for hydrogen and ethanol. Sensors Actuators B: Chem. 2007;126(2):604–8.CrossRefGoogle Scholar
  6. 6.
    Waitz T, Wagner T, Kohl C-D, Tiemann M. New mesoporous metal oxides as gas sensors. Stud Surf Sci Catal. 2008;174:401–04.Google Scholar
  7. 7.
    Li X-L, Lou T-J, Sun X-M, Li Y-D. Highly sensitive WO3 hollow-sphere gas sensors. Inorg Chem. 2004;43(17):5442–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Kang W, Kim C. Novel platinum-tin oxide-silicon nitride-silicon dioxide-silicon gas sensing component for oxygen and carbon monoxide gases at low temperature. Appl Phys Lett. 1993;63(3):421–3.CrossRefGoogle Scholar
  9. 9.
    Arbab A, Spetz A, Lundström I. Gas sensors for high temperature operation based on metal oxide silicon carbide (MOSiC) devices. Sensors Actuators B: Chem. 1993;15(1):19–23.CrossRefGoogle Scholar
  10. 10.
    Karunagaran B, Uthirakumar P, Chung S, Velumani S, Suh E-K. TiO2thin film gas sensor for monitoring ammonia. Mater Charact. 2007;58(8):680–4.CrossRefGoogle Scholar
  11. 11.
    Mor GK, Carvalho MA, Varghese OK, Pishko MV, Grimes CA. A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J Mater Res. 2004;19(02):628–34.CrossRefGoogle Scholar
  12. 12.
    Slater JM, Paynter J, Watt E. Multi-layer conducting polymer gas sensor arrays for olfactory sensing. Analyst. 1993;118(4):379–84.CrossRefGoogle Scholar
  13. 13.
    Freund MS, Lewis NS. A chemically diverse conducting polymer-based “electronic nose”. Proc Natl Acad Sci. 1995;92(7):2652–6.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Bartlett PN, Ling-Chung SK. Conducting polymer gas sensors Part III: Results for four different polymers and five different vapours. Sensors Actuators. 1989;20(3):287–92.CrossRefGoogle Scholar
  15. 15.
    Ridgway C, Chambers J, Portero-Larragueta E, Prosser O. Detection of mite infestation in wheat by electronic nose with transient flow sampling. J Sci Food Agric. 1999;79(15):2067–74.CrossRefGoogle Scholar
  16. 16.
    Lippitsch ME, Pusterhofer J, Leiner MJ, Wolfbeis OS. Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier. Analytica Chimica Acta. 1988: 2051–6.Google Scholar
  17. 17.
    Posch HE, Wolfbeis OS. Optical sensor for hydrogen peroxide. Microchim Acta. 1989;97(1–2):41–50.CrossRefGoogle Scholar
  18. 18.
    Gehrich JL, Lubbers DW, Opitz N, Hansmann DR, Miller WW, Tusa JK, Yafuso M. Optical fluorescence and its application to an intravascular blood gas monitoring system. IEEE Trans Biomed Eng. 1986;2:117–32.CrossRefGoogle Scholar
  19. 19.
    Johnson SR, Sutter JM, Engelhardt HL, Jurs PC, White J, Kauer JS, Dickinson TA, Walt DR. Identification of multiple analytes using an optical sensor array and pattern recognition neural networks. Anal Chem. 1997;69(22):4641–8.CrossRefGoogle Scholar
  20. 20.
    Chodavarapu VP, Shubin DO, Bukowski RM, Titus AH, Cartwright AN, Bright FV. CMOS-based phase fluorometric oxygen sensor system. IEEE Trans Circuits Syst I: Regul Pap. 2007;54(1):111–8.CrossRefGoogle Scholar
  21. 21.
    Liedberg B, Nylander C, Lunström I. Surface plasmon resonance for gas detection and biosensing. Sensors Actuators. 1983: 4299–304.Google Scholar
  22. 22.
    Manera M, Montagna G, Ferreiro-Vila E, González-García L, Sánchez-Valencia J, González-Elipe A, Cebollada A, Garcia-Martin JM, García-Martín A, Armelles G. Enhanced gas sensing performance of TiO2 functionalized magneto-optical SPR sensors. J Mater Chem. 2011;21(40):16049–56.CrossRefGoogle Scholar
  23. 23.
    Krantz-Rülcker C, Stenberg M, Winquist F, Lundström I. Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition: a review. Anal Chim Acta. 2001;426(2):217–26.CrossRefGoogle Scholar
  24. 24.
    Shlens J. A tutorial on principal component analysis. arXiv preprint arXiv:1404.1100, 2014.
  25. 25.
    Martínez AM, Kak AC. Pca versus lda. IEEE Trans Pattern Anal Mach Intell. 2001;23(2):228–33.CrossRefGoogle Scholar
  26. 26.
    Escuder-Gilabert L, Peris M. Review: highlights in recent applications of electronic tongues in food analysis. Anal Chim Acta. 2010;665(1):15–25.PubMedCrossRefGoogle Scholar
  27. 27.
    Vlasov Y, Legin A, Rudnitskaya A, Di Natale C. D’amico A. Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids (IUPAC Technical Report). Pure Appl Chem. 2005;77(11):1965–83.CrossRefGoogle Scholar
  28. 28.
    Biniecka M, Caroli S. Analytical methods for the quantification of volatile aromatic compounds. TrAC Trends Anal Chem. 2011;30(11):1756–70.CrossRefGoogle Scholar
  29. 29.
    Di Natale C, Davide F, D’Amico A, Legin A, Rudinitskaya A, Selezenev B, Vlasov Y. Applications of an electronic tongue to the environmental control. Tech Dig Eurosensors. 1996: 101345–1348.Google Scholar
  30. 30.
    Kanai Y, Shimizu M, Uchida H, Nakahara H, Zhou C, Maekawa H, Katsube T. Integrated taste sensor using surface photovoltage technique. Sensors Actuators B: Chem. 1994;20(2):175–9.CrossRefGoogle Scholar
  31. 31.
    Di Natale C, Davide F, Brunink JA, D’Amico A, Vlasov YG, Legin AV, Rudnitskaya AM. Multicomponent analysis of heavy metal cations and inorganic anions in liquids by a non-selective chalcogenide glass sensor array. Sensors Actuators B: Chem. 1996;34(1):539–42.CrossRefGoogle Scholar
  32. 32.
    Legin AV, Vlasov YG, Rudnitskaya AM, Bychkov EA. Cross-sensitivity of chalcogenide glass sensors in solutions of heavy metal ions. Sensors Actuators B: Chem. 1996;34(1):456–61.CrossRefGoogle Scholar
  33. 33.
    Vlasov Y, Legin A, Rudnitskaya A. Cross-sensitivity evaluation of chemical sensors for electronic tongue: determination of heavy metal ions. Sensors Actuators B: Chem. 1997;44(1):532–7.CrossRefGoogle Scholar
  34. 34.
    Legin A, Rudnitskaya A, Vlasov Y, Di Natale C, Davide F, D’Amico A. Tasting of beverages using an electronic tongue. Sensors Actuators B: Chem. 1997;44(1):291–6.CrossRefGoogle Scholar
  35. 35.
    Jimenez C, Bratov A, Abramova N, Baldi A, Grimes C, Dickey E, Pishko M. Encyclopedia of Sensors. 2006, American Scientific Publishers, Pennsylvania, USA.Google Scholar
  36. 36.
    Owicki JC, Bousse LJ, Hafeman DG, Kirk GL, Olson JD, Wada HG, Parce JW. The light-addressable potentiometric sensor: principles and biological applications. Annu Rev Biophys Biomol Struct. 1994;23(1):87–114.PubMedCrossRefGoogle Scholar
  37. 37.
    Hafeman DG, Parce JW, McConnell HM. Light-addressable potentiometric sensor for biochemical systems. Science. 1988;240(4856):1182–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Parce JW, Owicki JC, Kercso KM, Sigal GB, Wada H, Muir VC, Bousse LJ, Ross KL, Sikic BI, McConnell HM. Detection of cell-affecting agents with a silicon biosensor. Science. 1989;246(4927):243–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Piras L, Adami M, Fenu S, Dovis M, Nicolini C. Immunoenzymatic application of a redox potential biosensor. Anal Chim Acta. 1996;335(1):127–35.CrossRefGoogle Scholar
  40. 40.
    Madou MJ, Morrison SR, Chemical sensing with solid state devices. 2012: Elsevier, Amsterdam.Google Scholar
  41. 41.
    Arida HA, Kloock JP, Schöning MJ. Novel organic membrane-based thin-film microsensors for the determination of heavy metal cations. Sensors. 2006;6(4):435–44.PubMedCentralCrossRefGoogle Scholar
  42. 42.
    Winquist F, Wide P, Lundström I. An electronic tongue based on voltammetry. Anal Chim Acta. 1997;357(1):21–31.CrossRefGoogle Scholar
  43. 43.
    Campos I, Alcañiz M, Aguado D, Barat R, Ferrer J, Gil L, Marrakchi M, Martínez-Mañez R, Soto J, Vivancos J-L. A voltammetric electronic tongue as tool for water quality monitoring in wastewater treatment plants. Water Res. 2012;46(8):2605–14.PubMedCrossRefGoogle Scholar
  44. 44.
    ávan der Linden WE. Data processing for amperometric signals. Analyst. 1995; 120(4):1009–1012.Google Scholar
  45. 45.
    Brown SD, BearJr RS Jr. Chemometric techniques in electrochemistry: a critical review. Crit Rev Anal Chem. 1993;24(2):99–131.CrossRefGoogle Scholar
  46. 46.
    Winquist F, Hornsten E, Sundgren H, Lundstrom I. Performance of an electronic nosefor quality estimation of ground meat. Meas Sci Technol. 1993;4(12):1493.CrossRefGoogle Scholar
  47. 47.
    Rajamäki T, Alakomi H-L, Ritvanen T, Skyttä E, Smolander M, Ahvenainen R. Application of an electronic nose for quality assessment of modified atmosphere packaged poultry meat. Food Control. 2006;17(1):5–13.CrossRefGoogle Scholar
  48. 48.
    O’Connell M, Valdora G, Peltzer G, Martı́n Negri R. A practical approach for fish freshness determinations using a portable electronic nose. Sensors Actuators B: Chem. 2001;80(2):149–54.CrossRefGoogle Scholar
  49. 49.
    Winquist F, Sundgren H, Lundstrom I. A practical use of electronic noses: quality estimation of cod fillet bought over the counter. In: Solid-State Sensors and Actuators, 1995 and Eurosensors IX. Transducers’95. The 8th International Conference on. 1995. IEEE.Google Scholar
  50. 50.
    Jonsson A, Winquist F, Schnürer J, Sundgren H, Lundström I. Electronic nose for microbial quality classification of grains. Int J Food Microbiol. 1997;35(2):187–93.PubMedCrossRefGoogle Scholar
  51. 51.
    Olsson J, Börjesson T, Lundstedt T, Schnürer J. Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose. Int J Food Microbiol. 2002;72(3):203–14.PubMedCrossRefGoogle Scholar
  52. 52.
    Saevels S, Lammertyn J, Berna AZ, Veraverbeke EA, Di Natale C. Nicolaı̈ BM. An electronic nose and a mass spectrometry-based electronic nose for assessing apple quality during shelf life. Postharvest Biol Technol. 2004;31(1):9–19.CrossRefGoogle Scholar
  53. 53.
    Zhang H, Wang J, Ye S. Predictions of acidity, soluble solids and firmness of pear using electronic nose technique. J Food Eng. 2008;86(3):370–8.CrossRefGoogle Scholar
  54. 54.
    Singh S, Hines EL, Gardner JW. Fuzzy neural computing of coffee and tainted-water data from an electronic nose. Sensors Actuators B: Chem. 1996;30(3):185–90.CrossRefGoogle Scholar
  55. 55.
    Pardo M, Sberveglieri G. Coffee analysis with an electronic nose. IEEE Trans Instrum Meas. 2002;51(6):1334–9.CrossRefGoogle Scholar
  56. 56.
    Pearce TC, Gardner JW, Friel S, Bartlett PN, Blair N. Electronic nose for monitoring the flavour of beers. Analyst. 1993;118(4):371–7.CrossRefGoogle Scholar
  57. 57.
    Ghasemi-Varnamkhasti M, Mohtasebi SS, Siadat M, Lozano J, Ahmadi H, Razavi SH, Dicko A. Aging fingerprint characterization of beer using electronic nose. Sensors Actuators B: Chem. 2011;159(1):51–9.CrossRefGoogle Scholar
  58. 58.
    Labreche S, Bazzo S, Cade S, Chanie E. Shelf life determination by electronic nose: application to milk. Sensors Actuators B: Chem. 2005;106(1):199–206.CrossRefGoogle Scholar
  59. 59.
    Farnworth ER, McKellar RC, Chabot D, Lapointe S, Chicoine M, Knight KP. Use of an electronic nose to study the contribution of volatiles to orange juice flavor. J Food Qual. 2002;25(6):569–76.CrossRefGoogle Scholar
  60. 60.
    Drake M, Gerard P, Kleinhenz J, Harper W. Application of an electronic nose to correlate with descriptive sensory analysis of aged Cheddar cheese. LWT-Food Sci Technol. 2003;36(1):13–20.CrossRefGoogle Scholar
  61. 61.
    Kaipainen A, Ylisuutari S, Lucas Q, Moy L. A new approach to odour detection: Comparison of thermal desorption GC-MS and electronic nose. Two techniques for the analysis of headspace aromaprofiles of sugar. Int Sugar J. 1997; 99(1184):403–408.Google Scholar
  62. 62.
    Yu H, Wang J. Discrimination of LongJing green-tea grade by electronic nose. Sensors and Actuators B: Chemical. 2007;122(1):134–40.CrossRefGoogle Scholar
  63. 63.
    Arshak K, Cunniffe C, Moore E, Cavanagh L. Custom electronic nose with potential homeland security applications. In: Sensors Applications Symposium, 2006. Proceedings of the 2006 IEEE. IEEE.Google Scholar
  64. 64.
    Brudzewski K, Osowski S, Pawlowski W. Metal oxide sensor arrays for detection of explosives at sub-parts-per million concentration levels by the differential electronic nose. Sensors Actuators B: Chem. 2012;161(1):528–33.CrossRefGoogle Scholar
  65. 65.
    Phillips M, Gleeson K, Hughes JMB, Greenberg J, Cataneo RN, Baker L, McVay WP. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. The Lancet. 1999;353(9168):1930–3.CrossRefGoogle Scholar
  66. 66.
    Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Haick H. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol. 2009;4(10):669–73.PubMedCrossRefGoogle Scholar
  67. 67.
    Wang D, Wang L, Yu J, Wang P, Hu Y, Ying K. Characterization of a modified surface acoustic wave sensor used in electronic nose for potential application in breath diagnosis. Sensor Lett. 2011;9(2):884–9.CrossRefGoogle Scholar
  68. 68.
    Wang D, Wang L, Yu J, Wang P, Hu Y, Ying K, Pardo M, Sberveglieri G. A study on electronic nose for clinical breath diagnosis of lung cancer. 2009, 314–317.Google Scholar
  69. 69.
    Hockstein NG, Thaler ER, Torigian D, Miller WT, Deffenderfer O, Hanson CW. Diagnosis of pneumonia with an electronic nose: correlation of vapor signature with chest computed tomography scan findings. The Laryngosc. 2004;114(10):1701–5.CrossRefGoogle Scholar
  70. 70.
    Hayashi K, Yamanaka M, Toko K, Yamafuji K. Multichannel taste sensor using lipid membranes. Sensors Actuators B: Chem. 1990;2(3):205–13.CrossRefGoogle Scholar
  71. 71.
    Toko K, Matsuno T, Yamafuji K, Hayashi K, Ikezaki H, Sato K, Toukubo R, Kawarai S. Multichannel taste sensor using electric potential changes in lipid membranes. Biosens Bioelectron. 1994;9(4):359–64.PubMedCrossRefGoogle Scholar
  72. 72.
    Toko K. RETRACTED: electronic tongue. Biosens Bioelectron. 1998;13(6):701–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Beullens K, Kirsanov D, Irudayaraj J, Rudnitskaya A, Legin A, Nicolaï BM, Lammertyn J. The electronic tongue and ATR–FTIR for rapid detection of sugars and acids in tomatoes. Sensors Actuators B: Chem. 2006;116(1–2):107–15.CrossRefGoogle Scholar
  74. 74.
    Kaneki N, Miura T, Shimada K, Tanaka H, Ito S, Hotori K, Akasaka C, Ohkubo S, Asano Y. Measurement of pork freshness using potentiometric sensor. Talanta. 2004;62(1):215–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Gil L, Barat JM, Escriche I, Garcia-Breijo E, Martínez-Máñez R, Soto J. An electronic tongue for fish freshness analysis using a thick-film array of electrodes. Microchim Acta. 2008;163(1–2):121–9.CrossRefGoogle Scholar
  76. 76.
    Vlasov YG, Legin A, Rudnitskaya A, D’Amico A, Di Natale C. «Electronic tongue»—new analytical tool for liquid analysis on the basis of non-specific sensors and methods of pattern recognition. Sensors Actuators B: Chem. 2000;65(1):235–6.CrossRefGoogle Scholar
  77. 77.
    Di Natale C, Macagnano A, Davide F, D’amico A, Legin A, Vlasov Y, Rudnitskaya A, Selezenev B. Multicomponent analysis on polluted waters by means of an electronic tongue. Sensors Actuators B: Chem. 1997; 44(1):423–428.Google Scholar
  78. 78.
    Moreno L, Merlos A, Abramova N, Jimenez C, Bratov A. Multi-sensor array used as an “electronic tongue” for mineral water analysis. Sensors Actuators B: Chem. 2006;116(1):130–4.CrossRefGoogle Scholar
  79. 79.
    Ha D, Hu N, Wu C, Kirsanov D, Legin A, Khaydukova M, Wang P. Novel structured light-addressable potentiometric sensor array based on PVC membrane for determination of heavy metals. Sensors Actuators B: Chem. 2012; 17459–64.Google Scholar
  80. 80.
    Winquist F, Bjorklund R, Krantz-Rülcker C, Lundström I, Östergren K, Skoglund T. An electronic tongue in the dairy industry. Sensors Actuators B: Chem. 2005: 111299–304.Google Scholar
  81. 81.
    Parra V, Arrieta ÁA, Fernández-Escudero JA, Íñiguez M, Saja JAd, Rodríguez-Méndez ML. Monitoring of the ageing of red wines in oak barrels by means of an hybrid electronic tongue. Analytica Chimica Acta. 2006; 563(1):229–237.Google Scholar

Copyright information

© Science Press, Beijing and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Zhejiang UniversityHangzhouChina

Personalised recommendations