Advertisement

Future Trends of Bioinspired Smell and Taste Sensors

  • Ping Wang
  • Liujing Zhuang
  • Yingchang Zou
  • K. Jimmy Hsia
Chapter

Abstract

Anosmia and ageusia are both harmful to the quality of life. However, the common view of anosmia and ageusia as trivial can make it more difficult for a patient to receive the same types of medical aid as someone who has lost other senses, such as sight or hearing. In order to achieve those goals, electronic noses and electronic tongue should be designed to mimic human’s sense rather than outputting electrical parameters only. Unfortunately, most commercial electronic noses (PEN3, zNose) detect volatile compounds in samples [1]. But for human beings, our nose can determine whether the sample is fragrant or not instead of determining what compounds are in the sample.

Keywords

Electronic Nose Gustatory Cell Electronic Tongue Taste Sensor Gustatory Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wilson AD, Baietto M. Applications and advances in electronic-nose technologies. Sensors. 2009;9(7):5099–148.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS. The receptors and cells for mammalian taste. Nature. 2006;444(7117):288–94.CrossRefPubMedGoogle Scholar
  3. 3.
    Tahara Y, Toko K. Electronic tongues–a review. IEEE Sens J. 2013;13(8):3001–11.CrossRefGoogle Scholar
  4. 4.
    Toko K. Taste sensor. Sens Actuators B: Chem. 2000;64(1):205–15.CrossRefGoogle Scholar
  5. 5.
    Sekitani T, Zschieschang U, Klauk H, Someya T. Flexible organic transistors and circuits with extreme bending stability. Nat Mater. 2010;9(12):1015–22.CrossRefPubMedGoogle Scholar
  6. 6.
    Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH, Schalk G, Donchin E, Quatrano LA, Robinson CJ, Vaughan TM. Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng. 2000;8(2):164–73.CrossRefPubMedGoogle Scholar
  7. 7.
    Pickens H. Brain port lets the blind ‘See’ with their tongues. http://hardware.slashdot.org/article.pl.
  8. 8.
    Holton B. eSight eyewear and smart glasses from assisted vision. 2014.Google Scholar
  9. 9.
    Bougrini M, Tahri K, Haddi Z, El Bari N, Llobet E, Jaffrezic-Renault N, Bouchikhi B. Aging time and brand determination of pasteurized milk using a multisensor e-nose combined with a voltammetric e-tongue. Mater Sci Eng: C. 2014;45348–358.Google Scholar
  10. 10.
    Cole M, Covington JA, Gardner JW. Combined electronic nose and tongue for a flavour sensing system. Sens Actuators B: Chem. 2011;156(2):832–9.CrossRefGoogle Scholar
  11. 11.
    Sørensen LB, Møller P, Flint A, Martens M, Raben A. Effect of sensory perception of foods on appetite and food intake: a review of studies on humans. Int J Obes. 2003;27(10):1152–66.CrossRefGoogle Scholar
  12. 12.
    Gil-Sánchez L, Soto J, Martínez-Máñez R, Garcia-Breijo E, Ibáñez J, Llobet E. A novel humid electronic nose combined with an electronic tongue for assessing deterioration of wine. Sens Actuators, A. 2011;171(2):152–8.CrossRefGoogle Scholar
  13. 13.
    Banerjee R, Tudu B, Shaw L, Jana A, Bhattacharyya N, Bandyopadhyay R. Instrumental testing of tea by combining the responses of electronic nose and tongue. J Food Eng. 2012;110(3):356–63.CrossRefGoogle Scholar
  14. 14.
    Haddi Z, Alami H, El Bari N, Tounsi M, Barhoumi H, Maaref A, Jaffrezic-Renault N, Bouchikhi B. Electronic nose and tongue combination for improved classification of Moroccan virgin olive oil profiles. Food Res Int. 2013;54(2):1488–98.CrossRefGoogle Scholar
  15. 15.
    Clynes ME, Kline NS. Cyborgs and space. The cyborg handbook; 1995. p. 29–34.Google Scholar
  16. 16.
    Niedzviecki H, Mann S, Cyborg: Digital destiny and human possibility in the age of the wearable computer. Doubleday Canada; 2001.Google Scholar
  17. 17.
    Robinson D. Cyborg translation; 2000.Google Scholar
  18. 18.
    Brown S. Stealth sharks to patrol the high seas. New Sci. 2006;189(2541):30–1.Google Scholar
  19. 19.
    Lehmkuhle MJ, Vetter RJ, Parikh H, Carrier JC, Kipke DR. Implantable neural interfaces for characterizing population responses to odorants and electrical stimuli in the nurse shark. Ginglymostoma cirratum. Chem Sens. 2006;31(5):A14–A14.Google Scholar
  20. 20.
    Anthes E. Frankenstein’s cat: cuddling up to biotech’s brave new beasts. Oneworld Publications; 2013.Google Scholar
  21. 21.
    Singer E. Send in the rescue rats. New Sci. 2004;183(2466):21–21.Google Scholar
  22. 22.
    Pokroy B, Kang SH, Mahadevan L, Aizenberg J. Self-organization of a mesoscale bristle into ordered. Hierarchical Helical Assemblies. Science. 2009;323(5911):237–40.CrossRefPubMedGoogle Scholar
  23. 23.
    Das M, Rumsey JW, Gregory CA, Bhargava N, Kang JF, Molnar P, Riedel L, Guo X, Hickman JJ. Embryonic motoneuron-skeletal muscle co-culture in a defined system. Neuroscience. 2007;146(2):481–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Xi JZ, Schmidt JJ, Montemagno CD. Self-assembled microdevices driven by muscle. Nat Mater. 2005;4(2):180–U167.CrossRefPubMedGoogle Scholar
  25. 25.
    Ananthaswamy A. First robot moved by muscle power. New Sci. 2004;181(2436):23–23.Google Scholar
  26. 26.
    Finer JT, Simmons RM, Spudich JA. Single myosin molecule mechanics—piconewton forces and nanometer steps. Nature. 1994;368(6467):113–9.CrossRefPubMedGoogle Scholar

Copyright information

© Science Press, Beijing and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Ping Wang
    • 1
  • Liujing Zhuang
    • 1
  • Yingchang Zou
    • 1
  • K. Jimmy Hsia
    • 2
  1. 1.Zhejiang UniversityHangzhouChina
  2. 2.University of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations