Advertisement

Biomimetic Gustatory Membrane-Based Taste Sensors

Chapter
  • 969 Downloads

Abstract

Electronic tongue is the classical tool for taste evaluation in different applications such as food evaluation [1], water [2], and process monitoring [3]; biomimetic membrane-based taste biosensor is another important approach for taste evaluation.

Keywords

Partial Less Square Electronic Tongue Taste Sensor Human Tongue Taste Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kaneki N, Miura T, Shimada K, Tanaka H, Ito S, Hotori K, Akasaka C, Ohkubo S, Asano Y. Measurement of pork freshness using potentiometric sensor. Talanta. 2004;62(1):215–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Ha D, Hu N, Wu C, Kirsanov D, Legin A, Khaydukova M, Wang P. Novel structured light-addressable potentiometric sensor array based on PVC membrane for determination of heavy metals. Sens Actuators B: Chem. 2012;17459–64.Google Scholar
  3. 3.
    Winquist F, Bjorklund R, Krantz-Rülcker C, Lundström I, Östergren K, Skoglund T. An electronic tongue in the dairy industry. Sens Actuators B: Chem. 2005;111299–304.Google Scholar
  4. 4.
    Bencharit S. History of Progress and Challenges in Structural Biology. J Pharmacogenom Pharmacoproteomics S. 2012; 42153–0645.Google Scholar
  5. 5.
    Weiss S. Fluorescence spectroscopy of single biomolecules. Science. 1999;283(5408):1676–83.PubMedCrossRefGoogle Scholar
  6. 6.
    Finer JT, Simmons RM, Spudich JA. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994;368(6467):113–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Shen Y-X, Saboe PO, Sines IT, Erbakan M, Kumar M. Biomimetic membranes: a review. J Membr Sci. 2014; 454359–381.Google Scholar
  8. 8.
    Lenau T, Stroble J, Stone R, Watkins S. An overview of biomimetic sensor technology. Sens Rev. 2009;29(2):112–9.CrossRefGoogle Scholar
  9. 9.
    Toko K. Biomimetic sensor technology. Cambridge University Press; 2000.Google Scholar
  10. 10.
    Huang W, Yang X, Wang E. Mimetic membrane for biosensors. Anal Lett. 2005;38(1):3–18.CrossRefGoogle Scholar
  11. 11.
    Winter R, Dzwolak W. Exploring the temperature–pressure configurational landscape of biomolecules: from lipid membranes to proteins. Philos Trans R Soc A: Math, Phys Eng Sci. 1827;2005(363):537–63.Google Scholar
  12. 12.
    Tian W-J, Sasaki Y, Fan S-D, Kikuchi J-I. Switching of enzymatic activity through functional connection of molecular recognition on lipid bilayer membranes. Supramol Chem. 2005;17(1–2):113–9.CrossRefGoogle Scholar
  13. 13.
    Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W. A comprehensive classification system for lipids. J Lipid Res. 2005;46(5):839–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Sleytr UB, Messner P, Pum D, Sara M. Crystalline bacterial cell surface layers (S layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew Chem Int Ed. 1999;38(8):1034–54.CrossRefGoogle Scholar
  15. 15.
    Ilk N, Egelseer EM, Sleytr UB. S-layer fusion proteins—construction principles and applications. Curr Opin Biotechnol. 2011;22(6):824–31.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Cashion MP, Long TE. Biomimetic design and performance of polymerizable lipids. Acc Chem Res. 2009;42(8):1016–25.PubMedCrossRefGoogle Scholar
  17. 17.
    Mueller P, Rudin DO, Ti Tien H, Wescott WC. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature. 1962; 194979–980.Google Scholar
  18. 18.
    Montal M, Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci. 1972;69(12):3561–6.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Cruz A, Pérez-Gil J. Langmuir films to determine lateral surface pressure on lipid segregation, in Methods in Membrane Lipids. Springer; 2007. p. 439–457.Google Scholar
  20. 20.
    Lin W-C, Blanchette CD, Ratto TV, Longo ML. Lipid domains in supported lipid bilayer for atomic force microscopy, in Methods in membrane lipids. Springer; 2007, p. 503–513.Google Scholar
  21. 21.
    Elie-Caille C, Fliniaux O, Pantigny J, Maziere J-C, Bourdillon C. Self-Assembly of solid-supported membranes using a triggered fusion of phospholipid-enriched proteoliposomes prepared from the inner mitochondrial membrane1. Langmuir. 2005;21(10):4661–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Nielsen CH. Biomimetic membranes for sensor and separation applications. Anal Bioanal Chem. 2009;395(3):697–718.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang L, Granick S. Dynamical heterogeneity in supported lipid bilayers. MRS Bull. 2006;31(07):527–31.CrossRefGoogle Scholar
  24. 24.
    Tanaka M. Polymer-supported membranes: physical models of cell surfaces. MRS Bull. 2006;31(07):513–20.CrossRefGoogle Scholar
  25. 25.
    Sackmann E, Tanaka M. Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends Biotechnol. 2000;18(2):58–64.PubMedCrossRefGoogle Scholar
  26. 26.
    Rossi C, Chopineau J. Biomimetic tethered lipid membranes designed for membrane-protein interaction studies. Eur Biophys J. 2007;36(8):955–65.PubMedCrossRefGoogle Scholar
  27. 27.
    Gagner J, Johnson H, Watkins E, Li Q, Terrones M, Majewski J. Carbon nanotube supported single phospholipid bilayer. Langmuir. 2006;22(26):10909–11.PubMedCrossRefGoogle Scholar
  28. 28.
    Jeon T-J, Malmstadt N, Schmidt JJ. Hydrogel-encapsulated lipid membranes. J Am Chem Soc. 2006;128(1):42–3.PubMedCrossRefGoogle Scholar
  29. 29.
    Shim JW, Gu LQ. Stochastic sensing on a modular chip containing a single-ion channel. Anal Chem. 2007;79(6):2207–13.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Schuster B, Sleytr UB. The effect of hydrostatic pressure on S-layer-supported lipid membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2002;1563(1): 29–34.Google Scholar
  31. 31.
    Sleytr UB, Egelseer EM, Ilk N, Pum D, Schuster B. S-Layers as a basic building block in a molecular construction kit. FEBS J. 2007;274(2):323–34.PubMedCrossRefGoogle Scholar
  32. 32.
    Ndoni S, Vigild ME, Berg RH. Nanoporous materials with spherical and gyroid cavities created by quantitative etching of polydimethylsiloxane in polystyrene-polydimethylsiloxane block copolymers. J Am Chem Soc. 2003;125(44):13366–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Seifert K, Fendler K, Bamberg E. Charge transport by ion translocating membrane proteins on solid supported membranes. Biophys J. 1993;64(2):384–91.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Zebrowska A, Krysinski P. Incorporation of Na + , K + -ATP-ase into the thiolipid biomimetic assemblies via the fusion of proteoliposomes. Langmuir. 2004;20(25):11127–33.PubMedCrossRefGoogle Scholar
  35. 35.
    Helix Nielsen C, Abdali S, Lundbæk JA, Cornelius F. Raman spectroscopy of conformational changes in membrane-bound sodium potassium ATPase. Spectroscopy. 2007;22(2): 52–63.Google Scholar
  36. 36.
    LaVan DA, Cha JN. Approaches for biological and biomimetic energy conversion. Proc Natl Acad Sci. 2006;103(14):5251–5.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Oesterhelt D, Stoeckenius W. Functions of a new photoreceptor membrane. Proc Natl Acad Sci. 1973;70(10):2853–7.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Gruia AD, Bondar A-N, Smith JC, Fischer S. Mechanism of a molecular valve in the halorhodopsin chloride pump. Structure. 2005;13(4):617–27.PubMedCrossRefGoogle Scholar
  39. 39.
    Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R. X-ray structure of a voltage-dependent K+ channel. Nature. 2003;423(6935):33–41.PubMedCrossRefGoogle Scholar
  40. 40.
    DeCoursey TE. Voltage-gated proton channels. Cell Mol Life Sci. 2008;65(16):2554–73.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Agre P, Sasaki S, Chrispeels M. Aquaporins: a family of water channel proteins. Am J Physiol-Ren Physiol. 1993;265(3):F461–F461.Google Scholar
  42. 42.
    Németh-Cahalan KL, Hall JE. pH and calcium regulate the water permeability of aquaporin 0. J Biol Chem. 2000;275(10):6777–82.PubMedCrossRefGoogle Scholar
  43. 43.
    Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P. Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell Online. 1998;10(3):451–9.CrossRefGoogle Scholar
  44. 44.
    Zeuthen T, Klaerke DA. Transport of water and glycerol in aquaporin 3 is gated by H+. J Biol Chem. 1999;274(31):21631–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Toko K, Nitta J, Yamafuji K. Dynamic aspect of a phase transition in DOPH-millipore membranes. J Phys Soc Jpn. 1981;50(4):1343–50.CrossRefGoogle Scholar
  46. 46.
    Toko K, Yamafuji K. Stabilization effect of protons and divalent cations on membrane structures of lipids. Biophys Chem. 1981;14(1):11–23.PubMedCrossRefGoogle Scholar
  47. 47.
    Toko K, Ryu K, Ezaki S, Yamafuji K. Self-sustained oscillations of membrane potential in DOPH-millipore membranes. J Phys Soc Jpn. 1982;51(10):3398–405.CrossRefGoogle Scholar
  48. 48.
    Toko K, Tsukiji M, Ezaki S, Yamafuji K. Current-voltage characteristics and self-sustained oscillations in dioleyl phosphate-millipore membranes. Biophys Chem. 1984;20(1):39–59.PubMedCrossRefGoogle Scholar
  49. 49.
    Toko K, Nosaka M, Tsukiji M, Yamafuji K. Dynamic property of membrane formation in a protoplasmic droplet of nitella. Biophys Chem. 1985;21(3):295–313.PubMedCrossRefGoogle Scholar
  50. 50.
    Toko K, Tsukiji M, Iiyama S, Yamafuji K. Self-sustained oscillations of electric potential in a model membrane. Biophys Chem. 1986;23(3):201–10.PubMedCrossRefGoogle Scholar
  51. 51.
    Toko K, Nakashima N, Iiyama S, Yamafuji K, Kunitake T. Self-oscillation of electric potential of a porous membrane impregnated with polymer multi-bilayer complexes. Chem Lett. 1986;8:1375–8.CrossRefGoogle Scholar
  52. 52.
    Hayashi K, Yamanaka M, Toko K, Yamafuji K. Multichannel taste sensor using lipid membranes. Sens Actuators B: Chem. 1990;2(3):205–13.CrossRefGoogle Scholar
  53. 53.
    Murata T, Hayashi K, Toko K, Ikezaki H. Quantification of Sourness and Saltiness Using a Multichannel Sensor with Lipid Membranes (S & M 0100). Sens and Mater. 1992; 481–81.Google Scholar
  54. 54.
    Toko K, Matsuno T, Yamafuji K, Hayashi K, Ikezaki H, Sato K, Toukubo R, Kawarai S. Multichannel taste sensor using electric potential changes in lipid membranes. Biosens Bioelectron. 1994;9(4):359–64.PubMedCrossRefGoogle Scholar
  55. 55.
    Hayashi K, Toko K, Yamanaka M, Yoshihara H, Yamafuji K, Ikezaki H, Toukubo R, Sato K. Electric characteristics of lipid-modified monolayer membranes for taste sensors. Sens Actuators B: Chem. 1995;23(1):55–61.CrossRefGoogle Scholar
  56. 56.
    Ninomiya Y, Funakoshi M. Qualitative discrimination among “umami” and the four basic taste substances in mice. Umami: a basic taste. 1987; 365–385.Google Scholar
  57. 57.
    Schiffman SS, Suggs MS, Sostman L, Simon SA. Chorda tympani and lingual nerve responses to astringent compounds in rodents. Physiol Behav. 1992;51(1):51–63.CrossRefGoogle Scholar
  58. 58.
    Bajec MR, Pickering GJ. Astringency: mechanisms and perception. Crit Rev Food Sci Nutr. 2008;48(9):858–75.PubMedCrossRefGoogle Scholar
  59. 59.
    Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175(23):720–31.PubMedCrossRefGoogle Scholar
  60. 60.
    Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS. The receptors and cells for mammalian taste. Nature. 2006;444(7117):288–94.PubMedCrossRefGoogle Scholar
  61. 61.
    Reed DR, Nanthakumar E, North M, Bell C, Bartoshuk LM, Price RA. Localization of a gene for bitter-taste perception to human chromosome 5p15. Am J Hum Genet. 1999;64(5):1478.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ. T2Rs function as bitter taste receptors. Cell. 2000;100(6):703–11.PubMedCrossRefGoogle Scholar
  63. 63.
    Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci. 2006;103(33):12569–74.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Lyall V, Heck GL, Vinnikova AK, Ghosh S. Phan T-HT, Alam RI, Russell OF, Malik SA, Bigbee JW, DeSimone JA. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J Physiol. 2004;558(1):147–59.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Kobayashi Y, Habara M, Ikezazki H, Chen R, Naito Y, Toko K. Advanced taste sensors based on artificial lipids with global selectivity to basic taste qualities and high correlation to sensory scores. Sensors. 2010;10(4):3411–43.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Ishii S, Misaka T, Kishi M, Kaga T, Ishimaru Y, Abe K. Acetic acid activates PKD1L3–PKD2L1 channel—A candidate sour taste receptor. Biochem Biophys Res Commun. 2009;385(3):346–50.PubMedCrossRefGoogle Scholar
  67. 67.
    Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev. 2002;82(3):735–67.PubMedCrossRefGoogle Scholar
  68. 68.
    Nakashima K, Ninomiya Y. Increase in inositol 1, 4, 5-trisphosphate levels of the fungiform papilla in response to saccharin and bitter substances in mice. Cell Physiol Biochem. 1998;8(4):224–30.PubMedCrossRefGoogle Scholar
  69. 69.
    Nakashima K, Ninomiya Y. Transduction for sweet taste of saccharin may involve both inositol 1, 4, 5-trisphosphate and cAMP pathways in the fungiform taste buds in C57BL mice. Cell Physiol Biochem. 1999;9(2):90–8.PubMedCrossRefGoogle Scholar
  70. 70.
    DeSimone JA, Lyall V, Heck GL, Feldman GM. Acid detection by taste receptor cells. Respir Physiol. 2001;129(1):231–45.PubMedCrossRefGoogle Scholar
  71. 71.
    Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell. 2003;112(3):293–301.PubMedCrossRefGoogle Scholar
  72. 72.
    Ikezaki H, Kobayashi Y, Toukubo R, Naito Y, Taniguchi A, Toko K. Techniques to control sensitivity and selectivity of multichannel taste sensor using lipid membranes. In: Proceedings of the 10th International Conference on Solid-State Sensors and Actuators. 1999.Google Scholar
  73. 73.
    Ikezaki H, Naito Y, Kobayashi Y, Toukubo R, Taniguchi A, Toko K. Improvement of selectivity of taste sensor by control of charge density and hydrophobicity of lipid membrane. Technical Report of IEICE. OME. 2000;10019–24.Google Scholar
  74. 74.
    Kumazawa T, Kashiwayanagi M, Kurihara K. Neuroblastoma cell as a model for a taste cell: mechanism of depolarization in response to various bitter substances. Brain Res. 1985;333(1):27–33.PubMedCrossRefGoogle Scholar
  75. 75.
    Donovan SF, Pescatore MC. Method for measuring the logarithm of the octanol–water partition coefficient by using short octadecyl–poly (vinyl alcohol) high-performance liquid chromatography columns. J Chromatogr A. 2002;952(1):47–61.PubMedCrossRefGoogle Scholar
  76. 76.
    Gulyaeva N, Zaslavsky A, Lechner P, Chait A, Zaslavsky B. pH dependence of the relative hydrophobicity and lipophilicity of amino acids and peptides measured by aqueous two-phase and octanol–buffer partitioning. J Pep Res. 2003;61(2):71–9.CrossRefGoogle Scholar
  77. 77.
    Kobayashi Y, Hamada H, Yamaguchi Y, Ikezaki H, Toko K. Development of an Artificial Lipid-Based Membrane Sensor with High Selectivity and Sensitivity to the Bitterness of Drugs and with High Correlation with Sensory Score. IEEJ Trans Electr Electron Eng. 2009;4(6):710–9.CrossRefGoogle Scholar
  78. 78.
    Ciosek P, Wróblewski W. Sensor arrays for liquid sensing–electronic tongue systems. Analyst. 2007;132(10):963–78.PubMedCrossRefGoogle Scholar
  79. 79.
    Tahara Y, Toko K. Electronic Tongues–A Review. Sens J IEEE. 2013;13(8):3001–11.CrossRefGoogle Scholar
  80. 80.
    Mizota Y, Matsui H, Ikeda M, Ichihashi N, Iwatsuki K, Toko K. Flavor evaluation using taste sensor for UHT processed milk stored in cartons having different light permeabilities. Milchwissenschaft. 2009;64(2):143–6.Google Scholar
  81. 81.
    Uyen Tran T, Suzuki K, Okadome H, Homma S, Ohtsubo Ki. Analysis of the tastes of brown rice and milled rice with different milling yields using a taste sensing system. Food Chem. 2004;88(4):557–566.Google Scholar
  82. 82.
    Sasaki K, Tani F, Sato K, Ikezaki H, Taniguchi A, Emori T, Iwaki F, Chikuni K, Mitsumoto M. Analysis of pork extracts by taste sensing system and the relationship between umami substances and sensor output. Sens Mater. 2005;17(7):397–404.Google Scholar
  83. 83.
    Chen R, Hidekazu I, Toko K. Development of Sensor with High Selectivity for Saltiness and Its Application in Taste Evaluation of Table Salt. Sens Mater. 2010;22(6):313–25.Google Scholar
  84. 84.
    Cui S, Wang J, Geng L, Wei Z, Tian X. Determination of Ginseng with Different Ages Using a Taste-Sensing System. Sens Mater. 2013;25(4):241–55.Google Scholar
  85. 85.
    Toko K. Taste sensor. Sens Actuators B: Chem. 2000;64(1):205–15.CrossRefGoogle Scholar
  86. 86.
    Taniguchi A, Naito Y, Maeda N, Sato Y, Ikezaki H. Development of a monitoring system for water quality using a taste sensor. Sens Mater. 1999;11(7):437–46.Google Scholar
  87. 87.
    Okamoto M, Sunada H, Nakano M, Nishiyama R. Bitterness evaluation of orally disintegrating famotidine tablets using a taste sensor. Asian J Pharm Sci. 2009; 41–7.Google Scholar
  88. 88.
    Uchida T, Miyanaga Y, Tanaka H, Wada K, Kurosaki S, Ohki T, Yoshida M, Matsuyama K. Quantitative evaluation of the bitterness of commercial medicines using a taste sensor. channels. 2000;24.Google Scholar
  89. 89.
    Uchida T, Kobayashi Y, Miyanaga Y, Toukubo R, Ikezaki H, Taniguchi A, Nishikata M, Matsuyama K. A new method for evaluating the bitterness of medicines by semi-continuous measurement of adsorption using a taste sensor. Chem Pharm Bull. 2001;49(10):1336–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Miyanaga Y, Tanigake A, Nakamura T, Kobayashi Y, Ikezaki H, Taniguchi A, Matsuyama K, Uchida T. Prediction of the bitterness of single, binary-and multiple-component amino acid solutions using a taste sensor. Int J Pharm. 2002;248(1):207–18.PubMedCrossRefGoogle Scholar
  91. 91.
    Takagi S, Toko K, Wada K, Yamada H, Toyoshima K. Detection of suppression of bitterness by sweet substance using a multichannel taste sensor. J Pharm Sci. 1998;87(5):552–5.PubMedCrossRefGoogle Scholar
  92. 92.
    Takagi S, Toko K, Wada K, Ohki T. Quantification of suppression of bitterness using an electronic tongue. J Pharm Sci. 2001;90(12):2042–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Nakamura T, Tanigake A, Miyanaga Y, Ogawa T, Akiyoshi T, Matsuyama K, Uchida T. The effect of various substances on the suppression of the bitterness of quinine–human gustatory sensation, binding, and taste sensor studies. Chem Pharm Bull. 2002;50(12):1589–93.PubMedCrossRefGoogle Scholar
  94. 94.
    Woertz K, Tissen C, Kleinebudde P, Breitkreutz J. Performance qualification of an electronic tongue based on ICH guideline Q2. J Pharm Biomed Anal. 2010;51(3):497–506.PubMedCrossRefGoogle Scholar
  95. 95.
    Uekama K. Design and evaluation of cyclodextrin-based drug formulation. Chem Pharm Bull. 2004;52(8):900–15.PubMedCrossRefGoogle Scholar
  96. 96.
    Katsuragi Y, Sugiura Y, Lee C, Otsuji K, Kurihara K. Selective inhibition of bitter taste of various drugs by lipoprotein. Pharm Res. 1995;12(5):658–62.PubMedCrossRefGoogle Scholar

Copyright information

© Science Press, Beijing and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Zhejiang UniversityHangzhouChina

Personalised recommendations